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ABSTRACT 
In this paper, the concept of  neutrosophic nowhere dense set is introduced and characterizations of neutrosophic 
nowhere dense sets are studied.  
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1. INTRODUCTION AND PRELIMINARIES 
 
The fuzzy concept has imposed a great influence in almost all branches of mathematics since the introduction of fuzzy 
sets by L. A. Zadeh [14]. The theory of fuzzy topological space was introduced and developed by C. L. Chang [6] and 
since then various notions in classical topology have been extended into the context of fuzzy topological space. The idea 
of "intuitionistic fuzzy set" was first published by Atanassov [1] and some research in this respect have been done by him 
and his colleagues [2, 3, 4]. Later, this concept was generalized to "intuitionistic L - fuzzy sets" by Atanassov and Stoeva 
[5]. The concept of nowhere dense set in intuitionistic fuzzy topological space introduced by S. S. Thakur and          
R. Dhavaseelan in [13]. F. Smarandache introduced the important and useful concepts of neutrosophy and neutrosophic 
set [[11], [12]]. The concepts of neutrosophic crisp set and neutrosophic crisp topological space were introduced by A. A. 
Salama and S. A. Alblowi [10]. The Basic definitions and Proposition related to neutrosophic topological spaces was 
introduced and discussed by Dhavaseelan et al. [8].  
 
In this paper, we introduce the concept of neutrosophic nowhere dense set and study its fundamental properties. Her we 
mention some well-known notions which will be used in what follows.  
 
Definition 1.1: Let T,I,F be real standard or non standard subsets of [,1]0 +− , with   infTsupT tinftsup =,=  

infIsupI iinfisup =,=  infFsupF finffsup =,=  supsupsup fitsupn ++− =   

infinfinf fitinfn ++− =  . T,I,F are  neutrosophic components.  
 
Definition 1.2: Let X be a nonempty fixed set. A neutrosophic set (briefly NS) A is an object having the form 

}:)(),(),(,{= XxxxxxA
AAA

∈〉〈 γσµ  where )(),( xx
AA

σµ  and )(x
A

γ  which represents the degree of 

membership function (namely )(x
A

µ ), the degree of indeterminacy (namely )(x
A

σ ) and the degree of 

nonmembership (namely )(x
A

γ ) respectively of each element Xx∈  to the set A.  
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Remark 1.1:    

• A  neutrosophic set }:)(),(),(,{= XxxxxxA
AAA

∈〉〈 γσµ  can be identified to an ordered triple    

 〉〈
AAA

γσµ ,,  in [,1]0 +−  on X.  

• For the sake of simplicity, we shall use the symbol 〉〈
AAA

A γσµ ,,=  for the  neutrosophic set       

}:)(),(),(,{= XxxxxxA
AAA

∈〉〈 γσµ .  

 
Definition 1.3: Let X  be a nonempty set and the  neutrosophic sets A and B in the form  

}:)(),(),(,{= XxxxxxA
AAA

∈〉〈 γσµ , }:)(),(),(,{= XxxxxxB
BBB

∈〉〈 γσµ . Then   

• BA⊆  iff )()( xx
BA

µµ ≤ , )()( xx
BA

σσ ≤  and )()( xx
BA

γγ ≥  for all Xx∈ ;  

• BA =  iff BA⊆  and AB ⊆ ;  

• }:)(),(),(,{= XxxxxxA
AAA

∈〉〈 µσγ ; [Complement of A]  

• }:)()(),()(),()(,{= XxxxxxxxxBA
BABABA

∈〉∨∧∧〈∩ γγσσµµ ;  

• }:)()(),()(),()(,{= XxxxxxxxxBA
BABABA

∈〉∧∨∨〈∪ γγσσµµ ;  

• [ ] }:)(),1(),(,{= XxxxxxA
AAA

∈〉−〈 µσµ ;  

• }:)(),(),(,1{= XxxxxxA
AAA

∈〉−〈〈〉 γσγ .  

 
Definition 1.4: Let }:{ JiAi ∈  be an arbitrary family of  neutrosophic sets in X. Then   

• }:)(),(),(,{= XxxxxxA
iAiAiAi ∈〉∨∧∧〈 γσµ



; 

• }:)(),(),(,{= XxxxxxA
iAiAiAi ∈〉∧∨∨〈 γσµ



. 

Since our main purpose is to construct the tools for developing  neutrosophic topological spaces, we must introduce the  
neutrosophic sets 

N
0 and 

N
1 in X as follows:  

 
Definition 1.5: }:,0,0,1{=0 Xxx

N
∈〉〈  and }:,1,1,0{=1 Xxx

N
∈〉〈 .  

 
Definition 1.6: [8] A  neutrosophic topology (briefly NT) on a nonempty set X  is a family T  of  neutrosophic sets 
in X  satisfying the following axioms:   

• T
NN
∈,10 , 

• TGG ∈∩ 21  for any TGG ∈21, , 

• TGi ∈∪  for arbitrary family TiGi ⊆Λ∈ }|{ . 

In this case the ordered pair ),( TX  or simply X  is called a  neutrosophic topological space (briefly NTS(X)) and 

each  neutrosophic set in T  is called a  neutrosophic open set (briefly NOS). The complement A  of a NOS A  in 
X  is called a  neutrosophic closed set (briefly NCS) in X .  

 
Definition 1.7: [8] Let A  be a  neutrosophic set in a )(XNTS . Then  

|{=)( GANint


 G  is an NOS  in X and }AG ⊆  is called the  neutrosophic interior of A ; 

|{=)( GANcl


 G  is an NCS  in X and }AG ⊇  is called the  neutrosophic closure of A . 
 
Definition 1.8: Let X  be a nonempty set. If str ,,  be real standard or non standard subsets of [,1]0 +−  then the  

neutrosophic set strx ,,  is called a  neutrosophic point(briefly NP )in X  given by  





/ p

p
pstr xxif

xxifstr
xx

=(0,0,1),
=),,,(

=)(,,  
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for Xxp ∈  is called the support of strx ,, , where r  denotes the degree of membership value, t  denotes the degree of 

indeterminacy and s  is the degree of non-membership value of strx ,, .  
 
2. NEUTROSOPHIC NOWHERE DENSE SETS 

 
Definition 2.1: A  neutrosophic set A in NTS  ( )TX ,  is called  neutrosophic dense if there exists no  neutrosophic 

closed set B in ( )TX ,  such that NBA 1⊂⊂   
 
Definition 2.2: A  neutrosophic set A  in NTS  ( )TX ,  is called  neutrosophic nowhere dense set if there exists no 

NOS , U  in ( )TX ,  such that )(ANclU ⊂ . That is NANintNcl 0=)( .  
 
Example 2.1: Let },,{= cbaX . Define the  neutrosophic sets BA,  and C  as follows: 

 〉〈 )
0.5

,
0.3

,
0.3

(),
0.5

,
0.6

,
0.6

(),
0.5

,
0.6

,
0.6

(,= cbacbacbaxA 〉〈 )
0.3

,
0.3

,
0.3

(),
0.6

,
0.6

,
0.6

(),
0.6

,
0.6

,
0.6

(,= cbacbacbaxB  , and  

〉〈 )
0.4

,
0.7

,
0.7

)(
0.4

,
0.3

,
0.3

(),
0.4

,
0.3

,
0.3

(,= cbacbacbaxC . Then the family },,1{0= AT NN  is an NT  

on X. Thus, ( )TX ,  is an Neutrosophic Topology .  

Now .01=)(,01=)(,0=)(,0=)(,0=)( NNNNNNN CNintNclBNintNclCNintNclBNintNclANintNcl ≠≠  and BA,  and C  

are  neutrosophic nowhere dense sets in ( ).,TX  B  and C  are not  neutrosophic nowhere dense set in ( )TX , .  
 
Proposition 2.1: Let A  be a  neutrosophic set. If A  is a  neutrosophic closed set in ( )TX ,  with NANint 0=)( , 

then A  is a  neutrosophic nowhere dense set in ( )TX , .  
 
Proof: Let A be a  neutrosophic closed set in ( )TX , . Then AANcl =)( . Now NANintANclNint 0=)(=))((  

and hence A is a  neutrosophic nowhere dense set A in ( )TX , .  
 
Proposition 2.2: Let A  be a  neutrosophic set. If A  is a  neutrosophic nowhere dense set in ( )TX , , then 

NANint 0=)( .  
 
Proof: Let A be a  neutrosophic nowhere dense set in ),( TX . Now )(ANclA⊆  implies that 

NANintNclANint 0=)()( ⊆ . Hence we have NANint 0=)( .  
 
The converse of Proposition 2.2, need not be true as shown in Example 2.2.  

  
Example 2.2: Let },,{= cbaX . Define the  neutrosophic sets  

〉〈 )
0.5

,
0.5

,
0.4

(),
0.5

,
0.4

,
0.3

(),
0.5

,
0.4

,
0.3

(,= cbacbacbaxA 〉〈 )
0.6

,
0.6

,
0.6

(),
0.4

,
0.4

,
0.3

(),
0.4

,
0.4

,
0.3

(,= cbacbacbaxB , 

〉〈 )
0.4

,
0.4

,
0.4

(),
0.5

,
0.5

,
0.5

(),
0.5

,
0.5

,
0.5

(,= cbacbacbaxC ,and 〉〈 )
0.5

,
0.5

,
0.7

(),
0.4

,
0.4

,
0.3

(),
0.4

,
0.4

,
0.3

(,= cbacbacbaxD . Clearly 

},,,,1{0= CBAT NN  is an NT  on X . Thus ( )TX ,  is an NT . Now NDNint 0=)( ,  
 
where as NBDNintNcl 0=)( ≠ . Also DCDNcl ≠=)( . Hence D  is not a  neutrosophic nowhere dense set in 

( )TX , . Also D  is not a  neutrosophic closed set in ( ).,TX   
 
Remark 2.1: The complement of a neutrosophic nowhere dense set need not be a neutrosophic nowhere dense set. See 
Example 2.3.  
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Example 2.3: Let },,{= cbaX . Define the  neutrosophic sets 

〉〈 )
0.5

,
0.4

,
0.4

(),
0.5

,
0.6

,
0.6

(),
0.5

,
0.6

,
0.6

(,= cbacbacbaxA and .)
0.5

,
0.7

,
0.6

(),
0.5

,
0.3

,
0.4

(),
0.5

,
0.3

,
0.4

(,= 〉〈
cbacbacbaxB  Clearly 

},,1{0= AT NN  is a  neutrosophic topology on X. Thus ( )TX ,  is an NT . Now B  is a  neutrosophic nowhere 

dense set in ( )TX ,  where as B  is not a  neutrosophic nowhere dense set, since 

.01=)(1=)( NNNNintBNintNcl ≠   
 
Proposition 2.3: If A is a  neutrosophic dense, NOS  in ( )TX , , such that AB ⊆ , then B is a  neutrosophic 

nowhere dense set in ( ).,TX   
 
Proof: Let A be a  neutrosophic open set in ),( TX  such that NANcl 1=)( . Now AB ⊆  implies that 

AANclBNcl =)()( ⊆ . Then we have NANclANintBNintNcl 0=)(=)()( ⊆  and hence 

NBNintNcl 0=)( . Therefore B is a  neutrosophic nowhere dense sets in ),( TX .  
 
Proposition 2.4: If A is a  neutrosophic closed set in ( )TX , , then A is a  neutrosophic nowhere dense set in ( )TX ,  

if and only if .0=)( NANint   
 
Proof: Let A be a  neutrosophic closed set in ( )TX , , with NANint 0=)( . Then by Proposition 2.1, A is a  

neutrosophic nowhere dense set in ( )TX , . Conversely, let A be a  neutrosophic nowhere dense set in ( )TX , . Then 

NANintNcl 0=)(  which implies that NANint 0=)( . Since A is a  neutrosophic closed, AANcl =)( .  
The proofs of following propositions are obvious.  
 
Definition 2.3: Let A be a  neutrosophic set. The NT , ),( TX  is called  neutrosophic open hereditarily irresolvable 

if NANintNcl 0)( ≠  , then NANint 0)( ≠  for any non-zero  neutrosophic set in ),( TX   
 
Proposition 2.5: If ( )TX ,  is a  neutrosophic open hereditarily irresolvable space, any non zero  neutrosophic set A 

with NANint 0=)(  is a  neutrosophic nowhere dense set in ( ).,TX   
 
Proof: Let A be a non zero  neutrosophic set in a  neutrosophic open hereditarily irresolvable space ),( TX  with 

NANint 0=)( . Suppose that NANintNcl 0)( ≠ . Since ),( TX  is  neutrosophic open hereditarily irresolvable 

space, NANint 0)( ≠ , which is contradiction to NANint 0=)( . Hence we must have NANintNcl 0=)(  and 

therefore A  is a  neutrosophic nowhere dense set in ),( TX .  
 
Proposition 2.6: If A is a  neutrosophic nowhere dense set in ( )TX , , then A  is a  neutrosophic dense set in 

( ).,TX   
 
Proof: Let A be a  neutrosophic nowhere dense set in ),( TX . Then by Proposition 2.2, we have, NANint 0=)( .  
 

Now NANintANcl 1=)(=)( . Therefore A  is a  neutrosophic dense set in ),( TX .  
 
Proposition 2.7: If A is an intuitionsitic fuzzy dense and  neutrosophic open set in ( )TX , , then A  is a  neutrosophic 

nowhere dense set in ( ).,TX   
 
Proof: Let A be a  neutrosophic open set in ),( TX  such that NANcl 1=)( .  

Now NANclANclNintANintNcl 0=)(=)(=)( . Hence A  is a  neutrosophic nowhere dense set in ),( TX .  
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Proposition 2.8: If A is a  neutrosophic nowhere dense set in ( )TX , , then )(ANcl  is a  neutrosophic nowhere 

dense set in ( ).,TX   
 
Proof: Let BANcl =)( . Now NANintNclANclNintNclBNintNcl 0=)(=))((=)( . Hence )(= ANclB  

is a  neutrosophic nowhere dense set in ),( TX .  
 
Proposition 2.9: If A is a  neutrosophic nowhere dense set in ( )TX , , then )(ANcl  is a  neutrosophic dense set in 

( ).,TX   
 
Proof: By Proposition 2.8, we have )(ANcl  is a  neutrosophic nowhere dense set in ),( TX . By Proposition 2.6, we 

have )(ANcl  is a  neutrosophic dense set in ),( TX .  
 
Proposition 2.10: Let A be a  neutrosophic dense set in a  neutrosophic topological space ( )TX , . If B is a  

neutrosophic set in ( )TX , , then B  is a  neutrosophic nowhere dense set in ( )TX ,  if and only if BA∩  is a  

neutrosophic nowhere dense set in ( ).,TX   
 
Proof: Let B be a  neutrosophic nowhere dense set in ( )TX , .  
Now 

.0=)(=))(()(1=))(())((=)( NN BNintNclBNclNintNintBNclNintANclNintBANintNcl ∩∩∩  

Therefore BA∩  is a  neutrosophic nowhere dense set in ( )TX , .  
 
Conversely, let BA∩  be a  neutrosophic dense set in ( )TX , . Then NBANintNcl 0=)( ∩  implies that 

.0=))(())(( NBNclNintANclNint ∩  Hence NN BNclNintNint 0=))(()(1 ∩  and therefore 

NBNclNint 0=))((  which means that B is a  neutrosophic nowhere dense set in ( )TX , .  
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