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ABSTRACT 
In this paper, we introduce the concepts of fuzzy upper and fuzzy lower contra 𝑒∗ (resp. 𝛿-semi and 𝛿-pre)-continuous 
multifunction on fuzzy topological spaces in �̂�ostak sense. Several characterizations and properties of these fuzzy upper 
(resp. fuzzy lower) contra 𝑒∗ (resp. 𝛿 -semi and 𝛿 -pre)-continuous multifunctions are presented and their mutual 
relationships are established in 𝐿-fuzzy topological spaces. Later, composition and union between these multifunctions 
have been studied.   
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1. INTRODUCTION AND PRELIMINARIES 
 
Kubiak [9] and �̂�ostak [12] introduced the notion of (L-) fuzzy topological space as a generalization of L-topological 
spaces (originally called (L-) fuzzy topological spaces by Chang [5] and Goguen [6]. It is the grade of openness of an 
L-fuzzy set. Berge [4] introduced the concept multimapping 𝐹:𝑋 ⊸ 𝑌 where 𝑋 and 𝑌 are topological spaces. After 
Chang introduced the concept of fuzzy topology [5], continuity of multifunctions in fuzzy topological spaces have been 
defined and studied by many authors from different view points [3]. Tsiporkova et.al, [15, 16] introduced the continuity 
of fuzzy multivalued mappings in the Chang’s fuzzy topology [5]. Later, Abbas et.al, [1], [2] introduced the concepts of 
fuzzy upper and lower semi-continuous multifunctions, fuzzy upper and lower 𝛽-continuous multifunctions in L-fuzzy 
topological spaces. Hebeshi., [7] introduced the concepts of fuzzy upper and lower 𝛼-continuous multifunctions in 
L-fuzzy topological spaces. Recently, Vadivel et.al, [17] and Prabhu et.al, [18] introduced 𝑟-f𝑒∗o sets and fuzzy 
𝑒∗-continuity in a smooth topological space. Sujatha et.al [14] introduced fuzzy upper and lower contra 𝑒-continuous 
multifunctions on fuzzy topological spaces in �̂�ostak sense. In this paper, we introduce the concepts of fuzzy upper and 
fuzzy lower contra 𝑒∗(resp. 𝛿-semi and 𝛿-pre)-continuous multifunction on fuzzy topological spaces in �̂�ostak sense. 
Several characterizations and properties of these multifunctions are presented and their mutual relationships are 
established in 𝐿-fuzzy topological spaces. Later, composition and union between these multifunctions have been studied. 
Throughout this paper, nonempty sets will be denoted by 𝑋,  𝑌 etc., 𝐿 = [0,  1] and 𝐿0 = (0,  1]. The family of all 
fuzzy sets in 𝑋 is denoted by 𝐿𝑋 . The complement of an 𝐿-fuzzy set 𝜆 is denoted by 𝜆𝑐 . This symbol ⊸ for a  
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multifunction. For 𝛼 ∈ 𝐿,  𝛼(𝑥) = 𝛼  for all 𝑥 ∈ 𝑋.  A fuzzy point 𝑥𝑡  for 𝑡 ∈ 𝐿0  is an element of 𝐿𝑋  such that 

𝑥𝑡(𝑦) = �𝑡 if 𝑦 = 𝑥
0 if 𝑦 ≠ 𝑥.

� The family of all fuzzy points in 𝑋 is denoted by 𝑃𝑡(𝑋). A fuzzy point 𝑥𝑡 ∈ 𝜆 iff 𝑡 ≤ 𝜆(𝑥). All 

other notations are standard notations of 𝐿-fuzzy set theory.  
 
Let 𝐹:𝑋 ⊸ 𝑌, then 𝐹 is called a fuzzy multifunction (FM, for short) [1] if and only if 𝐹(𝑥) ∈ 𝐿𝑌 for each 𝑥 ∈ 𝑋. The 
degree of membership of 𝑦 in 𝐹(𝑥) is denoted by 𝐹(𝑥)(𝑦) = 𝐺𝐹(𝑥,  𝑦) for any (𝑥,  𝑦) ∈ 𝑋 × 𝑌. The domain of 𝐹, 
denoted by 𝑑𝑜𝑚𝑎𝑖𝑛(𝐹)  and the range of 𝐹,  denoted by 𝑟𝑛𝑔(𝐹),  for any 𝑥 ∈ 𝑋  and 𝑦 ∈ 𝑌,  are defined by: 
𝑑𝑜𝑚(𝐹)(𝑥) = ⋁ 𝐺𝐹𝑦∈𝑌 (𝑥,  𝑦)  and  𝑟𝑛𝑔(𝐹)(𝑦) = ⋁ 𝐺𝐹𝑥∈𝑋 (𝑥,  𝑦).  Let 𝐹:𝑋 ⊸ 𝑌  be a FM. Then 𝐹  is called: (i) 
Normalized iff for each 𝑥 ∈ 𝑋, there exixts 𝑦0 ∈ 𝑌 such that 𝐺𝐹(𝑥,  𝑦0) = 1. (ii) A crisp iff 𝐺𝐹(𝑥,  𝑦) = 1 for each 
𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌. Let 𝐹:𝑋 ⊸ 𝑌 be a FM. Then (i) The image of 𝜆 ∈ 𝐿𝑋  is an 𝐿-fuzzy set 𝐹(𝜆) ∈ 𝐿𝑌  defined by 
𝐹(𝜆)(𝑦) = ⋁ [𝑥∈𝑋 𝐺𝐹(𝑥,  𝑦) ∧ 𝜆(𝑥)].  (ii) The lower inverse of 𝜇 ∈ 𝐿𝑌  is an 𝐿 -fuzzy set 𝐹𝑙(𝜇) ∈ 𝐿𝑋  defined by 
𝐹𝑙(𝜇)(𝑥) = ⋁ [𝑦∈𝑌 𝐺𝐹(𝑥,  𝑦) ∧ 𝜇(𝑦)].  (iii) The upper inverse of 𝜇 ∈ 𝐿𝑌  is an 𝐿 -fuzzy set 𝐹𝑢(𝜇) ∈ 𝐿𝑋  defined by 
𝐹𝑢(𝜇)(𝑥) = ⋀ [𝑦∈𝑌 𝐺𝐹𝑐(𝑥,  𝑦) ∨ 𝜇(𝑦)].  
 
An 𝐿-fuzzy topological space (𝐿-fts, in short) [9,12] is a pair (𝑋,  𝜏), where 𝑋 is a nonempty set and 𝜏: 𝐿𝑋 → 𝐿 is a 
mapping satisfying the following properties. (i) 𝜏(0) = 𝜏(1) = 1, (ii) 𝜏(𝜇1 ∧ 𝜇2) ≥ 𝜏(𝜇1) ∧ 𝜏(𝜇2), for any 𝜇1,  𝜇2 ∈ 𝐼𝑋. 
(iii) 𝜏(⋁ 𝜇𝑖𝑖∈Γ ) ≥ ⋀ 𝜏𝑖∈Γ (𝜇𝑖) , for any {𝜇𝑖}𝑖∈Γ ⊂ 𝐼𝑋 . Then 𝜏  is called an 𝐿 -fuzzy topology on 𝑋.  For every              
𝜆 ∈ 𝐿𝑋 , 𝜏(𝜆) is called the degree of openness of the 𝐿-fuzzy set 𝜆. A mapping 𝑓: (𝑋,  𝜏) → (𝑌,  𝜂)  is said to be 
continuous with respect to 𝐿-fuzzy topologies 𝜏 and 𝜂 iff 𝜏(𝑓−1(𝜇)) ≥ 𝜂(𝜇) for each 𝜇 ∈ 𝐿𝑌 . Let (𝑋,  𝜏) be a an 
𝐿-fts. Then for each 𝜆 ∈ 𝐿𝑋 ,  𝑟 ∈ 𝐿0, we define 𝐿-fuzzy operators 𝐶𝜏  and 𝐼𝜏:𝐿𝑋 × 𝐿0 → 𝐿𝑋 as follows:  
𝐶𝜏(𝜆,  𝑟) = ⋀{𝜇 ∈ 𝐿𝑋:𝜆 ≤ 𝜇,  𝜏(1− 𝜇) ≥ 𝑟}. 𝐼𝜏(𝜆,  𝑟) = ⋁{𝜇 ∈ 𝐿𝑋:𝜆 ≥ 𝜇,  𝜏(𝜇) ≥ 𝑟}.  
 
Let (𝑋,  𝜏) be a fts. For 𝜆,  𝜇 ∈ 𝐼𝑋 and 𝑟 ∈ 𝐼0, 𝜆 is called 𝑟-fuzzy regular open [8] (for short, 𝑟-fro) (resp. 𝑟-fuzzy 
regular closed (for short, 𝑟-frc)) if 𝜆 = 𝐼𝜏(𝐶𝜏(𝜆, 𝑟), 𝑟) (resp. 𝜆 = 𝐶𝜏(𝐼𝜏(𝜆, 𝑟), 𝑟)). Let (𝑋,  𝜏) be a fts. Then for each 
𝜇 ∈ 𝐼𝑋 ,  𝑥𝑡 ∈ 𝑃𝑡(𝑋) and 𝑟 ∈ 𝐼0, (i) 𝜇 is called r-open 𝑄𝜏-neighbourhood of 𝑥𝑡 if 𝑥𝑡𝑞𝜇 with 𝜏(𝜇) ≥ 𝑟. (ii) 𝜇 is called 
r-open 𝑅𝜏 -neighbourhood of 𝑥𝑡  if 𝑥𝑡𝑞𝜇 with 𝜇 = 𝐼𝜏(𝐶𝜏(𝜇,  𝑟),  𝑟).  We denoted 𝑄𝜏(𝑥𝑡,  𝑟) = {𝜇 ∈ 𝐼𝑋: 𝑥𝑡𝑞𝜇,  𝜏(𝜇) ≥
𝑟},  𝑅𝜏(𝑥𝑡 ,  𝑟) = {𝜇 ∈ 𝐼𝑋:𝑥𝑡𝑞𝜇,  𝜇 = 𝐼𝜏(𝐶𝜏(𝜇,  𝑟),  𝑟)}.  Let (𝑋,  𝜏)  be a fts. Then for each 𝜆 ∈ 𝐼𝑋 ,  𝑥𝑡 ∈ 𝑃𝑡(𝑋)  and 
𝑟 ∈ 𝐼0, (i) 𝑥𝑡 is called r-𝜏 cluster point of 𝜆 if for every 𝜇 ∈ 𝑄𝜏(𝑥𝑡,  𝑟), we have 𝜇𝑞𝜆. (ii) 𝑥𝑡 is called r-𝛿 cluster point 
of 𝜆 if for every 𝜇 ∈ 𝑅𝜏(𝑥𝑡,  𝑟), we have 𝜇𝑞𝜆. (iii) An 𝛿-closure operator is a mapping 𝐷𝜏: 𝐼𝑋 × 𝐼 → 𝐼𝑋 defined as 
follows: 𝛿𝐶𝜏(𝜆,  𝑟)  or 𝐷𝜏(𝜆,  𝑟) = ⋁{ 𝑥𝑡 ∈ 𝑃𝑡(𝑋):𝑥𝑡  is r-𝛿 -cluster point of 𝜆} . Equivalently, 𝛿𝐶𝜏(𝜆,  𝑟) = ⋀{𝜇 ∈
𝐼𝑋: 𝜇 ≥ 𝜆,  𝜇 is a 𝑟 − frc set} and 𝛿𝐼𝜏(𝜆,  𝑟) = ⋁{𝜇 ∈ 𝐼𝑋: 𝜇 ≤ 𝜆,  𝜇 is a 𝑟 − fro set}. Let (𝑋,  𝜏) be a fuzzy topological 
space. For 𝜆 ∈ 𝐼𝑋 and 𝑟 ∈ 𝐼0, 𝜆 is called 𝑟-fuzzy 𝛿-closed iff 𝜆 = 𝛿𝐶𝜏(𝜆,  𝑟) or 𝐷𝜏(𝜆,  𝑟).  
 
Let (𝑋,  𝜏) be a fuzzy topological space. For 𝜆,  𝜇 ∈ 𝐼𝑋 and 𝑟 ∈ 𝐼0,𝜆 is called an (i) 𝑟-fuzzy 𝛿-semiopen [13] (resp. 
𝑟-fuzzy 𝛿-semiclosed) set if 𝜆 ≤ 𝐶𝜏(𝛿-𝐼𝜏(𝜆,  𝑟),  𝑟) (resp. 𝐼𝜏(𝛿-𝐶𝜏(𝜆,  𝑟),  𝑟) ≤ 𝜆). (ii) 𝑟-fuzzy 𝛿-preopen [13] (resp. 
𝑟 -fuzzy 𝛿 -preclosed) set if 𝜆 ≤ 𝐼𝜏 ( 𝛿 - 𝐶𝜏(𝜆,  𝑟),  𝑟)  (resp. 𝐶𝜏(𝛿 - 𝐼𝜏(𝜆,  𝑟),  𝑟) ≤ 𝜆).  (iii) 𝑟 -fuzzy 𝛼 -open [11] 
(resp.𝑟-fuzzy 𝛼-closed) set if 𝜆 ≤ 𝐼𝜏(𝐶𝜏(𝐼𝜏(𝜆,  𝑟),  𝑟),  𝑟) (resp. 𝐶𝜏(𝐼𝜏(𝐶𝜏(𝜆,  𝑟),  𝑟),  𝑟) ≤ 𝜆). (iv) 𝑟-fuzzy 𝛽-open [11] 
(resp.𝑟-fuzzy 𝛽-closed) set if 𝜆 ≤ 𝐶𝜏(𝐼𝜏(𝐶𝜏(𝜆,  𝑟),  𝑟),  𝑟) (resp. 𝐼𝜏(𝐶𝜏(𝐼𝜏(𝜆,  𝑟),  𝑟),  𝑟) ≤ 𝜆). (v) 𝑟-fuzzy 𝑒-open [13] 
(resp. 𝑟 -fuzzy 𝑒 -closed) set if 𝜆 ≤ 𝐶𝜏(𝛿 - 𝐼𝜏(𝜆,  𝑟),  𝑟) ∨ 𝐼𝜏 ( 𝛿 - 𝐶𝜏(𝜆,  𝑟),  𝑟)  (resp. 
𝐶𝜏(𝛿 - 𝐼𝜏(𝜆,  𝑟),  𝑟) ∧ 𝐼𝜏 ( 𝛿 - 𝐶𝜏(𝜆,  𝑟),  𝑟) ≤ 𝜆).  (vi) 𝑟 -fuzzy 𝑒∗ -open [17] (resp. 𝑟 -fuzzy 𝑒∗ -closed) set if                 
𝜆 ≤ 𝐶𝜏(𝐼𝜏(𝛿 -𝐶𝜏(𝜆,  𝑟),  𝑟),  𝑟)  (resp. 𝐼𝜏(𝐶𝜏(𝛿 - 𝐼𝜏(𝜆,  𝑟),  𝑟),  𝑟) ≤ 𝜆).  [17] Let (𝑋,  𝜏)  be a fuzzy topological space. 
𝜆,  𝜇 ∈ 𝐼𝑋  and 𝑟 ∈ 𝐼0 , 𝑒∗𝐼𝜏(𝜆,  𝑟) = ⋁{𝜇 ∈ 𝐼𝑋:𝜇 ≤ 𝜆,  𝜇  is a 𝑟 - 𝑓𝑒∗𝑜  set }  is called the 𝑟 -fuzzy 𝑒∗ -interior of          
𝜆. 𝑒∗𝐶𝜏(𝜆,  𝑟) = ⋀{𝜇 ∈ 𝐼𝑋: 𝜇 ≥ 𝜆,  𝜇 is a 𝑟-𝑓𝑒∗𝑐 set } is called the 𝑟-fuzzy 𝑒∗-closure of 𝜆.  
 
Let 𝐹:𝑋 ⊸ 𝑌 be a FM between two 𝐿-fts’s (𝑋,  𝜏),  (𝑌,  𝜂) and 𝑟 ∈ 𝐿0. Then 𝐹 is called: (i) Fuzzy upper semi (or 
Fuzzy upper) (in short, 𝐹𝑈𝑆 (or 𝐹𝑈)) (resp. 𝐹𝑈𝛼, 𝐹𝑈𝑒 and 𝐹𝑈𝛽)-continuous at a 𝐿-fuzzy point 𝑥𝑡 ∈ 𝑑𝑜𝑚(𝐹) iff 
𝑥𝑡 ∈ 𝐹𝑢(𝜇) for each 𝜇 ∈ 𝐿𝑌  and 𝜂(𝜇) ≥ 𝑟,  there exists 𝜆𝑖𝑛𝐿𝑋 , 𝜏(𝜆) ≥ 𝑟  (resp. 𝑟-f𝛼o, 𝑟-feo and 𝑟-f𝛽o set) and 
𝑥𝑡 ∈ 𝜆 such that 𝜆 ∧ 𝑑𝑜𝑚(𝐹) ≤ 𝐹𝑢(𝜇).𝐹 is 𝐹𝑈 (resp. 𝐹𝑈𝛼, 𝐹𝑈𝑒 and 𝐹𝑈𝛽)-continuous iff it is 𝐹𝑈(resp. 𝐹𝑈𝛼, 𝐹𝑈𝑒 
and 𝐹𝑈𝛽)-continuous at every 𝑥𝑡 ∈ 𝑑𝑜𝑚(𝐹). (ii) Fuzzy lower semi (or Fuzzy lower) (in short, 𝐹𝐿𝑆 (or 𝐹𝐿)) (resp. 
𝐹𝐿𝛼, 𝐹𝐿𝑒 and 𝐹𝐿𝛽)-continuous at a 𝐿-fuzzy point 𝑥𝑡 ∈ 𝑑𝑜𝑚(𝐹) iff 𝑥𝑡 ∈ 𝐹𝑙(𝜇) for each 𝜇 ∈ 𝐿𝑌 and 𝜂(𝜇) ≥ 𝑟, there 
exists 𝜆 ∈ 𝐿𝑋 , 𝜏(𝜆) ≥ 𝑟 (resp. 𝑟-f𝛼o, 𝑟-feo and 𝑟-f𝛽o set) and 𝑥𝑡 ∈ 𝜆 such that 𝜆 ≤ 𝐹𝑙(𝜇). 𝐹 is 𝐹𝐿 (resp. 𝐹𝐿𝛼, 𝐹𝐿𝑒 
and 𝐹𝐿𝛽)-continuous iff it is 𝐹𝐿 (resp. 𝐹𝐿𝛼, 𝐹𝐿𝑒 and 𝐹𝐿𝛽)-continuous at every 𝑥𝑡 ∈ 𝑑𝑜𝑚(𝐹). (iii) Fuzzy [1] (resp. 
𝐹𝑈𝛼 [7], 𝐹𝑈𝑒 [19] and 𝐹𝑈𝛽 [2])-continuous if it is 𝐹𝑈 (resp. 𝐹𝑈𝛼, 𝐹𝑈𝑒 and 𝐹𝑈𝛽)-continuous and 𝐹𝐿 (resp. 𝐹𝐿𝛼, 
𝐹𝐿𝑒 and 𝐹𝐿𝛽)-continuous.  
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Let (𝑋,  𝜏) and (𝑌,  𝜂) be a fts’s. The fuzzy sets of the form 𝜆 × 𝜇 with 𝜏(𝜆) ≥ 𝑟 and 𝜂(𝜇) ≥ 𝑟 form a basis for the 
product fuzzy topology [3,20] 𝜏 × 𝜂 on 𝑋 × 𝑌 , where for any (𝑥,  𝑦) ∈ 𝑋 × 𝑌,  (𝜆 × 𝜇)(𝑥,  𝑦) = 𝑚𝑖𝑛{𝜆(𝑥),  𝜇(𝑦)}. 
[3,10] Let 𝐹:𝑋 ⊸ 𝑌 be a 𝐹𝑀 between two fts’s (𝑋,  𝜏) and (𝑌,  𝜂). The graph fuzzy multifunction 𝐺𝑓:𝑋 → 𝑋 × 𝑌 of 
𝐹 is defined as 𝐺𝑓(𝑥) = 𝑥1 × 𝐹(𝑥), for every 𝑥 ∈ 𝑋. [14] Let 𝐹:𝑋 ⊸ 𝑌 be a FM between two 𝐿-fts’s (𝑋,  𝜏),  (𝑌,  𝜂) 
and 𝑟 ∈ 𝐿0. Then 𝐹 is called: (i) Fuzzy upper contra 𝑒-continuous (𝐹𝑈𝐶𝑒-continuous, in short) at any 𝐿-fuzzy point 
𝑥𝑡 ∈ 𝑑𝑜𝑚(�) iff 𝑥𝑡 ∈ 𝐹𝑢(𝜇) for each 𝜇 ∈ 𝐿𝑌  and 𝜂(𝜇𝑐) ≥ 𝑟,  there exists 𝑟-feo set 𝜆 ∈ 𝐿𝑋  and 𝑥𝑡 ∈ 𝜆  such that 
𝜆 ∧ 𝑑𝑜𝑚(𝐹) ≤ 𝐹𝑢(𝜇).  (ii) Fuzzy lower contra 𝑒 -continuous (𝐹𝐿𝐶𝑒 -continuous, in short) at any 𝐿 -fuzzy point         
𝑥𝑡 ∈ 𝑑𝑜𝑚(𝐹) iff 𝑥𝑡 ∈ 𝐹𝑙(𝜇)  for each 𝜇 ∈ 𝐿𝑌  and 𝜂(𝜇𝑐) ≥ 𝑟,  there exists 𝑟 -feo set 𝜆 ∈ 𝐿𝑋  and 𝑥𝑡 ∈ 𝜆  such that 
𝜆 ≤ 𝐹𝑙(𝜇). (iii) Fuzzy upper contra 𝑒-continuous (resp. Fuzzy lower contra 𝑒-continuous) iff it is 𝐹𝑈𝐶𝑒-continuous 
(resp. 𝐹𝐿𝐶𝑒-continuous) at every 𝑥� ∈ 𝑑𝑜𝑚(𝐹).  
 
2. FUZZY UPPER AND LOWER CONTRA 𝒆∗ (resp. 𝜹-semi and 𝜹-pre)-CONTINUOUS MULTIFUNCTIONS 
Definition 2.1: Let 𝐹:𝑋 ⊸ 𝑌 be a FM between two 𝐿-fts’s (𝑋,  𝜏),  (𝑌,  𝜂) and 𝑟 ∈ 𝐿0. Then 𝐹 is called:  

1. Fuzzy upper contra 𝑒∗ (resp. 𝛿-semi and 𝛿-pre) (in short, 𝐹𝑈𝐶𝑒∗ (resp. FUC𝛿S and 𝐹𝑈𝐶𝛿𝑃))-continuous at 
any 𝐿-fuzzy point 𝑥𝑡 ∈ 𝑑𝑜𝑚(𝐹) iff 𝑥𝑡 ∈ 𝐹𝑢(𝜇) for each 𝜇 ∈ 𝐿𝑌  and 𝜂(𝜇𝑐)𝑒𝑞𝑟 there exists 𝑟-f𝑒∗o (resp. 
𝑟-f𝛿so and 𝑟-f𝛿po) set, 𝜆 ∈ 𝐿𝑋 and 𝑥𝑡 ∈ 𝜆 such that 𝜆 ∧ 𝑑𝑜𝑚(𝐹) ≤ 𝐹𝑢(𝜇).  

2. Fuzzy lower contra 𝑒∗ (resp. 𝛿-semi and 𝛿-pre) (in short, 𝐹𝐿𝐶𝑒∗ (resp. FLC𝛿S and 𝐹𝐿𝐶𝛿𝑃))-continuous at 
any 𝐿-fuzzy point 𝑥𝑡 ∈ 𝑑𝑜𝑚(𝐹) iff 𝑥𝑡 ∈ 𝐹𝑙(𝜇) for each 𝜇 ∈ 𝐿𝑌  and 𝜂(𝜇𝑐)𝑔𝑒𝑞𝑟 there exists 𝑟-f𝑒∗o (resp. 
𝑟-f𝛿so and 𝑟-f𝛿po) set, 𝜆 ∈ 𝐿𝑋 and 𝑥𝑡 ∈ 𝜆 such that 𝜆 ≤ 𝐹𝑙(𝜇).  

3. 𝐹𝑈𝐶𝑒∗  (resp. FUC𝛿S, FUC𝛿P, FLC𝑒∗ , FLC𝛿S and FLC𝛿P)-continuous iff it is 𝐹𝑈𝐶𝑒∗  (resp. FUC𝛿S, 
FUC𝛿P, FLC𝑒∗, FLC𝛿S and FLC𝛿P)-continuous at every 𝑥𝑡 ∈ 𝑑𝑜𝑚(𝐹).  

 
Proposition 2.1: If 𝐹 is normalized, then 𝐹 is 𝐹𝑈𝐶𝑒∗ (resp. FUC𝛿S and FUC𝛿P)-continuous at an 𝐿-fuzzy point 
𝑥𝑡 ∈ 𝑑𝑜𝑚(𝐹) iff 𝑥𝑡 ∈ 𝐹𝑢(𝜇) for each 𝜇 ∈ 𝐿𝑌  and 𝜂(𝜇𝑐) ≥ 𝑟  there exists 𝜆 ∈ 𝐿𝑋 , 𝜆  is 𝑟-f𝑒∗o (resp. 𝑟-f𝛿 so and 
𝑟-f𝛿po) set and 𝑥𝑡 ∈ 𝜆 such that 𝜆 ≤ 𝐹𝑢(𝜇).  
 
Theorem 2.1: Let 𝐹:𝑋 ⊸ 𝑌  be a FM between two 𝐿 -fts’s (𝑋,  𝜏),  (𝑌,  𝜂)  and 𝜇 ∈ 𝐿𝑌 ,  then the following are 
equivalent: (i) 𝐹 is FL𝑒∗-continuous. (ii) 𝐹𝑙(𝜇) is 𝑟-f𝑒∗o set, for any 𝜂(𝜇) ≥ 𝑟. (iii) 𝐹𝑢(𝜇) is 𝑟-f𝑒∗c set, for any 
𝜂(1 − 𝜇) ≥ 𝑟. (iv) 𝑒∗𝐶𝜏(𝐹𝑢(𝜇), 𝑟) ≤ 𝐹𝑢(𝐶𝜂(𝜇, 𝑟)), for any 𝜇 ∈ 𝐿𝑌. (v) 𝐼𝜏(𝐶𝜏(𝛿𝐼𝜏(𝐹𝑢(𝜇), 𝑟), 𝑟), 𝑟) ≤ 𝐹𝑢(𝐶𝜂(𝜇, 𝑟)), for 
any 𝜇 ∈ 𝐿𝑌.   
 
Proof: 
(i) ⇒ (ii): Let 𝑥𝑡 ∈ 𝑑𝑜𝑚(𝐹),  𝜇 ∈ 𝐿𝑌 ,  𝜂(𝜇) ≥ 𝑟 and 𝑥𝑡 ∈ 𝐹𝑙(𝜇) then, there exist 𝜆 ∈ 𝐿𝑋, 𝜆 is 𝑟-f𝑒∗o set and 𝑥𝑡 ∈ 𝜆 
such that 𝜆 ≤ 𝐹𝑙(𝜇) and hence 𝑥𝑡 ∈ 𝑒∗𝐼𝜏(𝐹𝑙(𝜇), 𝑟) . Therefore, we obtain 𝐹𝑙(𝜇) ≤ 𝑒∗𝐼𝜏(𝐹𝑙(𝜇), 𝑟) . Thus 𝐹𝑙(𝜇)  is 
𝑟-f𝑒∗o (resp. 𝑟-f𝛿so and 𝑟-f𝛿po) set.  
(ii) ⇒ (iii): Let 𝜇 ∈ 𝐿𝑌 and 𝜂(1− 𝜇) ≥ 𝑟 hence by (ii), 𝐹𝑙(1− 𝜇) = 1− 𝐹𝑢(𝜇) is 𝑟-f𝑒∗o. Then 𝐹𝑢(𝜇) is 𝑟-f𝑒∗c.  
(iii) ⇒ (iv): Let 𝜇 ∈ 𝐿𝑌 hence by (iii), 𝐹𝑢(𝐶𝜂(𝜇, 𝑟)) is 𝑟-f𝑒∗c. Then we obtain 𝑒∗𝐶𝜏(𝐹𝑢(𝜇),  𝑟) ≤ 𝐹𝑢(𝐶𝜂(𝜇,  𝑟)).  
(iv) ⇒ (v): Let 𝜇 ∈ 𝐿𝑌 hence by (iv), we obtain 𝐼𝜏(𝐶𝜏(𝛿𝐼𝜏(𝐹𝑢(𝜇), 𝑟), 𝑟), 𝑟) ≤ 𝑒∗𝐶𝜏(𝐹𝑢(𝜇), 𝑟) ≤ 𝐹𝑢(𝐶𝜂(𝜇, 𝑟)).  
(v) ⇒ (ii): Let 𝜇 ∈ 𝐿𝑌, 𝜂(𝜇) ≥ 𝑟, hence by (v), we have   
              1 − 𝐹𝑙(𝜇) = 𝐹𝑢(1− 𝜇)  
                                ≥ 𝐼𝜏(𝐶𝜏(𝛿𝐼𝜏(𝐹𝑢(1− 𝜇), 𝑟), 𝑟), 𝑟)  
                                = 𝐼𝜏(𝐶𝜏(𝛿𝐼𝜏(1− 𝐹𝑙(𝜇), 𝑟), 𝑟), 𝑟)  
                                = 1 − [𝐶𝜏(𝐼𝜏(𝛿𝐶𝜏(𝐹𝑙(𝜇), 𝑟), 𝑟), 𝑟)]  
                   𝐹𝑙(𝜇)  ≤ 𝐶𝜏(𝐼𝜏(𝛿𝐶𝜏(𝐹𝑙(𝜇), 𝑟), 𝑟), 𝑟).  
Hence, 𝐹𝑙(𝜇) is 𝑟-f𝑒∗o.  
(ii) ⇒  (i): Let 𝑥𝑡 ∈ 𝑑𝑜𝑚(𝐹),  𝜇 ∈ 𝐿𝑌 ,  𝜂(𝜇) ≥ 𝑟 , with 𝑥𝑡 ∈ 𝐹𝑙(𝜇)  we have by (ii), 𝐹𝑙(𝜇)  is 𝑟 -f 𝑒∗ o set. Let        
𝐹𝑙(𝜇) = 𝜆(say), then there exists 𝜆 ∈ 𝐿𝑋, 𝜆 is 𝑟-f𝑒∗o set and 𝑥𝑡 ∈ 𝜆 such that 𝜆 ≤ 𝐹𝑙(𝜇). Thus 𝐹 is FL𝑒∗-continuous.  
 
Theorem 2.2: Let 𝐹:𝑋 ⊸ 𝑌  be a FM and normalized between two 𝐿 -fts’s (𝑋,  𝜏),  (𝑌,  𝜂)  and 𝜇 ∈ 𝐿𝑌 ,  then the 
following are equivalent: (i) 𝐹 is 𝐹𝑈𝑒∗-continuous. (ii) 𝐹𝑢(𝜇) is 𝑟-f𝑒∗o set, for any 𝜂(𝜇) ≥ 𝑟. (iii) 𝐹𝑙(𝜇) is 𝑟-f𝑒∗c 
set, for any 𝜂(1 − 𝜇) ≥ 𝑟.  (iv) 𝑒∗𝐶𝜏(𝐹𝑙(𝜇), 𝑟) ≤ 𝐹𝑙(𝐶𝜂(𝜇, 𝑟)) , for any 𝜇 ∈ 𝐿𝑌 . (v) 𝐼𝜏(𝐶𝜏(𝛿𝐼𝜏(𝐹𝑙(𝜇), 𝑟), 𝑟), 𝑟) ≤
𝐹𝑙(𝐶𝜂(𝜇, 𝑟)), for any 𝜇 ∈ 𝐿𝑌.   
 
Proof: This can be proved in a similar way as Theorem 2.1.  
 
Corollary 2.1: Let 𝐹:𝑋 ⊸ 𝑌 be a FM between two fts’s (𝑋,  𝜏), (𝑌,  𝜂) and 𝜇 ∈ 𝐿𝑌. Then we have the following:  
(i) If 𝐹 is normalized, then 𝐹 is 𝐹𝑈𝑒∗-continuous. at 𝑥𝑡 iff 𝑥𝑡 ∈ 𝑟-f𝑒∗o set of 𝐹𝑢(𝜇), for each 𝜂(𝜇) ≥ 𝑟  
and 𝑥𝑡 ∈ 𝐹𝑢(𝜇). (ii) 𝐹 is FL𝑒∗-continuous at 𝑥𝑡 iff 𝑥𝑡 ∈ 𝑟-f𝑒∗o set of 𝐹𝑙(𝜇), for each 𝜂(𝜇) ≥ 𝑟 and 𝑥𝑡 ∈ 𝐹𝑙(𝜇).   
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Remark 2.1: From the above definitions, it is clear that every (FUC𝛿S, FUC𝛼 and FUC𝛿P)(resp. FLC𝛿S, FLC𝛼 and 
FLC𝛿P)-continuous is FUC𝑒-continuous. Also, it is clear that every FUC𝑒(resp. FLC𝑒)-continuous is FUC𝛽 (resp. 
FLC𝛽)-continuous and FUC𝑒∗ (resp. FLC𝑒∗)-continuous. Also, every FUC𝛽 (resp. FLC𝛽)-continuous is FUC𝑒∗ (resp. 
FLC𝑒∗)-continuous. The converses need not be true in general and it is clear that the following implications are true.  
where (FUC-conts, FUC𝛿S-conts, FUC𝛼 -conts, FUC𝛿 P-conts, FUC𝑒 -conts, FUC𝛽 -conts, FUC𝑒∗ -conts)(resp. 
FLC-conts, FLC𝛿S-conts, FLC𝛼-conts and FLC𝛿P-conts, FLC𝑒-conts, FLC𝛽-conts, FLC𝑒∗-conts) areabbreviated by 
fuzzy upper (resp. fuzzy lower) contra continuous, fuzzy upper (resp. fuzzy lower) contra 𝛿-semicontinuous, fuzzy upper 
(resp. fuzzy lower) contra 𝛼-continuous, fuzzy upper (resp. fuzzy lower) contra 𝛿-precontinuous,fuzzy upper (resp. 
fuzzy lower) contra 𝑒-continuous, fuzzy upper (resp. fuzzy lower) contra 𝛽-continuous and fuzzy upper (resp. fuzzy 
lower) contra 𝑒∗-continuous mappings respectively.  
 
From the following examples, we see that the converses of these implications are not true.  
 
Example 1: Let 𝑋 = {𝑥1,  𝑥2}, 𝑌 = {𝑦1,  𝑦2,  𝑦3} and 𝐹:𝑋 ⊸ 𝑌 be a FM defined by 𝐺𝐹(𝑥1,  𝑦1) = 0.8, 𝐺𝐹(𝑥1,  𝑦2) =
0.9, 𝐺𝐹(𝑥1,  𝑦3) = 0.8, 𝐺𝐹(𝑥2,  𝑦1) = 1, 𝐺𝐹(𝑥2,  𝑦2) = 0.7,and 𝐺𝐹(𝑥2,  𝑦3) = 0.9. Let 𝜆1 and 𝜆2 be a fuzzy subset of 
𝑋 be defined as 𝜆1(𝑥1) = 0.3, 𝜆1(𝑥2) = 0.1; 𝜆2(𝑥1) = 0.1, 𝜆2(𝑥2) = 0.2 and 𝜇 be a fuzzy subset of 𝑌 defined as 
𝜇(𝑦1) = 0.7, 𝜇(𝑦2) = 0.9, 𝜇(𝑦3) = 0.8. We assume that 1 = 1 and 0 = 0. Define 𝐿-fuzzy topologies 𝜏: 𝐿𝑋 → 𝐿 and 
𝜂: 𝐿𝑌 → 𝐿 as follows:  

𝜏(𝜆) = �
1, if 𝜆 = 0 or 1 ,
1
2

, if 𝜆 = 𝜆1,
0, otherwise,

�    𝜂(𝜇) =

⎩
⎨

⎧1, if 𝜇 = 0 or 1 ,
1
2

, if 𝜇 = 𝜇,
0, otherwise.

� 

are fuzzy topologies on 𝑋 and 𝑌. For 𝑟 = 1
2
, then 𝐹 is 𝐹𝑈𝐶𝛽-continuous but not 𝐹𝑈𝐶𝑒-continuous because for any 

closed set 𝜇 in (𝑌,  𝜂), 𝐹𝑢(𝜇) = 𝜆2 is not 1
2
-feo set in (𝑋,  𝜏).  

 
Example 2: Let 𝑋 = {𝑥1,  𝑥2}, 𝑌 = {𝑦1,  𝑦2,  𝑦3} and 𝐹:𝑋 ⊸ 𝑌 be a FM defined by 𝐺𝐹(𝑥1,  𝑦1) = 0.2, 𝐺𝐹(𝑥1,  𝑦2) =
1, 𝐺𝐹(𝑥1,  𝑦3) = 0, 𝐺𝐹(𝑥2,  𝑦1) = 0.5, 𝐺𝐹(𝑥2,  𝑦2) = 𝑛𝑒0, and 𝐺𝐹(𝑥2,  𝑦3) = 0.3. Let 𝜆1 and 𝜆2 be a fuzzy subset of 
𝑋 be defined as 𝜆1(𝑥1) = 0.4, 𝜆1(𝑥2) = 0.3; 𝜆2(𝑥1) = 0.2, 𝜆2(𝑥2) = 0.4 and 𝜇 be a fuzzy subset of 𝑌 defined as 
𝑚𝑢(𝑦1) = 0.6, 𝜇(𝑦2) = 0.9, 𝜇(𝑦3) = 0. We assume that 1 = 1 and 0 = 0. Define 𝐿-fuzzy topologies 𝜏: 𝐿𝑋 → 𝐿 and 
𝜂: 𝐿𝑌 → 𝐿 as follows:  

𝜏(𝜆) = �
1, if 𝜆 = 0 or 1 ,
1
2

, if 𝜆 = 𝜆1,
0, otherwise,

�    𝜂(𝜇) =

⎩
⎨

⎧1, if 𝜇 = 0 or 1 ,
1
2

, if 𝜇 = 𝜇,
0, otherwise.

� 

are fuzzy topologies on 𝑋 and 𝑌. For 𝑟=1
2
, then 𝐹 is 𝐹𝐿𝐶𝛽-continuous but not 𝐹𝐿𝐶𝑒-continuous because for any 

closed set 𝜇 in (𝑌,  𝜂), 𝐹𝑙(𝜇) = 𝜆2 is not 1
2
-feo set in 𝑋.  

 
Example 3: Let 𝑋 = {𝑥1,  𝑥2}, 𝑌 = {𝑦1,  𝑦2,  𝑦3} and 𝐹:𝑋 ⊸ 𝑌 be a FM defined by 𝐺𝐹(𝑥1,  𝑦1) = 0.8, 𝐺𝐹(𝑥1,  𝑦2) =
0.9, 𝐺𝐹(𝑥1,  𝑦3) = 0.8, 𝐺𝐹(𝑥2,  𝑦1) = 1, 𝐺𝐹(𝑥2,  𝑦2) = 0.7,and 𝐺𝐹(𝑥2,  𝑦3) = 0.9. Let 𝜆1 and 𝜆2 be a fuzzy subset of 
𝑋 be defined as 𝜆1(𝑥1) = 0.5, 𝜆1(𝑥2) = 0.1; 𝜆2(𝑥1) = 0.1, 𝜆2(𝑥2) = 0.2 and 𝜇 be a fuzzy subset of 𝑌 defined as 
𝜇(𝑦1) = 0.7, 𝜇(𝑦2) = 0.9, 𝜇(𝑦3) = 0.8. We assume that 1 = 1 and 0 = 0. Define 𝐿-fuzzy topologies 𝜏: 𝐿𝑋 → 𝐿 and 
𝜂: 𝐿𝑌 → 𝐿 as follows:  

𝜏(𝜆) = �
1, if 𝜆 = 0 or 1 ,
1
2

, if 𝜆 = 𝜆1,
0, otherwise,

�    𝜂(𝜇) =

⎩
⎨

⎧1, if 𝜇 = 0 or 1 ,
1
2

, if 𝜇 = 𝜇,
0, otherwise.

� 

are fuzzy topologies on 𝑋 and 𝑌. For 𝑟 = 1
2
, then 𝐹 is 𝐹𝑈𝐶𝑒∗-continuous but not 𝐹𝑈𝐶𝑒-continuous because for any 

closed set 𝜇 in (𝑌,  𝜂), 𝐹𝑢(𝜇) = 𝜆2 is not 1
2
-feo set in (𝑋,  𝜏).  

 
Example 4: Let 𝑋 = {𝑥1,  𝑥2}, 𝑌 = {𝑦1,  𝑦2,  𝑦3} and 𝐹:𝑋 ⊸ 𝑌 be a FM defined by 𝐺𝐹(𝑥1,  𝑦1) = 0.2, 𝐺𝐹(𝑥1,  𝑦2) =
1, 𝐺𝐹(𝑥1,  𝑦3) = 0, 𝐺𝐹(𝑥2,  𝑦1) = 0.5, 𝐺𝐹(𝑥2,  𝑦2) = 0, and 𝐺𝐹(𝑥2,  𝑦3) = 0.3. Let 𝜆1 and 𝜆2 be a fuzzy subset of 𝑋 
be defined as 𝜆1(𝑥1) = 0.5, 𝜆1(𝑥2) = 0.3; 𝜆2(𝑥1) = 0.2, 𝜆2(𝑥2) = 0.4 and 𝜇  be a fuzzy subset of 𝑌  defined as 
𝜇(𝑦1) = 0.6, 𝜇(𝑦2) = 0.9, 𝜇(𝑦3) = 0. We assume that 1 = 1 and 0 = 0. Define 𝐿-fuzzy topologies 𝜏: 𝐿𝑋 → 𝐿 and 
𝜂: 𝐿𝑌 → 𝐿 as follows:  
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𝜏(𝜆) = �
1, if 𝜆 = 0 or 1 ,
1
2

, if 𝜆 = 𝜆1,
0, otherwise,

�    𝜂(𝜇) =

⎩
⎨

⎧1, if 𝜇 = 0 or 1 ,
1
2

, if 𝜇 = 𝜇,
0, otherwise.

� 

are fuzzy topologies on 𝑋 and 𝑌. For 𝑟=1
2
, then 𝐹 is 𝐹𝐿𝐶𝑒∗-continuous but not 𝐹𝐿𝐶𝑒-continuous because for any 

closed set 𝜇 in 𝑌, 𝐹𝑙(𝜇) = 𝜆2 is not 1
2
-feo set in 𝑋.  

 
Example 5: Let 𝑋 = {𝑥1,  𝑥2}, 𝑌 = {𝑦1,  𝑦2,  𝑦3} and 𝐹:𝑋 ⊸ 𝑌 be a FM defined by 𝐺𝐹(𝑥1,  𝑦1) = 0.8, 𝐺𝐹(𝑥1,  𝑦2) =
0.9, 𝐺𝐹(𝑥1,  𝑦3) = 0.8, 𝐺𝐹(𝑥2,  𝑦1) = 1, 𝐺𝐹(𝑥2,  𝑦2) = 0.7,and 𝐺𝐹(𝑥2,  𝑦3) = 0.9. Let 𝜆1 and 𝜆2 be a fuzzy subset of 
𝑋 be defined as 𝜆1(𝑥1) = 0.7, 𝜆1(𝑥2) = 0.7; 𝜆2(𝑥1) = 0.2, 𝜆2(𝑥2) = 0.1 and 𝜇 be a fuzzy subset of 𝑌 defined as 
𝜇(𝑦1) = 0.6, 𝜇(𝑦2) = 0.7, 𝜇(𝑦3) = 0.9. We assume that 1 = 1 and 0 = 0. Define 𝐿-fuzzy topologies 𝜏: 𝐿𝑋 → 𝐿 and 
𝜂: 𝐿𝑌 → 𝐿 as follows:  

𝜏(𝜆) = �
1, if 𝜆 = 0 or 1 ,
1
2

, if 𝜆 = 𝜆1,
0, otherwise,

�    𝜂(𝜇) =

⎩
⎨

⎧1, if 𝜇 = 0 or 1 ,
1
2

, if 𝜇 = 𝜇,
0, otherwise.

� 

are fuzzy topologies on 𝑋 and 𝑌. For 𝑟 = 1
2
, then 𝐹 is 𝐹𝑈𝐶𝑒∗-continuous but not open in (𝑋,  𝜏).  

 
Example 6: Let 𝑋 = {𝑥1,  𝑥2}, 𝑌 = {𝑦1,  𝑦2,  𝑦3} and 𝐹:𝑋 ⊸ 𝑌 be a FM defined by 𝐺𝐹(𝑥1,  𝑦1) = 0.2, 𝐺𝐹(𝑥1,  𝑦2) =
1, 𝐺𝐹(𝑥1,  𝑦3) = 0, 𝐺𝐹(𝑥2,  𝑦1) = 0.5, 𝐺𝐹(𝑥2,  𝑦2) = 0, and 𝐺𝐹(𝑥2,  𝑦3) = 0.3. Let 𝜆1 and 𝜆2 be a fuzzy subset of 𝑋 
be defined as 𝜆1(𝑥1) = 0.6, 𝜆1(𝑥2) = 0.6; 𝜆2(𝑥1) = 0.2, 𝜆2(𝑥2) = 0.4 and 𝜇  be a fuzzy subset of 𝑌  defined as 
𝜇(𝑦1) = 0.6, 𝜇(𝑦2) = 0.9, 𝜇(𝑦3) = 0.7. We assume that 1 = 1 and 0 = 0. Define 𝐿-fuzzy topologies 𝜏: 𝐿𝑋 → 𝐿 and 
𝜂: 𝐿𝑌 → 𝐿 as follows:  

𝜏(𝜆) = �
1, if 𝜆 = 0 or 1 ,
1
2

, if 𝜆 = 𝜆1,
0, otherwise,

�    𝜂(𝜇) =

⎩
⎨

⎧1, if 𝜇 = 0 or 1 ,
1
2

, if 𝜇 = 𝜇,
0, otherwise.

� 

are fuzzy topologies on 𝑋 and 𝑌. For 𝑟=1
2
, then 𝐹 is 𝐹𝐿𝐶𝑒∗-continuous but not 𝐹𝐿𝐶𝛽-continuous because for any 

closed set 𝜇 in (𝑌,  𝜂), 𝐹𝑙(𝜇) = 𝜆2 is not 1
2
-fuzzy beta open set in 𝑋.  

 
Example 7: Let 𝑋 = {𝑥1,  𝑥2}, 𝑌 = {𝑦1,  𝑦2,  𝑦3} and 𝐹:𝑋 ⊸ 𝑌 be a FM defined by 𝐺𝐹(𝑥1,  𝑦1) = 0.8, 𝐺𝐹(𝑥1,  𝑦2) =
0.9, 𝐺𝐹(𝑥1,  𝑦3) = 0.8, 𝐺𝐹(𝑥2,  𝑦1) = 1, 𝐺𝐹(𝑥2,  𝑦2) = 0.7,and 𝐺𝐹(𝑥2,  𝑦3) = 0.9. Let 𝜆1 and 𝜆2 be a fuzzy subset of 
𝑋 be defined as 𝜆1(𝑥1) = 0.3, 𝜆1(𝑥2) = 0.1; 𝜆2(𝑥1) = 0.7, 𝜆2(𝑥2) = 0.7 and 𝜇 be a fuzzy subset of 𝑌 defined as 
𝜇(𝑦1) = 0.3, 𝜇(𝑦2) = 0.1, 𝜇(𝑦3) = 0.2. We assume that 1 = 1 and 0 = 0. Define 𝐿-fuzzy topologies 𝜏: 𝐿𝑋 → 𝐿 and 
𝜂: 𝐿𝑌 → 𝐿 as follows:  

𝜏(𝜆) = �
1, if 𝜆 = 0 or 1 ,
1
2

, if 𝜆 = 𝜆1,
0, otherwise,

�    𝜂(𝜇) =

⎩
⎨

⎧1, if 𝜇 = 0 or 1 ,
1
2

, if 𝜇 = 𝜇,
0, otherwise.

� 

are fuzzy topologies on 𝑋 and 𝑌. For 𝑟 = 1
2
, then 𝐹 is 𝐹𝑈𝐶𝑒-continuous but not 𝐹𝑈𝐶𝛼-continuous because for any 

closed set 𝜇 in (𝑌,  𝜂), 𝐹𝑢(𝜇) = 𝜆2 is not 1
2
-fuzzy alpha open set in (𝑋,  𝜏).  

 
Example 8: Let 𝑋 = {𝑥1,  𝑥2}, 𝑌 = {𝑦1,  𝑦2,  𝑦3} and 𝐹:𝑋 ⊸ 𝑌 be a FM defined by 𝐺𝐹(𝑥1,  𝑦1) = 0.2, 𝐺𝐹(𝑥1,  𝑦2) =
1, 𝐺𝐹(𝑥1,  𝑦3) = 0, 𝐺𝐹(𝑥2,  𝑦1) = 0.5, 𝐺𝐹(𝑥2,  𝑦2) = 0, and 𝐺𝐹(𝑥2,  𝑦3) = 0.3. Let 𝜆1 and 𝜆2 be a fuzzy subset of 𝑋 
be defined as 𝜆1(𝑥1) = 0.4, 𝜆1(𝑥2) = 0.3; 𝜆2(𝑥1) = 0.9, 𝜆2(𝑥2) = 0.5 and 𝜇  be a fuzzy subset of 𝑌  defined as 
𝜇(𝑦1) = 0.4, 𝜇(𝑦2) = 0.1, 𝜇(𝑦3) = 1. We assume that 1 = 1 and 0 = 0. Define 𝐿-fuzzy topologies 𝜏: 𝐿𝑋 → 𝐿 and 
𝜂: 𝐿𝑌 → 𝐿 as follows:  

𝜏(𝜆) = �
1, if 𝜆 = 0 or 1 ,
1
2

, if 𝜆 = 𝜆1,
0, otherwise,

�    𝜂(𝜇) =

⎩
⎨

⎧1, if 𝜇 = 0 or 1 ,
1
2

, if 𝜇 = 𝜇,
0, otherwise.

� 

are fuzzy topologies on 𝑋 and 𝑌. For 𝑟=1
2
, then 𝐹 is 𝐹𝐿𝐶𝑒-continuous but not 𝐹𝐿𝐶𝛼-continuous because for any 

closed set 𝜇 in (𝑌,  𝜂), 𝐹𝑙(𝜇) = 𝜆2 is not 1
2
-fuzzy alpha open set in 𝑋.  

 
 



M. Sujatha1, M. Angayarkanni2, B. Vijayalakshmi3 and A. Vadivel4 /  
On Fuzzy Upper and Lower contra 𝒆∗ (𝜹s and 𝜹p)-continuous Multifunctions / IJMA- 9(3), March-2018, (Special Issue) 

© 2018, IJMA. All Rights Reserved                                                                                          218 

 
Example 9: Let 𝑋 = {𝑥1,  𝑥2}, 𝑌 = {𝑦1,  𝑦2,  𝑦3} and 𝐹:𝑋 ⊸ 𝑌 be a FM defined by 𝐺𝐹(𝑥1,  𝑦1) = 0.8, 𝐺𝐹(𝑥1,  𝑦2) =
0.9, 𝐺𝐹(𝑥1,  𝑦3) = 0.8, 𝐺𝐹(𝑥2,  𝑦1) = 1, 𝐺𝐹(𝑥2,  𝑦2) = 0.7,and 𝐺𝐹(𝑥2,  𝑦3) = 0.9. Let 𝜆1 and 𝜆2 be a fuzzy subset of 
𝑋 be defined as 𝜆1(𝑥1) = 0.3, 𝜆1(𝑥2) = 0.1; 𝜆2(𝑥1) = 0.7, 𝜆2(𝑥2) = 0.7 and 𝜇 be a fuzzy subset of 𝑌 defined as 
𝜇(𝑦1) = 0.3, 𝜇(�2) = 0.1, 𝜇(𝑦3) = 0.2. We assume that 1 = 1 and 0 = 0. Define 𝐿-fuzzy topologies 𝜏: 𝐿𝑋 → 𝐿 and 
𝜂: 𝐿𝑌 → 𝐿 as follows:  

𝜏(𝜆) = �
1, if 𝜆 = 0 or 1 ,
1
2

, if 𝜆 = 𝜆1,
0, otherwise,

�    𝜂(𝜇) =

⎩
⎨

⎧1, if 𝜇 = 0 or 1 ,
1
2

, if 𝜇 = 𝜇,
0, otherwise.

� 

are fuzzy topologies on 𝑋 and 𝑌. For 𝑟 = 1
2
, then   

(i) 𝐹 is 𝐹𝑈𝐶𝑒-continuous but not 𝐹𝑈𝐶𝛿𝑃-continuous because for any closed set 𝜇 in (𝑌,  𝜂), 𝐹𝑢(𝜇) = 𝜆2 is not 
1
2
-fuzzy 𝛿-pre open in (𝑋,  𝜏).  

(ii) 𝐹 is 𝐹𝑈𝐶𝛿𝑆-continuous but not 𝐹𝑈𝐶-continuous because for any closed set 𝜇 in (𝑌,  𝜂), 𝐹𝑢(𝜇) = 𝜆2 is not 
1
2
-fuzzy open in (𝑋,  𝜏).   

 
Example 10: Let 𝑋 = {𝑥1,  𝑥2}, 𝑌 = {𝑦1,  𝑦2,  𝑦3} and 𝐹:𝑋 ⊸ 𝑌 be a FM defined by 𝐺𝐹(𝑥1,  𝑦1) = 0.2, 𝐺𝐹(𝑥1,  𝑦2) =
1, 𝐺𝐹(𝑥1,  𝑦3) = 0, 𝐺𝐹(𝑥2,  𝑦1) = 0.5, 𝐺𝐹(𝑥2,  𝑦2) = 0, and 𝐺𝐹(𝑥2,  𝑦3) = 0.3. Let 𝜆1 and 𝜆2 be a fuzzy subset of 𝑋 
be defined as 𝜆1(𝑥1) = 0.1, 𝜆1(𝑥2) = 0.3; 𝜆2(𝑥1) = 0.9, 𝜆2(𝑥2) = 0.5 and 𝜇  be a fuzzy subset of 𝑌  defined as 
𝜇(𝑦1) = 0.6, 𝜇(𝑦2) = 0.9, 𝜇(𝑦3) = 0. We assume that 1 = 1 and 0 = 0. Define 𝐿-fuzzy topologies �:𝐿𝑋 → 𝐿 and 
𝜂: 𝐿𝑌 → 𝐿 as follows:  

𝜏(𝜆) = �
1, if 𝜆 = 0 or 1 ,
1
2

, if 𝜆 = 𝜆1,
0, otherwise,

�    𝜂(𝜇) =

⎩
⎨

⎧1, if 𝜇 = 0 or 1 ,
1
2

, if 𝜇 = 𝜇,
0, otherwise.

� 

are fuzzy topologies on 𝑋 and 𝑌. For 𝑟=1
2
, then   

(i) 𝐹  is 𝐹𝐿𝐶𝑒-continuous but not 𝐹𝐿𝐶𝛿𝑃-continuous because for any closed set 𝜇 in 𝑌,  𝐹𝑙(𝜇) = 𝜆2  is not 
1
2
-fuzzy 𝛿-pre open set in 𝑋.  

(ii) 𝐹 is 𝐹𝐿𝐶𝛿𝑆-continuous but not 𝐹𝐿𝐶-continuous because for any closed set 𝜇 in 𝑌, 𝐹𝑙(𝜇) = 𝜆2 is not 1
2
-fuzzy 

open set in 𝑋.   
 
Example 11: Let 𝑋 = {𝑥1,  𝑥2}, 𝑌 = {𝑦1,  𝑦2,  𝑦3} and 𝐹:𝑋 ⊸ 𝑌 be a FM defined by 𝐺𝐹(𝑥1,  𝑦1) = 0.8, 𝐺𝐹(𝑥1,  𝑦2) =
0.9, 𝐺𝐹(𝑥1,  𝑦3) = 0.8, 𝐺𝐹(𝑥2,  𝑦1) = 1, 𝐺𝐹(𝑥2,  𝑦2) = 0.7,and 𝐺𝐹(𝑥2,  𝑦3) = 0.9. Let 𝜆1 and 𝜆2 be a fuzzy subset of 
𝑋 be defined as 𝜆1(𝑥1) = 0.6, 𝜆1(𝑥2) = 0.8; 𝜆2(𝑥1) = 0.7, 𝜆2(𝑥2) = 0.7 and 𝜇 be a fuzzy subset of 𝑌 defined as 
𝜇(𝑦1) = 0.3, 𝜇(𝑦2) = 0.1, 𝜇(𝑦3) = 0.2. We assume that 1 = 1 and 0 = 0. Define 𝐿-fuzzy topologies 𝜏: 𝐿𝑋 → 𝐿 and 
𝜂: 𝐿𝑌 → 𝐿 as follows:  

𝜏(𝜆) = �
1, if 𝜆 = 0 or 1 ,
1
2

, if 𝜆 = �1,
0, otherwise,

�    𝜂(𝜇) =

⎩
⎨

⎧1, if 𝜇 = 0 or 1 ,
1
2

, if 𝜇 = 𝜇,
0, otherwise.

� 

are fuzzy topologies on 𝑋 and 𝑌. For 𝑟 = 1
2
, then   

(i) 𝐹 is 𝐹𝑈𝐶𝑒-continuous but not 𝐹𝑈𝐶𝛿𝑆-continuous because for any closed set 𝜇 in 𝑌, 𝐹𝑢(𝜇) = 𝜆2 is not 
1
2
-fuzzy 𝛿-semi open in 𝑋.  

(ii) 𝐹  is 𝐹𝑈𝐶𝛿𝑃-continuous but not 𝐹𝑈𝐶-continuous because for any closed set 𝜇 in 𝑌 , 𝐹𝑢(𝜇) = 𝜆2  is not 
1
2
-fuzzy open in 𝑋.  

(iii) 𝐹 is 𝐹𝑈𝐶𝛼-continuous but not 𝐹𝑈𝐶-continuous because for any closed set 𝜇 in 𝑌, 𝐹𝑢(𝜇) = 𝜆2 is not 1
2
-fuzzy 

open in 𝑋.   
 
Example 12: Let 𝑋 = {𝑥1,  𝑥2}, 𝑌 = {𝑦1,  𝑦2,  𝑦3} and 𝐹:𝑋 ⊸ 𝑌 be a FM defined by 𝐺𝐹(𝑥1,  𝑦1) = 0.2, 𝐺𝐹(𝑥1,  𝑦2) =
1, 𝐺𝐹(𝑥1,  𝑦3) = 0, 𝐺𝐹(𝑥2,  𝑦1) = 0.5, 𝐺𝐹(𝑥2,  𝑦2) = 0, and 𝐺𝐹(𝑥2,  𝑦3) = 0.3. Let 𝜆1 and 𝜆2 be a fuzzy subset of 𝑋 
be defined as 𝜆1(𝑥1) = 0.4, 𝜆1(𝑥2) = 0.3; 𝜆2(𝑥1) = 0.9, 𝜆2(𝑥2) = 0.5 and 𝜇  be a fuzzy subset of 𝑌  defined as 
𝜇(𝑦1) = 0.4, 𝜇(𝑦2) = 0.1, 𝜇(𝑦3) = 1. We assume that 1 = 1 and 0 = 0. Define 𝐿-fuzzy topologies 𝜏: 𝐿𝑋 → 𝐿 and 
𝜂: 𝐿𝑌 → 𝐿 as follows:  
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𝜏(𝜆) = �
1, if 𝜆 = 0 or 1 ,
1
2

, if 𝜆 = 𝜆1,
0, otherwise,

�    𝜂(𝜇) =

⎩
⎨

⎧1, if 𝜇 = 0 or 1 ,
1
2

, if 𝜇 = 𝜇,
0, otherwise.

� 

are fuzzy topologies on 𝑋 and 𝑌. For 𝑟=1
2
, then (i) 𝐹 is 𝐹𝐿𝐶𝑒-continuous but not 𝐹𝐿𝐶𝛿𝑆-continuous because for any 

closed set 𝜇  in 𝑌,  𝐹𝑙(𝜇) = 𝜆2  is not 1
2

-fuzzy 𝛿 -semi open set in 𝑋.  (ii) 𝐹  is 𝐹𝐿𝐶𝛿𝑃 -continuous but not 

𝐹𝐿𝐶-continuous because for any closed set 𝜇 in 𝑌, 𝐹𝑙(𝜇) = 𝜆2 is not 1
2
-fuzzy open set in 𝑋.   

 
Example 13: Let 𝑋 = {𝑥1,  𝑥2}, 𝑌 = {𝑦1,  𝑦2,  𝑦3} and 𝐹:𝑋 ⊸ 𝑌 be a FM defined by 𝐺𝐹(𝑥1,  𝑦1) = 0.2, 𝐺𝐹(𝑥1,  𝑦2) =
1, 𝐺𝐹(𝑥1,  𝑦3) = 0, 𝐺𝐹(𝑥2,  𝑦1) = 0.5, 𝐺𝐹(𝑥2,  𝑦2) = 0, and 𝐺𝐹(𝑥2,  𝑦3) = 0.3. Let 𝜆1 and 𝜆2 be a fuzzy subset of 𝑋 
be defined as 𝜆1(𝑥1) = 0.7, 𝜆1(𝑥2) = 0.5; 𝜆2(𝑥1) = 0.9, 𝜆2(𝑥2) = 0.5 and 𝜇  be a fuzzy subset of 𝑌  defined as 
𝜇(𝑦1) = 0.4, 𝜇(𝑦2) = 0.1, 𝜇(𝑦3) = 1. We assume that 1 = 1 and 0 = 0. Define 𝐿-fuzzy topologies 𝜏: 𝐿𝑋 → 𝐿 and 
𝜂: 𝐿𝑌 → 𝐿 as follows:  

𝜏(𝜆) = �
1, if 𝜆 = 0 or 1 ,
1
2

, if 𝜆 = 𝜆1,
0, otherwise,

�    𝜂(𝜇) =

⎩
⎨

⎧1, if 𝜇 = 0 or 1 ,
1
2

, if 𝜇 = 𝜇,
0, otherwise.

� 

are fuzzy topologies on 𝑋 and 𝑌. For 𝑟=1
2
, then 𝐹  is 𝐹𝐿𝐶𝛼-continuous but not 𝐹𝐿𝐶-continuous because for any 

closed set 𝜇 in 𝑌, 𝐹𝑙(𝜇) = 𝜆2 is not 1
2
-fuzzy open set in 𝑋.   

 
Theorem 2.3: Let {𝐹𝑖}𝑖∈Γ be a family of FL𝑒∗(resp. FL𝛿S and FL𝛿P)-continuous between two fts’s (𝑋,  𝜏) and (𝑌,  𝜂). 
Then ⋃ 𝐹𝑖𝑖∈Γ  is FL𝑒∗(resp. FL𝛿S and FL𝛿P)-continuous.  
 
Proof: Let 𝜇 ∈ 𝐿𝑌 , then (⋃ 𝐹𝑖𝑖∈Γ )𝑙(𝜇) = ⋁ (𝑖∈Γ 𝐹𝑖𝑙(𝜇))  by, Theorem 2.3 (ii) in [14]. Since {𝐹𝑖}𝑖∈Γ  is a family of 
FL𝑒∗(resp. FL𝛿S and FL𝛿P)-continuous between two fts’s (𝑋,  𝜏) and (𝑌,  𝜂), then 𝐹𝑖𝑙(𝜇) is 𝑟-f𝑒∗o (resp. 𝑟-f𝛿so and 
𝑟-f𝛿po), for any 𝜂(𝜇) ≥ 𝑟. Then we have (⋃ 𝐹𝑖𝑖∈Γ )𝑙(𝜇) = ⋁ (𝑖∈Γ 𝐹𝑖𝑙(𝜇)) is 𝑟-f𝑒∗o (resp. 𝑟-f𝛿so and 𝑟-f𝛿po) set for any 
𝜂(𝜇) ≥ 𝑟. Hence ⋃ 𝐹𝑖𝑖∈Γ  is FL𝑒∗(resp. FL𝛿S and FL𝛿P)-continuous.  
 
Theorem 2.4: Let {𝐹𝑖}𝑖∈Γ be a family of normalized 𝐹𝑈𝑒∗(resp. FU𝛿S and 𝐹𝑈𝛿𝑃)-continuous between two fts’s (𝑋,  𝜏) 
and (𝑌,  𝜂). Then 𝐹1 ⋃𝐹2 is 𝐹𝑈𝑒∗(resp. FU𝛿S and 𝐹𝑈𝛿𝑃)-continuous.  
 
Proof: Let 𝜇 ∈ 𝐿𝑌, then (𝐹1 ∪ 𝐹2)𝑢(𝜇) = 𝐹1𝑢(𝜇) ∧ 𝐹2𝑢(𝜇) by, Theorem 2.3(iii) in [14]. Since {𝐹𝑖}𝑖∈Γ is a family of 
normalized 𝐹𝑈𝑒∗(resp. FU𝛿S and 𝐹𝑈𝛿𝑃)-continuous between two fts’s (𝑋,  𝜏) and (𝑌,  �), then (𝐹𝑖𝑢(𝜇)) if 𝑟-f𝑒∗o 
(resp. 𝑟-f𝛿so and 𝑟-f𝛿po), for any 𝜂(𝜇) ≥ 𝑟 for each 𝑖 ∈ {1,2}. Then for each 𝜇 ∈ 𝐿𝑌 , we have (𝐹1 ∪ 𝐹2)𝑢(𝜇) =
𝐹1𝑢(𝜇) ∧ 𝐹2𝑢(𝜇) is 𝑟-f𝑒∗o (resp. 𝑟-f𝛿so and 𝑟-f𝛿po) set for any 𝜂(𝜇) ≥ 𝑟. Hence 𝐹1 ∪ 𝐹2  is 𝐹𝑈�∗(resp. FU𝛿S and 
𝐹𝑈𝛿𝑃)-continuous.  
 
Definition 2.2: A fuzzy set 𝜆 in a fts (𝑋,  𝜏) is called 𝑟-fuzzy 𝑒∗(resp. 𝛿 semi and 𝛿 pre)-compact iff every family in 
{𝜇 :  𝜇 is 𝑟-𝑓𝑒∗𝑜 (resp. 𝑟-f𝛿so and 𝑟-f𝛿po), 𝜇 ∈ 𝐿𝑋 and 𝑟 ∈ 𝐿} covering 𝜆 has a finite subcover.  
 
Definition 2.3: Let 𝐹:𝑋 ⊸ 𝑌 be a FM between two fts’s (𝑋, 𝜏), (𝑌,𝜂) and 𝑟 ∈ 𝐿0. Then 𝐹 is called fuzzy 𝑒∗(resp. 𝛿 
semi and 𝛿 pre)-compact valued iff 𝐹(𝑥𝑡) is 𝑟-fuzzy 𝑒∗-compact for each 𝑥𝑡 ∈ 𝑑𝑜𝑚(𝐹).  
 
Theorem 2.5: Let 𝐹:𝑋 ⊸ 𝑌 be a crisp FUe-continuous and fuzzy 𝑒∗(resp. 𝛿 semi and 𝛿 pre)-compact valued between 
two fts’s (𝑋,  𝜏) and (𝑌,  𝜂). Then the direct image of a 𝑟-fuzzy 𝑒∗-compact in 𝑋 under 𝐹 is also 𝑟-fuzzy 𝑒∗(resp. 𝛿 
semi and 𝛿 pre)-compact.  
 
Proof: Let 𝜆 be 𝑟-fuzzy 𝑒∗-compact set in 𝑋 and {𝛾𝑖:  𝛾𝑖  is 𝑟-f𝑒∗o set in 𝑌, 𝑖 ∈ Γ} be a family of covering of 𝐹(𝜆). i.e. 
𝐹(𝜆) ≤ ⋁ 𝛾𝑖𝑖∈Γ .Since 𝜆 = ⋁ 𝑥𝑡𝑥𝑡∈𝜆 , we have 𝐹(𝜆) = 𝐹(⋁ 𝑥𝑡𝑥𝑡∈𝜆 ) = ⋁ 𝐹𝑥𝑡∈𝜆 (𝑥𝑡) ≤ ⋁ 𝛾𝑖𝑖∈Γ . It follows that for each 
�𝑡 ∈ 𝜆,  𝐹(𝑥𝑡)ł𝑒𝑞 ⋁ 𝛾𝑖𝑖∈Γ . Since 𝐹 is 𝑟-fuzzy 𝑒∗-compact valued, then there exists finite subset Γ𝑥𝑡  of Γ such that 
𝐹(𝑥𝑡) ≤ ⋁ 𝛾𝑛𝑛∈Γ𝑥𝑡

= 𝛾𝑥𝑡 .  By Theorem 2.1 (viii) in [14], we have 𝑥𝑡 ≤ 𝐹𝑢(𝐹(𝑥𝑡)) ≤ 𝐹𝑢(𝛾𝑥𝑡) and 𝜆 = ⋁ 𝑥𝑡𝑥𝑡∈𝜆 =
⋁ 𝐹�𝑥𝑡∈𝜆 (𝛾𝑥𝑡).  Since, 𝜂(𝛾𝑥𝑡) ≥ 𝑟,  then from Theorem 2.2., we have 𝐹𝑢(𝛾𝑥𝑡)  is 𝑟 -f 𝑒∗ o-set. Hence 
{𝐹𝑢(𝛾𝑥𝑡):𝐹𝑢(𝛾𝑥𝑡) is 𝑟-f𝑒∗o-set,  𝑥𝑡 ∈ 𝜆} is a family covering the set 𝜆. Since 𝜆 is 𝑟-fuzzy 𝑒∗-compact, then there 
exists finite index set 𝑁  such that 𝜆 ≤ ⋁ 𝐹𝑢𝑛∈𝑁 (𝛾𝑥𝑡𝑛).  From Theorem 2.1(vii) in [14], we have 
𝐹(𝜆) ≤ 𝐹(⋁ 𝐹𝑢𝑛∈𝑁 (𝛾𝑥𝑡𝑛)) = ⋁ 𝐹𝑛∈𝑁 (𝐹𝑢(𝛾𝑥𝑡𝑛)) ≤ ⋁ 𝛾𝑥𝑡𝑛𝑛∈𝑁 . Then 𝐹(𝜆) is 𝑟-fuzzy 𝑒∗ -compact. The proof of the 
others are similar.  
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Theorem 2.6: Let 𝐹:𝑋 ⊸ 𝑌 and 𝐻:𝑌 ⊸ 𝑍 be two FM’s and let (𝑋,  𝜏), (𝑌,  𝜂) and (𝑍,  𝛿) be three fts’s. Then we 
have the following: (i) If 𝐹 and 𝐻 are normalized, 𝐹𝑈𝑒∗ (resp. 𝛿 semi and 𝛿 pre)-continuous, then 𝐻 ∘ 𝐹 is 𝐹𝑈𝑒∗ 
(resp. 𝛿 semi and 𝛿 pre)-continuous. (ii) If 𝐹 and 𝐻 are 𝐹𝐿𝑒∗ (resp. 𝛿 semi and 𝛿 pre)-continuous, then 𝐻 ∘ 𝐹 is 
𝐹𝐿𝑒∗ (resp. 𝛿 semi and 𝛿 pre)-continuous.   
 
Proof: (i) Let 𝐹  and 𝐻  are normalized, 𝐹𝑈𝑒∗-continuous and 𝜈 ∈ 𝐿𝑍 . Then from Theorem 2.2 in [14], we have 
(𝐻 ∘ 𝐹)𝑢(𝜈) = 𝐹𝑢(𝐻𝑢(𝜈)) is f𝑒∗o with 𝜈(𝐻𝑢(𝜈)) ≥ 𝛿(𝜈). Thus 𝐻 ∘ 𝐹  is 𝐹𝑈𝑒∗-continuous. (ii) Similar of (i). The 
proof of the others are similar.  
 
Theorem 2.7: Let 𝐹:𝑋 ⊸ 𝑌 and 𝐻:𝑌 ⊸ 𝑍 be two FM’s and let (𝑋,  𝜏), (𝑌,  𝜂) and (𝑍,  𝛿) be three 𝐿-fts’s. If 𝐹 is 
𝐹𝐿𝑒∗  (resp. 𝛿  semi and 𝛿  pre)-continuous and 𝐻  is 𝐹𝐿 -continuous, then 𝐻 ∘ 𝐹  is 𝐹𝐿𝑒∗ (resp. 𝛿  semi and 𝛿 
pre)-continuous.  
 
Proof: Let 𝜈 ∈ 𝐿𝑍 ,  𝛿(𝜈) ≥ 𝑟. Since 𝐻 is 𝐹𝐿-continuous, then by Theorem 2.5 in [14], 𝐻𝑙(𝜈) is 𝑟-fuzzy open set in 𝑌. 
Also, 𝐹 is 𝐹𝐿𝑒∗-irresolute implies 𝐹𝑙(𝐻𝑙(𝜈)) is f𝑒∗o set in 𝑋. Hence, we have (𝐻 ∘ 𝐹)𝑙(𝜈) = 𝐹𝑙(𝐻𝑙(𝜈)) is 𝑟-f𝑒∗o. 
Thus 𝐻 ∘ 𝐹 is 𝐹𝐿𝑒∗-continuous. The proof of the others are similar.  
 
Theorem 2.8: Let 𝐹:𝑋 ⊸ 𝑌 and 𝐻:𝑌 ⊸ 𝑍 be two FM’s and let (𝑋,  𝜏), (𝑌,  𝜂) and (𝑍,  𝛿) be three 𝐿-fts’s. If 𝐹 and 
𝐻 are normalized, 𝐹 is 𝐹𝑈𝑒∗  (resp. 𝛿 semi and 𝛿 pre)-continuous and 𝐻  is 𝐹𝑈-continuous, then 𝐻 ∘ 𝐹  is 𝐹𝑈𝑒∗ 
(resp. 𝛿 semi and 𝛿 pre)-continuous.  
 
Theorem 2.9: Let 𝐹:𝑋 ⊸ 𝑌  be a 𝐹𝑀  between two fts’s (𝑋,  𝜏) and (𝑌,  𝜂). If 𝐺𝑓  is 𝐹𝐿𝑒∗  (resp. 𝛿  semi and 𝛿 
pre)-continuous, then 𝐹 is 𝐹𝐿𝑒∗ (resp. 𝛿 semi and 𝛿 pre)-continuous.  
 

Proof: For the fuzzy sets 𝜌 ∈ 𝐿𝑋 , 𝜏(𝜌) ≥ 𝑟, 𝜈 ∈ 𝐿𝑌 and 𝜂(𝜈) ≥ 𝑟, we take, (𝜌 × 𝜈)(𝑥,  𝑦) = �0, if 𝑥 ∉ 𝜌,
𝜈(𝑦), if 𝑥 ∈ 𝜌.

� Let 

𝑥𝑡 ∈ 𝑑𝑜𝑚(𝐹), 𝜇 ∈ 𝐿𝑌 and 𝜂(𝜇) ≥ 𝑟 with 𝑥𝑡 ∈ 𝐹𝑙(𝜇), then we have 𝑥𝑡 ∈ 𝐺𝑓𝑙(𝑋 × 𝜇) and 𝜂(𝑋 × 𝜇) ≥ 𝑟. Since 𝐺𝑓  is 
𝐹𝐿𝑒∗-continuous, it follows that there exists 𝜆 ∈ 𝐿𝑋, 𝜆 is f𝑒∗o and 𝑥𝑡 ∈ 𝜆 such that 𝜆 ≤ 𝐺𝑓𝑙(𝑋 × 𝜇). From here, we 
obtain that 𝜆 ≤ 𝐹𝑙(𝜇). Thus 𝐹 is 𝐹𝐿𝑒∗-continuous. The proof of the others are similar.  
 
Theorem 2.10: Let 𝐹:𝑋 ⊸ 𝑌 be a 𝐹𝑀 between two fts’s (𝑋,  𝜏) and (𝑌,  𝜂). If 𝐺𝑓  is 𝐹𝑈𝑒∗  (resp. 𝛿  semi and 𝛿 
pre)-continuous, then 𝐹 is 𝐹𝑈𝑒∗ (resp. 𝛿 semi and 𝛿 pre)-continuous.  
 
Theorem 2.11: Let (𝑋,  𝜏) and (𝑋𝑖 ,  𝜏𝑖) be 𝐿-fts’s (𝑖 ∈ 𝐼). If a FM 𝐹:𝑋 ⊸ Π𝑖∈𝐼𝑋𝑖 is 𝐹𝐿𝑒-continuous (where Π𝑖∈𝐼𝑋𝑖 
is the product space), then 𝑃𝑖 ∘ 𝐹 is 𝐹𝐿𝑒∗ (resp. 𝛿 semi and 𝛿 pre)-continuous for each 𝑖 ∈ 𝐼, where 𝑃𝑖 :Π𝑖∈𝐼𝑋𝑖 ⊸ 𝑋𝑖 
is the projection multifunction which is defined by 𝑃𝑖(𝑥𝑖) = {𝑥𝑖} for each 𝑖 ∈ 𝐼.  
 
Proof: Let 𝜇𝑖0 ∈ 𝐿

𝑋𝑖0  and 𝜏𝑖(𝜇𝑖0) ≥ 𝑟.  Then (𝑃𝑖0 ∘ 𝐹)𝑙(𝜇𝑖0) = 𝐹𝑙(𝑃𝑖0
𝑙 (𝜇𝑖0)) = 𝐹𝑙(𝜇𝑖0 × Π𝑖≠𝑖0𝑋𝑖).  Since 𝐹  is 

𝐹𝐿𝑒∗ -continuous and 𝜏𝑖(𝜇𝑖0 × Π𝑖≠𝑖0𝑋𝑖) ≥ 𝑟,  it follows that 𝐹𝑙(𝜇𝑖0 × Π𝑖≠𝑖0𝑋𝑖)  is f 𝑒∗ o set. Then 𝑃𝑖 ∘ 𝐹  is an 
𝐹𝐿𝑒∗-continuous. The proof of the others are similar.  
 
Theorem 2.12: Let (𝑋,  𝜏) and (𝑋𝑖 ,  𝜏𝑖) be 𝐿-fts’s (𝑖 ∈ 𝐼).  If a FM 𝐹:𝑋 ⊸ Π𝑖∈𝐼𝑋𝑖  is 𝐹𝑈𝑒∗  (resp. 𝛿  semi and 𝛿 
pre)-continuous (where Π𝑖∈𝐼𝑋𝑖 is the product space), then 𝑃𝑖 ∘ 𝐹 is 𝐹𝑈𝑒∗ (resp. 𝛿 semi and 𝛿 pre)-continuous for 
each 𝑖 ∈ 𝐼, where 𝑃𝑖:Π𝑖∈𝐼𝑋𝑖 ⊸ 𝑋𝑖 is the projection multifunction which is defined by 𝑃𝑖(𝑥𝑖) = {𝑥𝑖} for each 𝑖 ∈ 𝐼.  
 
Theorem 2.13: Let (𝑋𝑖 ,  𝜏𝑖)  and (𝑌𝑖 ,  𝜂𝑖)  be 𝐿 -fts’s and 𝐹𝑖:𝑋𝑖 ⊸ 𝑌𝑖  be a FM for each 𝑖 ∈ 𝐼.  Suppose that     
𝐹:Π𝑖∈𝐼𝑋𝑖 ⊸ Π𝑖∈𝐼𝑌𝑖 is defined by 𝐹(𝑥𝑖) = Π𝑖∈𝐼𝐹𝑖(𝑥𝑖). If 𝐹 is 𝐹𝐿𝑒∗ (resp. 𝛿 semi and 𝛿 pre)-continuous, then 𝐹𝑖  is 
𝐹𝐿𝑒∗ (resp. 𝛿 semi and 𝛿 pre)-continuous for each 𝑖 ∈ 𝐼.  
 
Proof: Let 𝜇𝑖 ∈ 𝐿𝑌𝑖  and 𝜂𝑖(𝜇𝑖) ≥ 𝑟.  Then 𝜂𝑖(𝜇𝑖 × Π𝑖≠𝑗𝑌𝑗) ≥ 𝑟.  Since 𝐹  is 𝐹𝐿𝑒∗ -continuous, it follows that     
𝐹𝑙(𝜇𝑖 × Π𝑖≠𝑗𝑌𝑗) = 𝐹𝑙(𝜇𝑖) × Π𝑖≠𝑗𝑋𝑗  is f𝑒∗o. Consequently, we obtain that 𝐹𝑙(𝜇𝑖) is 𝑟-f𝑒∗o for each 𝑖 ∈ 𝐼. Thus, 𝐹𝑖 is 
𝐹𝐿𝑒∗-continuous. The proof of the others are similar.  
 
Theorem 2.14: Let (𝑋𝑖 ,  𝜏𝑖)  and (𝑌𝑖 ,  𝜂𝑖)  be 𝐿 -fts’s and 𝐹𝑖:𝑋𝑖 ⊸ 𝑌𝑖  be a FM for each 𝑖 ∈ 𝐼.  Suppose that    
𝐹:Π𝑖∈𝐼𝑋𝑖 ⊸ Π𝑖∈𝐼𝑌𝑖 is defined by 𝐹(𝑥𝑖) = Π𝑖∈𝐼𝐹𝑖(𝑥𝑖). If 𝐹 is 𝐹𝑈𝑒∗ (resp. 𝛿 semi and 𝛿 pre)-continuous, then 𝐹𝑖  is 
𝐹𝑈𝑒∗ (resp. 𝛿 semi and 𝛿 pre)-continuous for each 𝑖 ∈ 𝐼.  
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