Volume 9, No. 3, March - 2018 (Special Issue) International Journal of Mathematical Archive-9(3), 2018, 206-212 MAAvailable online through www.ijma.info ISSN 2229 - 5046

A VIEW ON SOFT αB -CONTINUITY ON SOFT TOPOLOGICAL SPACES

SUBASHINI, S¹ AND VIDHYA, D²

Kalasalingam Academy of Research and Education, (Deemed to Be University), Krishnankoil, India.

E-mail: suba2394@gmail.com¹ and vidhya.d85@gmail.com²

ABSTRACT

In this paper, the concept of soft aB-open set is introduced. In this connection, the interrelations among the sets are established. Also the interrelation among soft aB-continuity is discussed and counter examples are provided wherever necessary.

Keywords: Soft α *B*-open sets, Soft α *B*-continuous functions.

AMS Subject Classification: 54A10; 54A20; 54C08.

1. INTRODUCTION

In 1999, Molodtsov [1] introduced the concept of soft sets with adequate parametrization for dealing with uncertainties. Later Muhammad Shabir and Munazza Naz [2] introduced the concept of soft topological spaces which are defined over an initial universe with a fixed set of parameters. Naime Tozlu and Saziye yüksel [3, 4] introduced the concepts of soft A-sets, soft B-sets and soft C-sets. In this paper, the concept of soft α B-open set is introduced. In this connection, the interrelations among the sets are established. Also the interrelations among soft α B-continuity are discussed and counter examples are provided wherever necessary.

2. PRELIMININARIES

Let U be an initial universe set and E be a set of parameters. Let P(U) denote the power set of U, and let $A \subseteq E$.

Definition 2.1: [1] A pair (F, A) is called a soft set over U, where F is a mapping given by F: $A \rightarrow P(U)$. In other words, a soft set over U is a parameterized family of subsets of the universe U. For a particular $e \in A$, F(e) may be considered the set of e-approximate elements of the soft set (F, A).

Definition 2.2: [5] For two soft sets (F, A) and (G, B) over a common universe U,

- (i) (F, A) is a soft subset of (G, B), denoted by (F, A) \sqsubseteq (G, B), if A \subseteq B and $\forall e \in A$, F(e) \subseteq G(e).
- (ii) (F, A) is said to be a soft superset of (G,B), if (G, B) is a soft subset of (F, A), denoted by (F, A) \supseteq (G, B).

Definition 2.3: [5] Two soft sets (F, A) and (G, B) over a common universe U are said to be soft equal if (F, A) is a soft subset of (G, B) and (G, B) is a soft subset of (F, A).

Definition 2.4: [5] A soft set (F, A) over U is said to be a null soft set, denoted by Φ , if $\forall e \in A$, $F(e) = \varphi$.

Definition 2.5: [5] A soft set (F, A) over U is said to be an absolute soft set, denoted by \tilde{U} , if $\forall e \in A$, F(e) = U.

Definition 2.6: [5] The union of two soft sets (F, A) and (G, B) over the common universe U is the soft set (H, C), where $C = A \cup B$ and for all $\forall e \in C$,

International Journal of Mathematical Archive- 9(3), March - 2018

CONFERENCE PAPER

National Conference dated 26th Feb. 2018, on "New Trends in Mathematical Modelling" (NTMM - 2018), Organized by Sri Sarada College for Women, Salem, Tamil Nadu, India.

$$H(e) = \begin{cases} F(e), & \text{ife } \in A - B, \\ G(e), & \text{ife } \in B - A, \\ F(e) \cup G(e), & \text{ife } \in A \cup B, \end{cases}$$

This relationship is written as $(F,A) \sqcup (G,B) = (H,C)$.

Definition 2.7: [5] The intersection of two soft sets (F,A) and (G,B) over the common universe U is the soft set (H,C), where $C = A \cap B$ and $\forall e \in C$, $H(e) = F(e) \cap G(e)$. This relationship is written as $(F,A) \sqcap (G,B) = (H,C)$.

Definition 2.8: [5] The complement of a soft set (F,A) denoted by (F,A)' and is defined by (F,A)' = (F',A), where $F': A \rightarrow P(U)$ is a mapping given by F'(e) = U - F(e), $\forall e \in A$. F' is called the soft complement function of F. Clearly, (F')' is the same as F and ((F,A)')' = (F,A).

Definition 2.9: [5] Let τ be the collection of soft sets over X, then τ is said to be a soft topology on X if

(i) Φ, \tilde{X} belong to τ ,

(ii) the union of any number of soft sets in τ belongs to τ ,

(iii) the intersection of any two soft sets in τ belongs to τ .

The triplet (X, τ, E) is called a soft topological space over X. Every member of τ are said to be soft open sets in X. A soft set (F,E) over X is said to be a soft closed set in X, if its relative complement (F,E)' belongs to τ .

Example 2.1: [4] Let $X = \{x_1, x_2, x_3, x_4\}$, $E = \{e_1, e_2\}$ Let $F_1, F_2, ..., F_{11}$ be a mapping from E to P(X) defined by,

 $\begin{aligned} &(F_1, E) = \{(e_1, \{x_1\}), (e_2, \{x_1\})\}, \\ &(F_2, E) = \{(e_1, \{x_2\}), (e_2, \{x_2\})\}, \\ &(F_3, E) = \{(e_1, \{x_1, x_2\}), (e_2, \{x_1, x_2\})\}, \\ &(F_4, E) = \{(e_1, \{x_1, x_2, x_3\}), (e_2, \{x_1, x_3\})\} \\ &(F_5, E) = \{(e_1, \{x_1, x_2, x_4\}), (e_2, \{x_1, x_2, x_3\})\} \\ &(F_6, E) = \{(e_1, \{x_2\}), (e_2, \Phi)\}, \\ &(F_7, E) = \{(e_1, \{x_1, x_2\}), (e_2, \{x_1\})\}, \\ &(F_8, E) = \{(e_1, \{x_1, x_2, x_3\}), (e_2, \{x_1, x_2, x_3\})\}, \\ &(F_9, E) = \{(e_1, \{X_1\}), (e_2, \{x_1, x_2, x_3\})\}, \\ &(F_{10}, E) = \{(e_1, \{x_1, x_2\}), (e_2, \{x_1, x_2, x_3\})\}, \\ &(F_{11}, E) = \{(e_1, \{x_1, x_2\}), (e_2, \{x_1, x_3\})\}, \\ &Then \tau = \{\Phi, \tilde{X}, (F_1, E), (F_2, E), ..., (F_{11}, E)\} \text{ is a soft topological space over X}. \end{aligned}$

Definition 2.10: [5] Let (X,τ,E) be a soft topological space over X and (F,E) be a soft set over X. Then,

(i) the soft closure of (F,E) is the soft set $scl(F,E) = \sqcap \{(G,E)/(G,E) \text{ is soft closed and } (F,E) \sqsubseteq (G,E) \}.$

(ii) the soft interior of (F,E) is the soft set $sint(F,E) = \sqcap \{(H,E)/(H,E) \text{ is soft open and } (H,E) \sqsubseteq (F,E) \}$.

Definition 2.11: [3] Let (X, τ, E) be a soft topological space. A soft set (F,E) is called soft α -open set in X, if $(F,E) \sqsubseteq sint(scl(sint(F,E)))$.

Definition 2.12: [3] Let (X, τ, E) be a soft topological space. A soft set (F, E) is called (i) soft t-open set in X, if sint(scl(F,E)) = sint(F,E).

(ii) soft t-closed set in X, if scl(sint(F,E)) = scl(F,E).

Definition 2.13: [3] Let (X,τ,E) be a soft topological space. A soft set (F,E) is called soft B-open(closed) set in X, if $(F,A)=(G,E) \sqcap (H,E)$, where (G,E) is a soft open(closed) set and (H,E) is a soft t-open (closed) set.

Definition 2.14: [3] Let (X, τ ,E) be a soft topological space over X and (F,E) be a soft set over X. Then,

- (i) the soft B-closure of (F,E) is the soft set sBcl(F,E) = ⊓{(G,E)/(G,E) is soft B-closed and (F,E) ⊑ (G,E)}.
- (ii) the soft B-interior of (F,E) is the soft set $sBint(F,E) = \prod \{(H,E)/(H,E) \text{ is soft B-open and } (H,E) \sqsubseteq (F,E) \}.$

Definition 2.15: [4] Let (X,τ,E) be a soft topological space over X and (F,E) be a soft set over X. Then (F,E) is said to be α^* -set if sint(scl(sint(F,E))) = sint(F,E).

Definition 2.16: [4] Let (X,τ, E) be a soft topological space. A so **f** set (F,E) is called soft C-open set in X, if $(F,A)=(G,E) \sqcap (H,E)$, where (G,E) is a soft open set and (H,E) is a soft α^* - set.

Remark 2.1: [4] Let (X, τ, E) be a soft topological space. The notion of soft α -open sets is different from the soft C-open sets.

© 2018, IJMA. All Rights Reserved

Subashini, S¹ and Vidhya, D²/ A View on Soft α B-Continuity on Soft Topological Spaces / IJMA- 9(3), March-2018, (Special Issue)

Example 2.2: [4] Let $X = \{x_1, x_2, x_3, x_4\}$, $E = \{e_1, e_2\}$. Let us take the soft topology τ on X as in example 2.1 and let $(G,E) = \{(e_1, \{x_3, x_4\}), (e_2, \{x_2\})\}$ be a soft set over X. Here (G,E) is a soft α^* -set. Also, (G,E) is a soft C-open set since every soft α^* -set is a soft C-open set but not a soft α -open set.

Example 2.3: [4] Let $X = \{x_1, x_2, x_3\}$, $E = \{e_1, e_2\}$ and F is a mapping from E to P(X) defined by, $(F,E) = \{(e_1, \{x_1\}), (e_2, \{x_2\})\}$ be a soft set over X. Then $\tau = \{\Phi, X, (F, E)\}$ is soft topology over X. Let $(G,E) = \{(e_1, \{x_1, x_2\}), (e_2, \{x_2\})\}$ be a soft set over X. Here (G,E) is a soft α -open set but not a soft C-open set.

Definition 2.17: [3] Let (X, τ_1, E) and (X, τ_2, E) be any two soft topological spaces. A function f from a soft topological space (X, τ_1, E) to another soft topological space (X, τ_2, E) is said to be soft α -continuous function iff the inverse image of every soft α -open(closed) set in (X, τ_2, E) is a soft open(closed) set in (X, τ_1, E) .

Definition 2.18: [3] Let (X, τ_1, E) and (X, τ_2, E) be any two soft topological spaces. A function f from a soft topological space (X, τ_1, E) to another soft topological space (X, τ_2, E) is said to be soft B-continuous function iff the inverse image of every soft open(closed) set in (X, τ_2, E) is a soft B-open(closed) set in (X, τ_1, E) .

Definition 2.19: [4] Let (X, τ_1, E) and (X, τ_2, E) be any two soft topological spaces. A function f from a soft topological space (X, τ_1, E) to another soft topological space (X, τ_2, E) is said to be soft C-continuous function iff the inverse image of every soft open(closed) set in (X, τ_2, E) is a soft C-open(closed) set in (X, τ_1, E) .

Remark 2.2: [4] Let (X, τ, E) be a soft topological space over X and (F, E) be a soft set over X. Then every soft t-open set is a soft α^* -open set.

3. SOFT **ab-OPEN** SET

Definition 3.1: Let (X, τ, E) be a soft topological space. A soft set (F,E) is called soft α B-open(closed) set in X, if $(F,A)=(G,E) \sqcap (H,E)$, where (G,E) is a soft α -open(closed) set and (H,E) is a soft t-open(closed) set.

Definition 3.2: Let (X, τ, E) be a soft topological space over X and (F,E) be a soft set over X. Then,

- (i) the soft α B-closure of (F,E) is the soft set $s\alpha$ Bcl(F,E) = $\sqcap \{(G,E)/(G,E) \text{ is soft } \alpha$ B-closed and (F,E) $\sqsubseteq (G,E)\}.$
- (ii) the soft αB -interior of (F,E) is the soft set $s\alpha Bint(F,E) = \Box \{(H,E)/(H,E) \text{ is soft } \alpha B$ -open and $(H,E) \sqsubseteq (F,E)\}.$

Proposition 3.1:

- (i) (i)Finite intersection of soft α B-open sets is a soft α B-open set.
- (ii) (ii)Finite union of soft α B-closed sets is a soft α B-closed set.

Proof:

(i) Let (F_i, A_i) be a soft α B-open set. Then $(F_i, A_i) = (G_i, B_i) \sqcap (H_i, C_i)$, where (G_i, B_i) is a soft α -open set and (H_i, C_i) is a soft t-open set. Now,

$$\bigcap_{i=1}^{n} (Fi, Ai) = \bigcap_{i=1}^{n} \{ (Gi, Bi) \sqcap (Hi, Ci) \}$$

 $= \bigcap_{i=1}^{n} (Gi, Bi) \sqcap \bigcap_{i=1}^{n} (Hi, Ci)$ Hence finite intersection of soft αB -open sets is a soft αB -open set.

(ii) Let (F_i, A_i) be a soft α B-closed set. Then $(F_i, A_i) = (G_i, B_i) \sqcup (H_i, C_i)$, where (G_i, B_i) is a soft α -closed set and (H_i, C_i) is a soft t-closed set. Now,

$$U_{i=1}^{n}(Fi,Ai) = \bigcup_{i=1}^{n} \{(Gi,Bi) \sqcup (Hi,Ci)\}$$
$$= \bigcup_{i=1}^{n} (Gi,Bi) \sqcup \bigcup_{i=1}^{n}(Hi,Ci)$$

Hence finite union of soft α B-closed sets is a soft α B-closed set.

Proposition 3.2: Let (X, τ, E) be a soft topological space over X. For any two soft sets (F, A) and (G, B) the following statements are valid.

- (i) $\operatorname{saBcl}(F, \Phi) = (F, \Phi)$.
- (ii) $\operatorname{saBcl}(F, \widetilde{X}) = (F, \widetilde{X}).$
- (iii) saBcl(F, A) \supseteq (F, A).
- (iv) If $(F, A) \sqsubseteq (G, B)$, then saBcl $(F, A) \sqsubseteq$ saBcl(G, B).
- (v) $s\alpha Bcl(s\alpha Bcl(F,A)) = s\alpha Bcl(F,A)$.
- (vi) $s\alpha Bcl((F, A) \sqcap (G, B)) \sqsubseteq (s\alpha Bcl(F, A)) \sqcap (s\alpha Bcl(G, B)).$
- (vii) $\alpha Bcl((F, A) \sqcup (G, B)) = (s\alpha Bcl(F, A)) \sqcup (s\alpha Bcl(G, B)).$

Subashini, S¹ and Vidhya, D²/ A View on Soft α B-Continuity on Soft Topological Spaces / IJMA- 9(3), March-2018, (Special Issue)

Proposition 3.3: Let (X, τ, E) be a soft topological space over X. For any two soft sets (F,A) and (G,B) the following statements are valid.

- (i) $s\alpha Bint(F, A) \sqsubseteq (F, A)$.
- (ii) If $(F, A) \sqsubseteq (G, B)$, then saBint $(F, A) \sqsubseteq$ saBint(G, B).
- (iii) $(s\alpha Bint(F, A))' = s\alpha Bcl((F, A)').$
- (iv) $(s\alpha Bcl(F, A))' = s\alpha Bint((F, A)')$.
- (v) $s\alpha Bint(s\alpha Bint(F, A)) = s\alpha Bint(F, A)$.
- (vi) $s\alpha Bint((F, A) \sqcap (G, B)) = (s\alpha Bint(F, A)) \sqcap (s\alpha Bint(G, B)).$
- (vii) $s\alpha Bint((F, A) \sqcup (G, B)) \supseteq (s\alpha Bint(F, A)) \sqcup (s\alpha Bint(G, B)).$

Proposition 3.4: Every soft B-open set is a soft α B-open set.

Proof: Let (F, A) be a soft B-open set. Then, (F, A) = (G, B) \sqcap (H, C), where (G, B) is a soft open set and (H, C) is a soft t-open set. Since every soft open set is a soft α -open set, (G, B) is a soft α B-open set. Hence (F, A) is a soft α B-open set.

Remark 3.1: The converse of the proposition 3.4 need not be true.

Example 3.1: Let X be the set of diabetes patients in a hospital and E be the set of parameters. Let $X = \{p_1, p_2, p_3\}$ and $E = \{e_1, e_2, e_3, e_4, e_5, e_6\}$ where $e_1, e_2, e_3, e_4, e_5, e_6$ be the set of parameters which stands for 'Polyurea',' Fatigue', Polydipsea', 'Polyphagia', 'Weightloss', 'Slow healing of wounds' respectively. Let $A = \{e_1, e_2\}$. Let F be a mapping A to P(X) defined by, $(F, A) = \{(e_1, \{p_1\}), (e_2, \{p_2\})\}$ is a soft set over X. Then, $\tau = \{\Phi, \widetilde{X}, (F, A)\}$, is a soft topological space over X. Let $(G, A) = \{(e_1, \{p_1, p_2\}), (e_2, \{p_2\})\}$ and $(H, A) = \{(e_1, \{p_2\}), (e_2, \{\Phi\})\}$ are soft sets over X. Here (G, A) is a soft α -open set but not a soft open set and (F, A)' is a soft t-open set. Then (H, A) is a soft α B-open set but not a soft B-open set.

Proposition 3.5: Every soft α B-open set is a soft α C-open set.

Proof: Let (F,A) be a soft α B-open set. Then, $(F,A) = (G,B) \sqcap (H,C)$, where (G,B) is a soft α -open set and (H,C) is a soft t-open set. Since every soft t-open set is a soft α^* - set, (H, C) is a soft α^* - set. Hence (F,A) is a soft α B-open set.

Remark: 3.2: The converse of the proposition 3.5 need not be true.

Example: 3.2: Let X be the set of diabetes patients in a hospital and E be the set of parameters. Let $X = \{p_1, p_2, p_3\}$ and $E = \{e_1, e_2, e_3, e_4, e_5, e_6\}$ where $e_1, e_2, e_3, e_4, e_5, e_6$ be the set of parameters which stands for 'Polyurea', 'Fatigue', Polydipsea', 'Polyphagia', 'Weightloss', 'Slow healing of wounds' respectively. Let $A = \{e_1, e_2\}$. Let F,G,H,I,J be a mapping A to P(X) defined by,

 $(F,A) = \{(e_1, \{p_1\}), (e_2, \{p_1, p_3\})\},\$

 $(\mathbf{G},\mathbf{A}) = \{(\mathbf{e}_1, \{\mathbf{p}_1\}), (\mathbf{e}_2, \{\mathbf{p}_1\})\},\$

 $(\mathbf{H},\mathbf{A}) = \{(\mathbf{e}_1, \{\mathbf{p}_2\}), (\mathbf{e}_2, \{\mathbf{p}_2\})\},\$

 $(I,A) = \{(e_1, \{p_1,p_2\}), (e_2,\{p_1,p_2\})\}$ and

 $(J,A) = \{(e_1, \{p_1,p_2\}), (e_2, \{\tilde{X}\})\}$ are a soft sets over X.

Then, $\tau = \{\Phi, \tilde{X}, (F,A), (G,A), (H,A), (I,A), (J,A)\}$ is soft topological space over X. Let $(K, A) = \{(e_1, \{p_1\}), (e_2, \{p_2\})\}$ be a soft set over X. Here (K,A) is a soft α -open set but not a soft t-open set. Therefore (K,A) is a soft α C-open set but not a soft α B-open set.

Remark: 3.3: The interrelations among the sets introduced are given clearly in the following diagram.

soft B-open set ↓ soft αB-open set ↓ soft αC-open set

4. SOFT αB-CONTINUOUS FUNCTION

Definition: 4.1: Let (X, τ_1, E) and (X, τ_2, E) be any two soft topological spaces. A function f from a soft topological space (X, τ_1, E) to another soft topological space (X, τ_2, E) is said to be soft α B-continuous function iff the inverse image of every soft open(closed) set in (X, τ_2, E) is a soft α B-open(closed) set in (X, τ_1, E) .

Definition: 4.2: Let (X, τ_1, E) and (X, τ_2, E) be any two soft topological spaces. A function f from a soft topological space (X, τ_1, E) to another soft topological space (X, τ_2, E) is said to be soft α C-continuous function iff the inverse image of every soft open(closed) set in (X, τ_2, E) is a soft α C-open(closed) set in (X, τ_1, E) .

Subashini, S¹ and Vidhya, D²/ A View on Soft α B-Continuity on Soft Topological Spaces / JJMA- 9(3), March-2018, (Special Issue)

Proposition: 4.1: Every soft B-continuous is a soft αB-continuous function.

Proof: Let (X, τ_1, E) and (X, τ_2, E) be any two soft topological spaces. Let $f: (X, \tau_1, E) \rightarrow (X, \tau_2, E)$ be a soft B-continuous function. Let (F,A) be a soft open set in (X,τ_2,E) . Since f is soft B-continuous function, the inverse image of (F, A) is soft B-open set in (X, τ_1, E) . Since every soft B-open set is a soft α B-open set, $f^{-1}(F, A)$ is soft α B-open set in (X, τ_1, E) . Hence f is a soft α B-continuous function.

Remark: 4.1: The converse of the proposition 4.1 need not be true.

Example: 4.1: Let $\tau_1 = \{\Phi, \tilde{X}, (F,A)\}$ and $\tau_2 = \{\Phi, \tilde{X}, (H,A)\}$. Let (X, τ_1, E) and (X, τ_2, E) be any two topological spaces over X and Y. Let f: $(X, \tau_1, E) \rightarrow (X, \tau_2, E)$ be a mapping. Then f is a soft α B-continuous function in (X, τ_1, E) since in example 3.1, (H,A) is a soft α B-open set but not a soft B-open set in (X, τ_1, E) . Therefore f is a soft α B-continuous function but not a soft B-continuous function.

Proposition: 4.2: Every soft α B-continuous is a soft α C-continuous function.

Proof: Let (X, τ_1, E) and (X, τ_2, E) be two soft topological spaces. Let $f: (X, \tau_1, E) \to (X, \tau_2, E)$ be a soft α B-continuous function. Let (F,A) be a soft open set in (X, τ_2, E) . Since f is soft α B-continuous function, the inverse image of (F,A) is soft α B-open set in (X, τ_1, E) . Since every soft α B-open set is a soft α C-open set, $f^{-1}(F,A)$ is soft α C-open set in (X, τ_1, E) . Hence f is a soft α C-continuous function.

Remark: 4.2: The converse of the proposition 4.2 need not be true.

Example: 4.2: Let $\tau_1 = \{\Phi, \tilde{X}, (F, A), (G, A), (H, A), (I, A), (J, A)\}$ and $\tau_2 = \{\Phi, \tilde{X}, (K, A)\}$. Let (X, τ_1, E) and (X, τ_2, E) be two topological spaces over X and Y. Let $f:(X, \tau_1, E) \rightarrow (X, \tau_2, E)$ be a mapping. Then f is a soft α C-continuous function in (X, τ_1, E) since in example 3.2, (H, A) is a soft α C-open set but not a soft α B-open set in (X, τ_1, E) . Therefore f is a soft α C-continuous function.

Remark: 4.3: By Remark 2.1 and examples 2.2 and 2.3, any soft α -open set need not be soft α C-open set and any soft α C-open set need not be soft α -open set. Hence, soft α -continuous function and soft α C-continuous function are independent as shown by the following Example 4.3 and Example 4.4.

Example: 4.3: Let $\tau_1 = \{\Phi, \tilde{X}, (F_1, E), (F_2, E), \dots, (F_{11}, E)\}$ defined as in example 2.1 and $\tau_2 = \{\Phi, X, e(G, E)\}$ where (G,E) is a defined as in example 2.2. Let (X, τ_1, E) and (X, τ_2, E) be two topological spaces over X and Y. Let $f:(X, \tau_1, E) \rightarrow (X, \tau_2, E)$ be a mapping. Then f is a soft α C-continuous function in (X, τ_1, E) since in example 2.2, (G,E) is a soft α C-open set but not a soft α -open set in (X, τ_1, E) . Therefore f is a soft α C-continuous function but not a soft α -continuous function.

Example: 4.4: Let $\tau_1 = \{\Phi, \tilde{X}, (F, E)\}$ and $\tau_2 = \{\Phi, \tilde{X}, (G, E)\}$ where (F,E) and (G,E) is a defined as in example 2.3. Let (X, τ_1, E) and (X, τ_2, E) be two topological spaces over X and Y. Let $f:(X, \tau_1, E) \to (X, \tau_2, E)$ be a mapping. Then f is a soft α -continuous function in (X, τ_1, E) since in example 2.3,(G,E) is a soft α -open set but not a soft α C-open set in (X, τ_1, E) . Therefore f is a soft α -continuous function but not a soft α C-continuous function.

Remark: 4.4: The interrelations among the functions introduced are given clearly in the following diagram.

soft B-continuous function soft α B-continuous function soft α C-continuous function

Theorem: 4.1: Let (X, τ_1, E) and (X, τ_2, E) be any two soft topological spaces. If f is any mapping from (X, τ_1, E) to (X, τ_2, E) then the conditions below are equivalent.

(i) The function f is soft α B-continuous function.

(ii) The inverse of every soft α -closed set is a soft α B-closed set.

Proof: The proof follows from the Definition 4.1.

Theorem: 4.2: Let (X, τ_1, E) and (X, τ_2, E) be any two soft topological spaces. If f is any mapping from (X, τ_1, E) to (X, τ_2, E) then the following conditions are equivalent.

- (i) f is a soft α B-continuous function.
- (ii) For every soft set (F,A) of (X,τ_1,E) , $f(saBint(F,A)) \supseteq sint(f(F,A))$.
- (iii) For every soft set (F,A) of (X,τ_2,E) , $f^{-1}(sint(F,A)) \sqsubseteq s\alpha Bint(f^{-1}(F,A))$.

© 2018, IJMA. All Rights Reserved

Proof:

(i) \Rightarrow (ii): Let (F,A) be a soft set in (X, τ_1 , E). Then f(F,A) is a soft set in (X, τ_2 , E). Since f is a soft α B-continuous function, sint(f(F,A)) is a soft α B-open set in (X, τ_2 , E). By hypothesis, $f^{-1}(sint(f(F,A)))$ is a soft α B-open set in (X, τ_1 , E). Now,

 $(F,A) \supseteq f^{-1}(sint(f(F,A)))$ $\Rightarrow s\alpha Bint(F,A) \supseteq s\alpha Bint(f^{-1}(sint(f(F,A))))$ $\supseteq f^{-1}(sint(F,A))$ $\Rightarrow f(s\alpha Bint(F,A)) \supseteq sint(f(F,A)).$ Hence $f(s\alpha Bint(F,A)) \supseteq sint(f(F,A)).$

(ii) \Rightarrow (iii): Let (F,A) be a soft open set in (X, τ_2 , E). Now, $f^{-1}(F,A)$ be a soft open set in (X, τ_1 , E).

$$\begin{split} By(ii), f(saBint(f^{-1}(F,A))) &\sqsubseteq sint(f(f^{-1}(F,A))) \\ &\sqsubseteq sint(F,A) \\ \Rightarrow saBint(f^{-1}(F,A)) &\sqsubseteq f^{-1}(sint(F,A)). \\ \end{split}$$
 Hence $saBint(f^{-1}(F,A)) \sqsubseteq f^{-1}(sint(F,A)).$

(iii)⇒ (i): Let (F,A) be a soft open set in (X, τ_2 , E). By hypothesis, $s\alpha Bint(f^{-1}(F,A)) \supseteq f^{-1}(sint(F,A))$ $= f^{-1}(F,A)$ But, $f^{-1}(F,A) \supseteq s\alpha Bint(f^{-1}(F,A))$

$$\Rightarrow$$
 saBint(f⁻¹(F,A)) = f⁻¹(F,A)

Thus, $f^{-1}(F,A)$ is a soft α B-open set in (X, τ_1 , E). Therefore f is a soft α B-continuous function.

Theorem: 4.3: Let (X, τ_1, E) and (X, τ_2, E) be any two soft topological spaces. If f is any mapping from (X, τ_1, E) to (X, τ_2, E) then the following conditions are equivalent.

(i) f is a soft α B-continuous function.

(ii) For every soft set (F,A) of (X,τ_1,E) , $f(s\alpha Bcl(F,A)) \sqsubseteq scl(f(F,A))$.

(iii) For every soft set (F,A) of (X,τ_2,E) , $s\alpha Bclf^{-1}((F,A)) \sqsubseteq f^{-1}(scl(F,A))$.

Proof:

(i) \Rightarrow (ii): Let (F,A) be a soft set in (X, τ_1 , E). Then f(F,A) is a soft set in (X, τ_2 , E). Now, scl(f(F,A)) is a soft closed set in (X, τ_2 ,E). By hypothesis, $f^{-1}(scl(f(F,A)))$ is a soft α B-closed set in (X, τ_1 ,E). Hence,

$$\begin{array}{rcl} (F,A) \sqsubseteq & f^{-1}(scl(f(F,A))) \\ \Rightarrow saBcl(F,A) \sqsubseteq & saBcl(f^{-1}(scl(f(F,A)))) \\ & = f^{-1}(sclf((F,A))) \\ \Rightarrow f(saBcl(F,A)) = & scl(f(F,A)). \end{array}$$

Hence $f(saBcl(F,A)) = & scl(f(F,A)). \end{array}$

(ii) \Rightarrow (iii): Let (F,A) be a soft closed set in (X, τ_2 ,E). Now $f^{-1}(F,A)$ be a soft closed set in (X, τ_1 ,E).

$$By(ii), f(saBcl(f^{-1}(F,A))) \sqsubseteq scl(f(f^{-1}(F,A)))$$
$$\sqsubseteq scl(F,A)$$
$$\Rightarrow saBcl(f^{-1}(F,A)) \sqsubseteq f^{-1}(scl(F,A)).$$
Hence $saBcl(f^{-1}(F,A)) \sqsubseteq f^{-1}(scl(F,A)).$

(iii) \Rightarrow (i): Let (F,A) be a soft closed set in (X, τ_2 ,E). By hypothesis,

$$saBcl(f^{-1}(F,A)) \subseteq f^{-1}(scl(F,A))$$

$$= f^{-1}(F,A)$$

$$But,f^{-1}(F,A) \subseteq saBcl(f^{-1}(F,A))$$
Therefore,
$$saBcl(f^{-1}(F,A)) = f^{-1}(scl(F,A))$$

$$= f^{-1}(F,A)$$

Thus $f^{-1}(F,A)$ is a soft α B-closed set in (X, τ_1 , E). Therefore f is a soft α B continuous function.

Theorem: 4.4: Let (X, τ_1, E) , (X, τ_2, E) and (X, τ_3, E) be any three soft topological spaces. A function f: $(X, \tau_1, E) \rightarrow (X, \tau_2, E)$ is a soft α B-continuous function and g: $(X, \tau_2, E) \rightarrow (X, \tau_3, E)$ is a soft continuous function. Then $g \circ f: (X, \tau_1, E) \rightarrow (X, \tau_3, E)$ is a soft α B-continuous function.

Proof: Let (F,A) be a soft open set in (X, τ_3 , E). Since g is a soft continuous function, $g^{-1}(F,A)$ is a soft open set in (X, τ_2 , E). Also since f is a soft α B continuous function, $f^{-1}(g^{-1}(F,A))$ is a soft α B-open set in (X, τ_1 , E). Hence $g \circ f$ is a soft α B-continuous function.

Subashini, S¹ and Vidhya, D²/ A View on Soft α B-Continuity on Soft Topological Spaces / IJMA- 9(3), March-2018, (Special Issue)

REFERENCES

- 1. Molodtsov D, Soft set theory-First results, Computer and Mathematics with Applications, Vol.37, 1999, 19-31.
- 2. Muhammad Shabir and Munazza Naz, On soft topological spaces, Computer and Mathematics with Applications, Vol. 61, 2011, 1986-1799.
- 3. Naime Tozlu, Saziye yuksel, Soft A-sets and Soft B-sets in Soft topological spaces, Mathematical Sciences and Applications E-notes, Vol. 5(2), 2017, 17-25.
- 4. Naime Tozlu, Saziye yuksel, Zehra Guzel Ergul, Soft C-sets and a Decomposition of Soft Continuity in Soft Topological Spaces, International Journal of Mathematics Trends and Technology, Vol. 16(1), 2014, 58-69.
- 5. Zorlutuna I, Akdag M, Min W.K and Atmaca S, Remarks on soft topological spaces, Annals of Fuzzy Mathematics and Informatics, Vol.3 (2), 2012, 171-185.

Source of support: National Conference on "New Trends in Mathematical Modelling" (NTMM - 2018), Organized by Sri Sarada College for Women, Salem, Tamil Nadu, India.