# Volume 9, No. 3, March - 2018 (Special Issue) International Journal of Mathematical Archive-9(3), 2018, 81-85 MAAvailable online through www.ijma.info ISSN 2229 - 5046

# ON \*gα-CLOSED SETS AND \*gα-CONTINUOUS MAPS

# DR. M. SUDHA<sup>1</sup> AND M. MUTHULAKSHMI<sup>2</sup>

# <sup>1</sup>Associate Professor, Department of Mathematics, Sri Sarada College for Women (Autonomous), Salem-16, India.

<sup>2</sup>Research Scholar, Department of Mathematics, Sri Sarada College for Women (Autonomous), Salem-16, India.

E-mail: sudhaslm05@yahoo.com1 and muthulakshmimunusamy95@gmail.com2.

## ABSTRACT

T he purpose of this paper is to introduce the concept of  $*g\alpha$ -closed set. Besides studying some properties, the interrelations of the set introduced with other related sets are studied with necessary counter examples. Introducing  $*g\alpha$ -continuous map, some interesting properties and characterizations are discussed.

*Keywords:*  $\alpha$  semi-open set,  $\hat{g}\alpha$ -closed set,  $*g\alpha$ -closed set,  $*g\alpha$ -continuous map,  $*g\alpha$ -closure,  $T_{*g\alpha}$ -space.

## 2010 AMathematics Subject Classification: 06D72, 54A40.

## **1. INTRODUCTION**

 $\alpha$ -open set was introduced and investigated by O. Njastad [12]. Cameron [4], Veerakumar. M. K. R. S. [17], Jafari. S, Noiri. T, Rajesh. N and Thivagar. M. L. [8] and Syed Ali Fathima and Mariasingam [14, 15, 16] introduced and investigated regular semi-open set,  $\hat{g}$ -closed set, \*g-closed set, #rg-closed set, #rg-closure, #rg-continuous map and T<sub>#rg</sub>-space. We introduce a new class of set called\*g $\alpha$ -closed set and study some of its properties. The concept of \*g $\alpha$ -continuous map is introduced and some basic properties are characterized.

## 2. PRELIMINARIES

Throughout this paper X, Y and Z denote the topological spaces (X, T), (Y, S) and (Z, R) respectively on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a topological space X, the closure of A, interior of A, semi-closure of A, semipre-closure of A, the complement of A and #rg-closure of A are denoted by cl(A), int(A), scl(A), spcl(A), X\A and #rg-cl(A) respectively. We recall the following definitions and results.

Definition 2.1A subset A of a space X is called

- (1) a semi-open set[10] if A  $\subseteq$  clint (A) and a semi-closed set if intcl (A)  $\subseteq$  A.
- (2) a regular open set[13] if A = intcl (A) and a regular closed set if A = clint (A).
- (3)  $a\pi$ -open set[18] if A is a finite union of regular open sets.
- (4)  $a\alpha$ -open set [12] if A  $\subseteq$ int(cl(int(A))) and a  $\alpha$ -closed set if cl(int(cl(A)))  $\subseteq$  A.
- (5) aregular semi-open set [4] if there is a regular open U such that  $U \subseteq A \subseteq cl(U)$ .
- (6) a semi-preopen set [1] if  $A \subseteq cl(int(cl(A)))$  and a semi-preclosed set if  $int(cl(int(A))) \subseteq A$ .

Definition 2.2: A subset A of a space X is called

- (1) ageneralized closed set (briefly, g-closed) [9] if  $cl(A) \subseteq U$  whenever  $A \subseteq U$  and U is open in X.
- (2) aweakly generalized closed set (briefly, wg-closed) [11] if  $cl(int(A)) \subseteq U$  whenever  $A \subseteq U$  and U is open in X.
- (3) a $\pi$ -generalized closed set (briefly,  $\pi$ g-closed) [7] if cl(A)  $\subseteq$  U whenever A  $\subseteq$  U and U is  $\pi$ -open in X.
- (4) aĝ-closed set [17] if  $cl(A) \subseteq U$  whenever  $A \subseteq U$  and U is semi-open in X.
- (5)  $a^*g$ -closed set [8] if  $cl(A) \subseteq U$  whenever  $A \subseteq U$  and U is  $\hat{g}$ -open in X.
- (6) a generalized semi-closed set (briefly, gs-closed) [2] if  $scl(A) \subseteq U$  whenever  $A \subseteq U$  and U is open in X.
- (7) a generalized semi pre-closed set (briefly, gsp-closed) [6] if  $spcl(A) \subseteq U$  whenever  $A \subseteq U$  and U is open in X.

#### International Journal of Mathematical Archive- 9(3), March – 2018 CONFERENCE PAPER National Conference dated 26th Ech. 2018, on "New Trends in Mathematical Modelling" (NTMM - 2018)

National Conference dated 26<sup>th</sup> Feb. 2018, on "New Trends in Mathematical Modelling" (NTMM - 2018), Organized by Sri Sarada College for Women, Salem, Tamil Nadu, India.

**Definition 2.3 [15]:** For a subset A of a space X,  $\#rg-cl(A) = \bigcap \{F: A \subseteq F, F \text{ is } \#rg \text{ closed in } X\}$  is called the #rg-closure of A.

**Definition 2.4:** A map f:  $(X, T) \rightarrow (Y, S)$  is called

- (1) continuous [3] if  $f^{1}(V)$  is closed set in X for every closed subset V of Y.
- (2)  $\pi$ -continuous [7] if  $f^{1}(V)$  is  $\pi$ -closed set in X for every closed subset V of Y.
- (3)  $\pi$ g-continuous [7] if f<sup>1</sup>(V) is  $\pi$ g-closed set in X for every closed subset V of Y.
- (4) wg-continuous [11] if  $f^{1}(V)$  is wg-closed set in X for every closed subset V of Y.
- (5) gs-continuous [5] if  $f^{1}(V)$  is gs-closed set in X for every closed subset V of Y.
- (6) gsp-continuous [6] if  $f^{-1}(V)$  is gsp-closed set in X for every closed subset V of Y.
- (7) #rg-continuous [16] if  $f^{1}(V)$  is #rg-closedset in X for every closed subset V of Y.

## Definition 2.5: A space X is called

- (1)  $T_{1/2}$ -space [9] if every g-closed set is closed.
- (2)  $T_{\text{#rg}}$ -space [14] if every #rg-closed set in it is closed.

**Definition 2.6 [15]:** Let (X, T) be a topological space and  $T_{\text{#rg}} = \{V \subseteq X : \text{#rg-cl}(X \setminus V) = X \setminus V\}.$ 

## 3 \*gα-CLOSED SETS AND THEIR BASIC PROPERTIES

In this section we introduce and study  $*g\alpha$ -closed sets.

**Definition 3.1:** A subset A of a space X is called a  $\alpha$  semi-open set if there is a  $\alpha$ -open U such that  $U \subseteq A \subseteq cl(U)$ .

**Definition 3.2:** A subset A of a space X is called a  $\hat{g}\alpha$ -closed set if  $cl(A) \subseteq U$  whenever  $A \subseteq U$  and U is  $\alpha$  semi-open in X.

**Definition 3.3:** A subset A of a space X is called a  $*g\alpha$ -closed set if  $cl(A) \subseteq U$  whenever  $A \subseteq U$  and U is $\hat{g}\alpha$ -open in X.

## The interrelations among the setintroduced and other related sets are exhibited below:



The converse of the above interrelations need not be true as seen from the following examples.

**Example 3.1:** Let  $X = \{a, b, c, d\}$  and  $T = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$ . Then

- (i) The set  $A = \{a, d\}$  is\*g $\alpha$ -closed but not closed in X.
- (ii) The set  $A = \{a, d\}$  is  $*g\alpha$ -closed but not  $\pi$ -closed in X.
- (iii) The set  $A = \{a, c\}$  is  $\pi$ g-closed but not  $*g\alpha$ -closed in X.
- (iv) The set  $A = \{c\}$  is wg-closed but not  $*g\alpha$ -closed in X.
- (v) The set  $A = \{a\}$  is gs-closed but not \*g $\alpha$ -closed in X.
- (vi) The set  $A = \{b\}$  is gsp-closed but not\*g $\alpha$ -closed in X.

**Proposition 3.1:** The union of two  $*g\alpha$ -closed subsets of X is also a  $*g\alpha$ -closed subset of X.

**Proof:** Assume that A and B are  $*g\alpha$ -closed sets in X. Let  $A \cup B \subseteq U$  and U be  $\hat{g}\alpha$ -open in X. Then  $A \subseteq U$  and  $B \subseteq U$  and U is  $\hat{g}\alpha$ -open in X. Since A and B are  $*g\alpha$ -closed sets in X,  $cl(A) \subseteq U$  and  $cl(B) \subseteq U$ . Hence,  $cl(A \cup B) = cl(A) \cup cl(B) \subseteq U$ . Therefore,  $A \cup B$  is a  $*g\alpha$ -closed set in X.

**Proposition 3.2:** The intersection of two  $*g\alpha$ -closed subsets of X is also a  $*g\alpha$ -closed subset of X.

**Proposition 3.3:** Let A be a  $\ast g\alpha$ -closed set in X. Then cl(A)\A does not contain any non-empty  $\hat{g}\alpha$ -closed set in X.

**Proof:** Let U be a non-empty  $\hat{g}\alpha$ -closed subset of  $cl(A)\setminus A$ . Now  $A \subseteq X\setminus U$  and  $X\setminus U$  is  $\hat{g}\alpha$ -open in X. Since A is  $*g\alpha$ -closed,  $cl(A) \subseteq X\setminus U$ . Then  $U \subseteq X\setminus cl(A)$ . This is a contradiction since by assumption,  $U \subseteq cl(A)$ .

**Proposition 3.4:** Let A be a \*g $\alpha$ -closed set in X. Then A is closed iffcl(A)\A is $\hat{g}\alpha$ -closed.

**Proposition 3.5:** For every point x of a space X,  $X \setminus \{x\}$  is  $*g\alpha$ -closed (or)  $\hat{g}\alpha$ -open.

**Proposition 3.6:** Let A be a \*g $\alpha$ -closed subset of (X, T) such that A  $\subseteq$  B  $\subseteq$ cl(A). Then B is also a \*g $\alpha$ -closed subset of (X, T).

**Proof:** Let  $B \subseteq U$  and U be  $\hat{g}\alpha$ -open in (X, T). Since  $A \subseteq B$ ,  $A \subseteq U$  and U is a  $\hat{g}\alpha$ -open set in (X, T). Since A is \* $g\alpha$ -closed,  $cl(A) \subseteq U$ . Then  $cl(B) \subseteq cl(cl(A)) = cl(A) \subseteq U$ . Therefore,  $cl(B) \subseteq U$ . Hence, B is \* $g\alpha$ -closed.

The converse of the above Proposition need not be true as seen from the following Example.

**Example 3.2:** Let  $X = \{a, b, c, d\}$  and  $T = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$ . Let  $A = \{c, d\}$  and  $B = \{a, c, d\}$ . Then A and B are  $*g\alpha$ -closed sets in (X, T). But  $A = \{c, d\} \subseteq B = \{a, c, d\} \nsubseteq cl(A) = \{c, d\}$ .

**Proposition 3.7:** If a subset A of a topological space X is both  $\hat{g}\alpha$ -open and  $*g\alpha$ -closed. Then A is a closed set.

**Proposition 3.8:** Let A be  $\hat{g}\alpha$ -open and  $*g\alpha$ -closed in X. Suppose that F is closed in X. Then A  $\cap$  F is a  $*g\alpha$ -closed set in X.

**Proof:** Let A be a  $\hat{g}\alpha$ -open and  $*g\alpha$ -closed set in X and let F be a closed set in X. By Proposition 3.7, A is closed and so A  $\cap$  F is closed. Since every closed set is  $*g\alpha$ -closed, A  $\cap$  F is a  $*g\alpha$ -closed set in X. Hence, A  $\cap$  F is a  $*g\alpha$ -closed set in X.

**Remark 3.1:** If a subset A of a topological space X is

- (i) open and g-closed, then A is  $*g\alpha$ -closed.
- (ii)  $\pi$ -open and  $\pi$ g-closed, then A is \*g $\alpha$ -closed.
- (iii) semi-open and  $\hat{g}$ -closed, then A is \*g $\alpha$ -closed.
- (iv)  $\alpha$ semi-open and  $\hat{g}\alpha$ -closed, then A is \*g $\alpha$ -closed.
- (v) open and wg-closed, then A is  $*g\alpha$ -closed.

**Definition 3.4:** A space X is called a  $T_{*g\alpha}$ -space if every  $*g\alpha$ -closed set in it is closed.

**Proposition 3.9:** Every  $T_{1/2}$ -space is  $T_{\ast g\alpha}$ -space.

#### 4\*gα-CONTINUOUS MAPS

In this section we introduce and study  $*g\alpha$ -continuous maps.

**Definition 4.1:** For a subset A of a space X,  $*g\alpha$ -cl(A) =  $\bigcap \{F : A \subseteq F, F \text{ is } *g\alpha$ -closed in X} is called the  $*g\alpha$ -closure of A.

**Definition 4.2:** Let (X, T) be a topological space and  $T_{*g\alpha} = \{V \subseteq X : *g\alpha - cl(X \setminus V) = X \setminus V\}.$ 

**Definition 4.3:** A map  $f : (X, T) \rightarrow (Y, S)$  is called  $*g\alpha$ -continuous if  $f^{-1}(V)$  is  $*g\alpha$ -closedsetin X for every closed subset V of Y.

Remark 4.1: Let A and B be subsets of (X, T). Then

- 1)  $*g\alpha$ -cl( $\phi$ ) =  $\phi$  and  $*g\alpha$ -cl(X) = X.
- 2) If  $A \subseteq B$ , then  $*g\alpha$ -cl (A)  $\subseteq *g\alpha$ -cl (B).
- 3)  $A \subseteq *g\alpha$ -cl(A).
- 4) If A is  $*g\alpha$ -closed, then  $*g\alpha$ -cl(A) = A.

**Proposition 4.1:** Suppose  $T_{*g\alpha}$  is a topology. If A is  $*g\alpha$ -closed in (X, T), then A is closed in (X,  $T_{*g\alpha}$ ).

**Proposition 4.2:** A set  $A \subseteq X$  is  $*g\alpha$ -open iff  $F \subseteq int(A)$  whenever  $F \subseteq A$  and F is  $\hat{g}\alpha$ -closed.

**Proof:** Let A be a \*g $\alpha$ -open set in X. Let  $F \subseteq A$  and F be  $\hat{g}\alpha$ -closed. Now X\A  $\subseteq$  X\F and X\F is  $\hat{g}\alpha$ -open. Since X\A is \*g $\alpha$ -closed, cl(X\A)  $\subseteq$  X\F. Therefore, X\int(A)  $\subseteq$  X\F. Hence,  $F \subseteq int(A)$ .

Suppose  $F \subseteq int(A)$  whenever  $F \subseteq A$  and F is  $\hat{g}\alpha$ -closed. Let  $X \setminus F \subseteq U$  where U is  $\hat{g}\alpha$ -open. Then  $X \setminus U \subseteq F \subseteq A$ , where  $X \setminus U$  is  $\hat{g}\alpha$ -closed. By hypothesis,  $X \setminus U \subseteq int(A)$ . This implies  $X \setminus int(A) \subseteq U$  and so  $cl(X \setminus A) \subseteq U$ , which implies  $X \setminus A$  is \*g $\alpha$ -closed. Therefore, A is \*g $\alpha$ -open.

**Proposition 4.3:** Let X be a space in which every singleton set is  $\hat{g}\alpha$ -closed. Then f: (X, T)  $\rightarrow$  (Y, S) is  $*g\alpha$ -continuous iff  $x \in int(f^{-1}(V))$  for every open subset V of Y which contains f(x).

**Proof:** Suppose  $f : (X, T) \rightarrow (Y, S)$  is \*g\$\alpha\$-continuous. Fix  $x \in X$  and an open set V in Y such that  $f(x) \in V$ . Then  $f^{-1}(V)$  is \*g\$\alpha\$-open. Since  $x \in f^{-1}(V)$  and {x} is  $\hat{g}$ \$\alpha\$-closed,  $x \in int(f^{-1}(V))$  by Proposition 4.2.

Suppose  $x \in int(f^{-1}(V))$  for every open subset V of Y which contains f(x). Let V be an open set in Y. Suppose  $F \subseteq f^{-1}(V)$  and F is  $\hat{g}\alpha$ -closed. Let  $x \in F$ . Then  $f(x) \in V$  so that  $x \in int(f^{-1}(V))$ . This implies  $F \subseteq int(f^{-1}(V))$ . By Proposition 4.2,  $f^{-1}(V)$  is \*g $\alpha$ -open. Hence, f is \*g $\alpha$ -continuous.

**Proposition 4.4:** Let  $f : (X, T) \rightarrow (Y, S)$  be a map. Let (X, T) and (Y, S) be any two spaces such that  $T_{*g\alpha}$  is a topology on X. Then the following statements are equivalent:

- (i) For every subset A of X,  $f(*g\alpha-cl(A)) \subseteq cl(f(A))$ .
- (ii)  $f: (X, T_{*g\alpha}) \rightarrow (Y, S)$  is continuous.

#### **Proof:**

(i)⇒(ii): Suppose (i) holds. Let A be a closed set in Y. By (i),  $f(*g\alpha-cl(f^{-1}(A))) \subseteq cl(f(f^{-1}(A))) \subseteq cl(A) = A$  and so\* $g\alpha$ - $cl(f^{-1}(A)) \subseteq f^{-1}(A)$ . Also  $f^{-1}(A) \subseteq *g\alpha-cl(f^{-1}(A))$ . Hence,  $*g\alpha-cl(f^{-1}(A)) = f^{-1}(A)$ . This implies  $(f^{-1}(A))^c \in T_{*g\alpha}$ . Thus,  $f^{-1}(A)$  is closed in (X,  $T_{*g\alpha}$ ). Hence, f is continuous.

(ii) $\Rightarrow$ (i): Suppose (ii) holds. Let A be a subset of X. Then cl(f(A)) is closed in Y. Since f: (X,  $T_{*g\alpha}$ )  $\rightarrow$  (Y, S) is continuous,  $f^{-1}(cl(f(A)))$  is closed in (X,  $T_{*g\alpha}$ ). By Definition 4.2,\* $g\alpha$ -cl( $f^{-1}(cl(f(A))$ )) =  $f^{-1}(cl(f(A))$ ). Now  $A \subseteq f^{-1}(f(A)) \subseteq f^{-1}(cl(f(A)))$ , which implies \* $g\alpha$ -cl(A)  $\subseteq$ \* $g\alpha$ -cl( $f^{-1}(cl(f(A)))$ ) =  $f^{-1}(cl(f(A)))$ . Therefore,  $f(*g\alpha$ -cl(A))  $\subseteq$  cl(f(A)).

**Proposition 4.5:** The composition of two  $*g\alpha$ -continuous maps need not be  $a*g\alpha$ -continuous mapin general as seen from the following Example.

**Example 4.1:** Let  $X = Y = Z = \{a, b, c, d\}$ ,  $T = \{\phi, X, \{c\}, \{a, b\}, \{a, b, c\}\}$ ,  $S = \{\phi, Y, \{a\}, \{b\}, \{a, b\}\}$  and  $R = \{\phi, Z, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$ . Let  $f : (X, T) \rightarrow (Y, S)$  be the identity map. Then clearly,  $f : g\alpha$ -continuous. Let  $g : (Y, S) \rightarrow (Z, R)$  be defined by g(a) = a, g(b) = b, g(c) = d and g(d) = c. Then clearly,  $g : s^*g\alpha$ -continuous. But their composition  $g \circ f : (X, T) \rightarrow (Z, R)$  is not  $*g\alpha$ -continuous, since for the closed set  $\{d\}$  in  $(Z, R), (g f)^{-1} (\{d\}) = f^{-1}(g^{-1}\{d\}) = f^{-1}(c) = \{c\}$ , which is not  $*g\alpha$ -closed in (X, T).

**Proposition 4.6:** Let (X, T), (Y, S) and (Z, R) be topological spaces such that  $S_{*g\alpha} = S$ . Let  $f : (X, T) \to (Y, S)$  and  $g : (Y, S) \to (Z, R)$  be  $*g\alpha$ -continuous. Then their composition  $gf : (X, T) \to (Z, R)$  is also  $a^*g\alpha$ -continuous.

#### The interrelations among the map introduced and other related maps are exhibited below:



**Proposition 4.7:** Let  $f : (X, T) \rightarrow (Y, S)$  be a map. Then the following are equivalent:

- (i) f is  $*g\alpha$ -continuous.
- (ii) The inverse image of each open set in (Y, S) is  $*g\alpha$ -open in (X, T).
- (iii) The inverse image of each closed set in (Y, S) is \*g $\alpha$ -closed in (X, T).

#### **Proof:**

(i) $\Rightarrow$ (ii): Suppose (i) holds. Let V be open in Y. Then Y\V is closed in Y. Since f is \*g $\alpha$ -continuous, f<sup>-1</sup>(Y\V) is \*g $\alpha$ -closed in X. But f<sup>-1</sup>(Y\V) = X\ f<sup>-1</sup>(V) which is \*g $\alpha$ -closed in X. Therefore, f<sup>-1</sup>(V) is \*g $\alpha$ -open in X. Hence, the inverse image of each open set in (Y, S) is \*g $\alpha$ -open in (X, T).

(ii) $\Rightarrow$ (iii): Suppose (ii) holds. Let V be a closed set in Y. Then Y\V is open in Y. Since the inverse image of each open set in (Y, S) is \*g $\alpha$ -open in (X, T), f<sup>-1</sup>(Y\V) is\*g $\alpha$ -open. But f<sup>-1</sup>(Y\V) = X\ f<sup>-1</sup>(V) which is \*g $\alpha$ -open. Therefore, f<sup>-1</sup>(V) is \*g $\alpha$ -closed in X. Hence, the inverse image of each closed set in (Y, S) is \*g $\alpha$ -closed in (X, T).

(iii) $\Rightarrow$ (i): Suppose (iii) holds. Let V be a closed set in Y. Since, the inverse image of each closed set in (Y, S) is\*ga-closed in (X, T), f<sup>-1</sup>(V) is \*ga-closed in X. Hence, f is\*ga-continuous.

**Proposition 4.8:** If a mapf :  $(X, T) \rightarrow (Y, S)$  is \*g $\alpha$ -continuous, then  $f(*g\alpha$ -cl(A))  $\subseteq$  cl(f(A)) for every subset A of X.

## **5. REFERENCES**

- 1. Andrijvic. D., Semi-pre open sets, Mat. Vesnik, 38(1986), 24-36.
- 2. Arya. S. P. and Nour. T., Characterizations of s-normal spaces, India J. Pure.Appl. Math., 21(8)(1990), 717-719.
- 3. Caldas. M. and Ekici. E., Slightly  $\gamma$  continuous functions, Bol. Soc, Parana Mat (3) 22 (2004) No.2, 63-74.
- 4. Cameron. D. E., Properties of s-closed spaces, Proc. Amer. Math 29(1987), 376-382.
- 5. Devi. R, Balachandran. K and Maki. K., Semi generalized homeomorphisms and generalized semi homeomorphisms in topological spaces. Indian J. Pure. Appl. Math., 26(3):271:284, 1995.
- 6. Dontchev. J., On generalizing semi-pre-open sets. Mem. Fac. Sci. Kochi Univ. ser. A Math., 16:35:48, 1995.
- 7. Dontchev. J and Noiri.T., Quasi-normal spaces and  $\pi$ g-closed sets, Acta Math.Hungar. 89(3) (2000), 211-219.
- Jafari. S, Noiri. T, Rajesh. N and Thivagar. M. L., Another generalization of closed sets, Kochi J. Math, 3, 25-38. 2008.
- 9. Levine. N., Generalized closed sets in topology, Rend. Circ. Mat. Palermo 19(1970), 89-96.
- 10. Levine. N., Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- 11. Nagaveni. N., Studies on generalizations of homeomorphisms in topological spaces, Ph.D. Thesis, Bharathiar University, Coimbatore, 1999.
- 12. Nijastad. O., Some classes of nearly open sets, Pecific J. Math. 15(1965), 961-970.
- **13.** Stone. M., Application of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. 41(1937), 374-481.
- 14. Syed Ali Fathima. S and Mariasingam. M., On #regular generalized closed sets in topological spaces. Int. J. Math. Archive, 2(11):2497:2502, 2011.
- 15. Syed Ali Fathima. S and Mariasingam. M., On #regular generalized open sets in topological spaces. Int. J. Comput. Appl., 42(7):37:41, 2012.
- 16. Syed Ali Fathima. S and Mariasingam. M., On #RG-Continuous and #RG-Irresolute functions (To be appear in Journal of Advanced Studies in Topology).
- 17. Veerakumar. M. K. R. S., ĝ-closed sets in topological spaces. Bull Allahabad.Soc.18, 99-112. 2003.
- 18. Zaitsav V., On certain classes of topological spaces and their bicompactifications. Dokl.Akad.Nauk SSSR 178 (1968), 778-779.

Source of support: National Conference on "New Trends in Mathematical Modelling" (NTMM - 2018), Organized by Sri Sarada College for Women, Salem, Tamil Nadu, India.