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ABSTRACT 

In this article, we investigate the oscillatory behavior of solutions of a class of conformable fractional nonlinear 
homogeneous differential equations of the form 

𝑇𝛼 �𝑡 𝑟(𝑡)�𝑇𝛼𝑥(𝑡) + 𝜆𝑡1−𝛼𝑥(𝑡)�� + 𝑝(𝑡)𝑔�𝑥(𝑡)� = 0, 𝑡 ≥ 𝑡0, 
where 𝑇𝛼 denotes the conformable fractional derivative of order 𝛼 with 0< 𝛼 ≤ 1. We establish some new sufficient 
conditions by using the equivalence transformation and associated Riccati technique. These newly obtained results 
extend the known results for the differential equations of integer order. A suitable example is given to illustrate the 
effectiveness of our main results. 
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1. INTRODUCTION 
 
Differential equations are one of the most frequently used tools for mathematical modeling in engineering and life 
sciences. The explicit solution does not exist for the nonlinear differential equation. In the absence of closed form 
solutions to many of linear and nonlinear differential equations a rewarding alternative is to be resorted to the 
qualitative study of the solutions of the equations, without actually constructing or approximating them. In the 
qualitative study of differential equations oscillatory behavior of solutions plays a major role. For the basic theory and 
applications, see the monographs [2, 6, 8, 9, 15] and the references cited therein. 
 
In the recent years, fractional calculus and fractional differential equations are the most rapidly growing area of 
research. A rigorous and encyclopedic study of fractional differential equations can be found in [1, 7, 12, 13, 17, 18]. 
Even though there are different concepts of fractional derivatives such as Riemann-Liouville and Caputo fractional 
derivatives are widely used, which are based on integrals and nonlocal. In 2014, Khalil et al. introduced the 
conformable fractional derivative based on the limit definition analogous to that of standard derivatives [4, 5, 11]. 
 
However, a huge volume of literature, see [3, 10, 14] on the oscillation and nonoscillation of self-adjoint second order 
differential equations of the form 

�𝑎(𝑡)𝑥′(𝑡)�
′
+ 𝑝(𝑡)𝑥(𝑡) = 0, 𝑡 > 𝑡0, 

subject to the conditions 
∫ 𝑝(𝑠)𝑑𝑠 < ∞∞
𝑡0

 and ∫ 𝑝(𝑠)𝑑𝑠 = ∞∞
𝑡0

. 
 
In 2012, Tariboon et al. [16] studied the class of second order linear impulsive differential equations of the form 

(a(t)(𝑥′(𝑡) + 𝜆𝑥(𝑡)))′ + 𝑝(𝑡)𝑥(𝑡) = 0, 𝑡 ≥ 𝑡0, 𝑡 ≠ 𝑡𝑘, 
𝑥(𝑡𝑘+) = 𝑏𝑘𝑥(𝑡𝑘),𝑥′(𝑡𝑘+) = 𝑐𝑘𝑥′(𝑡𝑘),𝑘 = 1,2, … 
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To the best of the author’s knowledge, it seems that there has been no work done on oscillation of conformable 
fractional differential equations. Motivated by this gap, we propose to initiate the following model of the form 

𝑇𝛼 �𝑡 𝑟(𝑡)�𝑇𝛼x(t) + 𝜆𝑡1−𝛼x(t)��+ 𝑝(𝑡)𝑔�𝑥(𝑡)� = 0, 𝑡 ≥ 𝑡0,                              (1.1) 
where 𝑇𝛼 denotes the conformable fractional derivative  of order 𝛼, 0< 𝛼 ≤ 1.  
 
We assume throughout this paper that  
(𝐴1) 𝑡 𝑟(𝑡) ∈ 𝐶𝛼([𝑡0,∞), (0,∞)),  𝑝(𝑡) ∈ 𝐶([𝑡0,∞),ℝ+), and 𝜆 is a real number; 
(𝐴2) 𝑔:𝑅 ⟶ 𝑅 is a continuous function such that  𝑔(𝑥)

𝑥
≥ 𝜇, for x ≠ 0 and for certain constant 𝜇 > 0. 

  
It will be assumed that the equation (1.1) has the solutions which are nontrivial for large t. 
 
A nontrivial solution 𝑥(𝑡) of differential equation (1.1) is said to be oscillatory if it has arbitrarily large zeros otherwise 
it said to be nonoscillatory. The equation (1.1) is oscillatory if all its solutions are oscillatory. 
 
The main aim of this paper is to present new oscillation criteria for (1.1) by making use of the equivalence 
transformation and associated Riccati technique. 
 
This paper is organized as follows: In section 2, we recall the basic definitions of conformable fractional derivative. In 
section 3, we present some new results of oscillation of solutions of (1.1). In section 4, an example is provided to 
illustrate the main results. 
 
2. PRELIMINARIES 
 
In this section, we shall present some preliminary results on conformable fractional derivatives. First we shall start with 
the definition. 
 
Definition 2.1: [Khalil, 11] Given a function 𝑓: [0,∞) → ℝ. Then the conformable fractional derivative of 𝑓 of order 𝛼 
is defined by 

𝑇𝛼 (𝑓)(𝑡) = lim
𝜀→0

𝑓�𝑡+𝜀𝑡1−𝛼)�−𝑓(𝑡)
𝜀

 
for all 𝑡 > 0,𝛼 ∈ (0,1].  If 𝑓 is 𝛼 -differentiable in some (0,𝑎), 𝑎 >  0,  and lim𝑡→0+ 𝑓(𝛼) (𝑡)  exists, then define 
                             𝑓(𝛼)(0) = lim𝑡→0+ 𝑓(𝛼) (𝑡).  
We will sometimes write  𝑓(𝛼)(𝑡) for 𝑇𝛼 (𝑓)(𝑡), to denote the conformable fractional derivatives of 𝑓 of order 𝛼. 
 
Some properties of conformable fractional derivative [Khalil, 11]: 
 
Let 𝛼 ∈ (0,1] and 𝑓 𝑎𝑛𝑑 𝑔 be 𝛼-differentiable at a point 𝑡 > 0 .Then 
(𝑃1)   𝑇𝛼(𝑡𝑝) = 𝑝𝑡𝑝−𝛼  for all 𝑝 ∈ ℝ. 
(𝑃2)   𝑇𝛼(𝜆) = 0, for all constant functions 𝑓(𝑡) = 𝜆. 
(𝑃3)   𝑇𝛼(𝑓𝑔) = 𝑓𝑇𝛼(𝑔) + 𝑔𝑇𝛼(𝑓). 
(𝑃4)   𝑇𝛼 �𝑓

𝑔
� = 𝑔𝑇𝛼(𝑓)−𝑓𝑇𝛼(𝑔)

𝑔2
. 

(𝑃5)   If, in addition, 𝑓 is differentiable, then 𝑇𝛼 (𝑓)(𝑡) = 𝑡1−𝛼 𝑑𝑓
𝑑𝑡

(𝑡). 
 
3. MAIN RESULTS 
 
 In this section, we establish some new conditions for the oscillation of all solutions of the problem (1.1).  
 
Theorem 3.1: Suppose that (𝐴1)−  (𝐴2) hold. If 

limsup
𝑡→∞

∫ �𝜇𝑠𝛼−1𝑝(𝑠) − 𝜆2

4
𝑟(𝑠)𝑠2−𝛼�𝑡

𝑡1
𝑑𝑠 = ∞.                                                                               (3.1) 

Then every solution of (1.1) is oscillatory. 
 
Proof: Assume that  𝑥(𝑡) is a nonoscillatory solution of (1.1). Without loss of generality we may assume that 𝑥(𝑡) is an 
eventually positive solution of (1.1). Then there exists 𝑡1 ≥ 𝑡0 such that  𝑥(𝑡) > 0 for 𝑡 ≥ 𝑡1. 
 
Define the function 𝑤 by the generalized Riccati substitution 

𝑤(𝑡) = 
𝑡 𝑟(𝑡)𝑇𝛼�𝑒𝜆𝑡𝑥(𝑡)�

eλtx(t)
,𝑡 ≥ 𝑡1                                                                           (3.2) 

         = 𝑡 𝑟(𝑡)(𝑇𝛼𝑥(𝑡)+𝜆𝑡1−𝛼𝑥(𝑡))
x(t)

, 𝑡 ≥ 𝑡1.                                                                  (3.3) 
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Then  w(t) > 0  for 𝑡 ≥ 𝑡1. 
 
Differentiating (3.2) 𝛼 times with respect to t, using (1.1), (𝑃4) and (𝑃5), we have 

 𝑇𝛼  𝑤(𝑡) = t1−α
�eλtx(t)�(t r(t)Tα(eλtx(t)�

′
−t r(t)Tα�eλtx(t)��eλtx(t)�

′
�

�eλtx(t)�
2  

   ≤ −𝜇𝑝(𝑡) + 𝜆𝑡1−𝛼𝑤(𝑡)− 𝑤2(𝑡)
𝑡𝑟(𝑡)

                     
Then 

w ′(t) ≤ −μtα−1p(t) + λw(t)− tα−2

r(t)
w2(t)                                                   (3.4) 

 
By using the inequality, Bu-Au2 ≤B2 / 4A, 

w ′(t) ≤ −μtα−1p(t) + λ2

4
r(t)t2−α, t ≥ t1.                                                                                       (3.5) 

 
Integrating (3.5) on both sides from  t1 to t, we have 

∫ 𝑤 ′(𝑠)𝑡
𝑡1

𝑑𝑠 ≤ −∫ (𝜇𝑠𝛼−1𝑝(𝑠) − 𝜆2

4
𝑡
𝑡1

𝑟(𝑠)𝑠2−𝛼)𝑑𝑠. 
 
Letting  𝑡 → ∞ we get, lim𝑡→∞ 𝑤(𝑡) ≤ −∞, which contradicts to (3.1) and completes the proof. 
 
For the following theorem, we introduce a class of functions 𝒫. 
 
Let 𝒟0 = {(𝑡, 𝑠): 𝑡 > 𝑠 ≥ 𝑡0} and  𝒟 = {(𝑡, 𝑠): 𝑡 ≥ 𝑠 ≥ 𝑡0}. Then function 𝐻 ∈ 𝒞(𝒟;ℝ) is said belong to the class 𝒫, if  
(𝐻1)   𝐻(𝑡, 𝑡) = 0 for 𝑡 ≥ 𝑡0,  𝐻(𝑡, 𝑠) > 0 on 𝒟0;  
(𝐻2)   H has a continuous and non positive partial derivative on 𝒟0 with respect to s. 
 
Theorem 3.2: Suppose that the conditions (𝐴1)− (𝐴2) hold. Let ℎ, 𝐻 ∶ 𝐷 → ℝ be continuous function such that  
𝐻 ∈ 𝒫 and 

−𝜕𝐻
𝜕𝑠

(𝑡, 𝑠) = ℎ(𝑡, 𝑠)�𝐻(𝑡, 𝑠)  for all (𝑡, 𝑠) ∈ 𝐷0. 
 
Furthermore, assume that   

limsup
𝑡→∞

1
𝐻(𝑡,𝑡0)∫ [𝐻(𝑡, 𝑠)𝑡

𝑡0
𝜇𝑠𝛼−1𝑝(𝑠) − 1

4
𝐺2(𝑡, 𝑠)𝑠2−𝛼𝑟(𝑠)]𝑑𝑠 = ∞,                                                (3.6) 

where G(t, s) =  h(t, s) − λ�H(t, s). Then every solution of (1.1) is oscillatory.  
 
Proof:  Assume that x(t) is a nonoscillatory solution of (1.1).  Without loss of generality, we may assume that x(t) is an 
eventually positive solution of (1.1). Then there exists 𝑡1 ≥ 𝑡0 such that 𝑥(𝑡) > 0 for 𝑡 ≥ 𝑡1. Proceeding as in the proof 
of Theorem 3.1, we have  

w ′(t) ≤ −μtα−1p(t) + λw(t)−
tα−2

r(t) w2(t). 

 
Multiplying both sides of above by  𝐻(𝑡, 𝑠) and integrating from 𝑡1 to t for 𝑡 ≥ 𝑡1, we get  
∫  𝐻(𝑡, 𝑠)𝜇𝑠𝛼−1𝑡
𝑡1

𝑝(s) ds ≤ −∫ 𝐻(𝑡, 𝑠)𝑤 ′(𝑠)𝑑𝑠 + ∫ 𝐻(𝑡, 𝑠)𝜆𝑤(𝑠)𝑑𝑠 − ∫ 𝐻(𝑡, 𝑠) 𝑠
𝛼−2

𝑟(𝑠) 𝑤
2(𝑠)𝑑𝑠𝑡

𝑡1

𝑡
𝑡1

𝑡
𝑡1

                           (3.7) 

= 𝐻(𝑡, 𝑡1)𝑤(𝑡1)− ∫ [−𝜕𝐻(𝑡,𝑠)
𝜕𝑠

𝑤𝑡
𝑡1

(𝑠) −  𝐻(𝑡, 𝑠)𝜆𝑤(𝑠)+ 𝐻(𝑡,𝑠)𝑠𝛼−2

𝑟(𝑠)
𝑤2(𝑠)] ds 

= 𝐻(𝑡, 𝑡1)𝑤(𝑡1)− ∫ [ℎ(𝑡, 𝑠)�𝐻(𝑡, 𝑠) 𝑤𝑡
𝑡1

(𝑠) −  𝐻(𝑡, 𝑠)𝜆𝑤(𝑠)+𝐻(𝑡,𝑠)𝑠𝛼−2

𝑟(𝑠)
𝑤2(𝑠)] ds 

= 𝐻(𝑡, 𝑡1)𝑤(𝑡1)− ∫ ��𝐻(𝑡,𝑠)𝑠𝛼−2

𝑟(𝑠)
𝑤(𝑠) + 1

2
𝐺(𝑡, 𝑠)�𝑠2−𝛼𝑟(𝑠)�

2
𝑡
𝑡1

𝑑𝑠 + ∫ 1
4
𝐺2(𝑡, 𝑠)𝑠2−𝛼𝑟(𝑠)𝑡

𝑡1
ds. 

Thus for all 𝑡 ≥ 𝑡1 ≥ 𝑡0, we conclude that 
∫ [𝑡𝑡1  𝐻(𝑡, 𝑠)𝜇𝑠𝛼−1𝑝(s) −1

4
𝐺2(𝑡, 𝑠)𝑠2−𝛼𝑟(𝑠)] ds ≤  𝐻(𝑡, 𝑡1)𝑤(𝑡1). 

It follows that, 

�  [𝐻(𝑡, 𝑠)𝜇𝑠𝛼−1𝑝(s)  −
1
4𝐺

2(𝑡, 𝑠)𝑠2−𝛼𝑟(𝑠)] ds 
𝑡

𝑡0
 

                                         ≤  ∫ [𝑡1
𝑡0

𝐻(𝑡, 𝑠)𝜇𝑠𝛼−1𝑝(s) −1
4
𝐺2(𝑡, 𝑠)𝑠2−𝛼𝑟(𝑠)] ds + 𝐻(𝑡, 𝑡1)𝑤(𝑡1) 

                                          ≤ 𝐻(𝑡, 𝑡0)∫ 𝜇𝑠𝛼−1𝑝(s)𝑑𝑠𝑡1
𝑡0

+ 𝐻(𝑡, 𝑡0)|𝑤(𝑡0)| 
 

1
𝐻(𝑡,𝑡0)

∫  [𝐻(𝑡, 𝑠)𝜇𝑠𝛼−1𝑝(s) − 1
4
𝐺2(𝑡, 𝑠)𝑠2−𝛼𝑟(𝑠)] ds 𝑡

𝑡0
≤ ∫ 𝜇𝑠𝛼−1𝑝(s)𝑑𝑠𝑡1

𝑡0
 + |𝑤(𝑡0)|. 
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This inequality yields that, 

 limsup𝑡→∞
1

𝐻(𝑡,𝑡0)
∫  [𝐻(𝑡, 𝑠)𝜇𝑠𝛼−1𝑝(s)  − 1

4
𝐺2(𝑡, 𝑠)𝑠2−𝛼𝑟(𝑠)] ds 𝑡

𝑡0
≤  ∫ 𝜇𝑠𝛼−1𝑝(s)𝑑𝑠𝑡1

𝑡0
 +|𝑤(𝑡0)| < ∞, 

which contradicts to (3.6) and completes the proof. 
 
Let H(t,s) =(𝑡 − 𝑠)𝑛−1, (t,s) ∈ D for some integer n > 2. Then, Theorem 3.2 gives the following result. 
 
Corollary 3.1: Let assumption (3.6) in Theorem 3.2 be replaced by  
            limsup

𝑡→∞
(𝑡 − 𝑡0)1−𝑛 ∫ [𝑡𝑡0 𝜇𝑠𝛼−1(𝑡 − 𝑠)𝑛−1𝑝(𝑠) −   1

4
((𝑛 − 1)(𝑡 − 𝑠)

𝑛−3
2 − 𝜆(𝑡 − 𝑠)

𝑛−1
2 )2  𝑠2−𝛼𝑟(𝑠)]𝑑𝑠,         (3.8) 

for some integer n > 2. Then every solution x(t) of (1.1) is oscillatory. 
 
4.  EXAMPLES 
 
In this section, we present an example to illustrate our main results. 
 
Example 4.1: Consider the conformable fractional differential equation 

𝑇1
2
 � 1
√𝑡
�𝑇1

2
x(t)− 𝑡

1
2x(t)��+ 𝑡

1
2𝑔(𝑥(𝑡)) = 0, 𝑡 ≥ 𝑡0 ,                                          (4.1) 

Here 𝛼 = 1
2
, r(t) = 1

𝑡
3
2
, 𝜆 = -1, p(t) = 𝑡

1
2, g(u) = u +√1− 𝑢2 and 𝑔(𝑥(𝑡))

𝑥(𝑡)
 ≥ 1 = 𝜇,  

where t > cosec-1(1). It is easy to see that 

limsup
𝑡→∞

∫ �𝜇𝑠𝛼−1𝑝(𝑠) − 𝜆2

4
𝑟(𝑠)𝑠2−𝛼�𝑡

𝑡1
𝑑𝑠 = limsup

𝑡→∞
∫ �𝑠−

1
2𝑠

1
2 − 1

4
1

𝑠
3
2
𝑠
3
2�𝑡

𝑡1
𝑑𝑠 → ∞. 

Thus all the conditions of Theorem 3.1 are satisfied. Hence every solution of (4.1) is oscillatory. In fact, x(t)= sin t is 
one such solution. 
 
CONCLUSION 
 
In this study, we have obtained some new oscillation results for some class of conformable fractional nonlinear 
homogeneous differential equations by using the equivalence transformation and associated Riccati technique. This 
work extends some of the results in the exiting literature with integer order and the equation (1.1) has found to be an 
effective tool to describe the evolution if physical phenomena in fluctuating environments where the memory effects 
are taken into consideration.  
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