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ABSTRACT 
In this paper, we introduce flexible fuzzy soft M-group structures by using Molodtsov’s definition of soft sets and 
investigate their related properties with respect to α-inclusion of soft sets. 
 
Keywords: Soft set, flexible fuzzy soft set, flexible soft M-group ,flexible fuzzy soft M-group structure ,α-inclusion, pre-
image and inverse image. 
 
 
SECTION-1: INTRODUCTION 
 
Soft set theory was introduced by Molodtsov [26] for modeling vagueness and uncertainty and it has been received 
much attentionin the field of set theory. Maji et.al [23, 24] explains the applications of soft sets in decision making 
problems. Ali et.al [2] defined some new operations in soft set theory and Sezgin and Atagun [31] introduced and 
studied operations of soft sets. Soft set theory has also potential applications especially in decision making as in [31]. 
This theory has started to progress in the mean of algebraic structures, since Aktas and Cagman [3] defined and studied 
soft groups. Since then, soft substructures of rings, fields and modules [4], union soft substructures of near-rings and 
near-ring modules [32], normalistic soft groups [25] are defined and studied in detailed. The theory of G-modules 
originated in the 20th century. Representation theory was developed on the basis of embedding a group G in to a linear 
group GL(V).In 1999,  Molodtsov’s [26] proposed an approach for Modeling, Vagueness and uncertainty, called soft 
set theory, since its inception, works on soft set theory have been progressing rapidly with a wide range applications 
especially in the mean of algebraic structures as in [2-12].  The structures of soft sets , operations of soft sets  and some 
related concepts have been studied by [14-19]. The theory of soft set continues to experience tremendous growth and 
diversification in the mean of soft decision making as in the following studies [20-23] as well. Atagun and Sezgin  
defined soft N-subgroups and soft N-ideals of an N-group, they studied their properties with respect to soft set 
operators in more detail. In this paper, we introduce flexible fuzzy soft M-Group by using Molodtsov’s definition of 
soft sets and investigate their related properties with respect to  α-inclusion of soft sets. 
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SECTION-2: PRELIMINARIES  
 
Definition 2.1: Let (Γ,+) be a group and μ: M x Γ→Γ(m,ν)→ mν, (Γ,μ) is called an M-group if x, y∈ M and ∀ν∈Γ, 

(i) x(y ν )=(xy) ν  and 
(ii) (x+y) ν = x ν + y ν . It is denoted by NΓ. 

Clearly M itself is an M-group by natural operation.  A subgroup H of Γwith MH⊆ H is said to be an M-
subgroup of Γ. Let Γand ψ be two M- groups. Then f:Γ→ψ is called an M-homomorphism if ∀ν, H ∈Γ,       
∀  m∈M 
(i) f( ν +H) =  f(ν)+f(H) and 
(ii) f(mν) = mf(ν) 

 
For all undefined concepts and notations, we refer to [27]. From now on U refers to initial universe, E is a set of 
parameters, 2U is the power set of U and A, B, C ⊆ E 
 
Definition 2.2: Let U be any Universal set, E set of parameters and A⊆  E. Then a pair ( Ѡ, A) is called soft set over U, 
where Ѡ is a mapping from A to 2U , the power set of U. 
 
Example 2.3:  Let X={c1,c2,c3} be the set of three cars and E={costly(e1), metallic colour(e2), cheap(e3)}be the set of 
parameters, where A={e1,e2} ⊂ E. Then (Ѡ,A) ={Ѡ(e1) ={c1,c2,c3},Ѡ(e2) = {c1,c2} } is the crisp soft set over X. 
 
Definition 2.4 [Moltdosov]: Let U be an initial universe. Let P (U) be the power set of U, E be the set of all parameters 
and A⊆ E. A soft set (𝑓𝐴, E) on the universe U is defined by the set of order pairs (𝑓𝐴, E) = {(e, 𝑓𝐴 (e)): e∈ E, 𝑓𝐴∈ P 
(U)} where 𝑓𝐴 : E → P (U) such that 𝑓𝐴 (e) = 𝜙 if    e ∉A. Here𝑓𝐴 is called an approximate function of the soft set. 
  
Example 2.5: Let U = {𝑢1, 𝑢2, 𝑢3, 𝑢4} be a set of four shirts and E = {white(𝑒1),red(𝑒2), blue (𝑒3)} be a set of 
parameters. If A = {𝑒1 ,𝑒2} ⊆ E.  Let 𝑓𝐴(𝑒1) = {𝑢1, 𝑢2 ,𝑢3, 𝑢4} and 𝑓𝐴(𝑒2)= {𝑢1,𝑢2,𝑢3}.  Then we write the soft set       
(𝑓𝐴 , E)= {(𝑒1, {𝑢1, 𝑢2 ,𝑢3, 𝑢4}), (𝑒2,{ 𝑢1,𝑢2,𝑢3})} over U which describe the “colour of the shirts” which Mr. X is 
going to buy. We may represent the soft set in the following form: 
 

U 𝑒1 𝑒2 𝑒3 
𝑢1 1 1 0 
𝑢2 1 1 0 
𝑢3 1 1 0 
𝑢4 1 0 0 

 

 
Definition 2.6: Let U be the universal set, E set of parameters and A⊂ E. Let Ѡ(X) denote the set of all fuzzy subsets 
of  U. Then a pair ( Ѡ,A) is called fuzzy soft set over U, where Ѡ is a mapping from A to Ѡ(U). 
 
Example 2.7: Let U={c1,c2,c3} be the set of three cars and E={costly(e1),metallic colour (e2), cheap(e3)} be the set of 
parameters, where A={e1,e2} ⊂ E. Then (Ѡ,A) = {Ѡ(e1) ={c1/0.6,c2/0.4,c3/0.3}, Ѡ(e2) = {c1/0.5,c2/0.7,c3/0.8}} is the 
fuzzy soft set over U denoted by FA. 
 
Definition 2.8: Let ѠA be a fuzzy soft set over U and  α be a subset of U. Then upper α - inclusion of ѠA denoted by 
Ѡα

A = {x∈A /Ѡ(x) ≥ α }.  
 
Similarly Ѡα

A = {x∈ A / Ѡ(x) ≤ α } is called lower α-inclusion of ѠA. 
 
Definition 2.9:  Let ѠA and GB be fuzzy soft sets over the common universe U and ψ: A → B be a function. Then  
fuzzy soft image of ѠA under ψ over U denoted by ψ(ѠA) is a set-valued function, where ψ(ѠA): B→ 2U defined by 
ψ(ѠA) (b)={∪{Ѡ(a) / a∈A and ψ (a)=b} , if ψ-1(b)≠ φ} for all b∈B, the soft pre-image of GB  under ψ over U denoted 
by ψ-1(GB) is a set-valued function, where ψ-1(GB) : A →  2U  defined by ψ-1(GB)(b) = G(ψ(a)) for all a ∈ A. Then fuzzy 
soft anti-image of ѠA under ψ over U denoted by ψ(ѠA is a set-valued function, where ψ(ѠA):B → 2U defined by   
ψ-1(ѠA)(b)={∩{Ѡ(a) / a∈A and ψ (a)=b}, if ψ-1(b) ≠ φ }for all b ∈B. 
 
Definition 2.10[Subbiah et.al]: Let X be a set. Then a mapping μ: X→ M*([0, 1]) is called flexible subset of X, where 
M*([0, 1]) denotes the set of all non empty subset of [0, 1] 
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Definition 2.11 [Subbiah et.al]: Let X be a non empty set .Let μ and λ be two flexible fuzzy subsets of X. Then the 
intersection of μ and λ denoted by μ∩λ and defined by μ∩λ={min{a, b}/ a∈μ(x),b∈λ(x)} for all x∈X. The union of μ 
and λ and denoted by μ∪λ and defined by μ∪λ={max{a,b}/ a∈μ(x),b∈λ(x)} for all x∈X. 
 
Definition 2.12 [Naim Cagman]: Let U be an initial universe, E be the set of all parameters and A⊆ E. A pair (F, A) is 
called a flexible fuzzy soft set over U where F: A → P (̃U) is a mapping from A into 𝑃�(U), where 𝑃�(U) denotes the 
collection of all subsets of U. 
 
Example 2.13: Consider the  example 2.5, here we cannot express with only two real numbers 0 and 1, we can 
characterized it by a membership function instead of crisp numbers 0 and 1, which associate with each element a real 
number in the interval [0,1].Then 

(𝑓𝐴, E) = {𝑓𝐴(𝑒1) = {(𝑢1, 0.7), (𝑢2, 0.5), (𝑢3, 0.4), (𝑢4, 0.2)}, 
𝑓𝐴 (𝑒2) = {(𝑢1, 0.5), (𝑢2, 0.1), (𝑢3, 0.5)}}  

is the fuzzy soft set representing the “colour of the shirts” which Mr. X is going to buy.   
 
Definition 2.14: Let H be an M-subgroup of  Γ and Ѡ be a flexible fuzzy soft over Γ. If for all x, y∈ H and m∈M, 

(i) max{Ѡ(x-y), } ≤  min {Ѡ(x) ∪ Ѡ(y), θ} and 
(ii) max{Ѡ(mx), } ≤ min {Ѡ(x), θ},  then the flexible fuzzy soft set Ѡ  is called a threshold flexible fuzzy soft 

M-subgroup of Γ and denoted by Ѡ<MΓ 
 
Example 2.15: Consider M={0,1,2,3} be a group with operation +  
 

+ 0 1 2 3 
0 0 1 2 3 
1 1 2 3 0 
2 2 3 0 1 
3 3 0 1 2 

If we define a flexible fuzzy soft set G over Γ by  
G(x) ={y ∈Γ/ 3x=y} for all x ∈ H. 

Then G(0)={0} and G(2)={2} since G(2-2)=G(0) ≠ G(2),G is not a threshold flexible fuzzy soft M-subgroup of Γ. 
 
Definition 2.16: The relative complement of the flexible fuzzy soft set ѠA over U is denoted by Ѡr

A where Ѡr
A 

:A→2U is a mapping given as Ѡr
A(x) = U/ѠA(x),for all x ∈A. 

 
SECTION-3: Characterization’s of threshold flexible fuzzy soft M-group structures 
 
In this section, we characterize the flexible fuzzy soft set through M-group structures. 
 
Proposition 3.1: Let ѠA be a flexible fuzzy soft set over Γ and α be a subset of Γ. If ѠA is a flexible fuzzy soft         
M-subset of Γ, then upper α- inclusion of ѠA is an M-subgroup of Γ. 
 
Proof: Since ѠA is flexible fuzzy soft M-subgroup of Γ. Assume x ,y∈ѠA

α and m∈M, then Ѡ(x)≥α and Ѡ(y) ≥α. 
We need to show that x-y∈ѠA

αand m∈ѠA
α.Since ѠA is flexible fuzzy soft M-subgroup of Γ, it follows that         

max{Ѡ(x-y), } ≤ min{(Ѡ(x),Ѡ(y)), θ }= min{(α,α), θ}≥α and max{Ѡ(mx), }≤ min {α, θ} = α which completes 
the proof. 
 
Proposition 3.2: Let ѠA be a flexible fuzzy soft set over Γ. Then ѠA is a threshold flexible fuzzy soft M-subgroup of  
Γ if ѠA 

r is threshold flexible anti fuzzy soft M-subgroup of Γ. 
 
Proof: Let ѠA be a threshold flexible fuzzy soft M-subgroup of Γ.Then for all x, y ∈ A and m∈M.  

max{ѠA 
r(x-y), } = Γ /  max {ѠA(x-y), } 

 ≥ Γ/ min {ѠA(x),ѠA(y), θ} 
 = min{Γ / ѠA (x),  Γ/ ѠA(y), θ} 
 = min{ѠA 

r (x), ѠA 
r(y), θ} 

 
max{ѠA 

r(mx), } = Γ / max{ѠA(mx), } 
                                ≥ Γ / min {ѠA(x), θ} 
 
max{ѠA 

r(mx), }= min {ѠA 
r(x), θ}. 

 
Hence ѠA 

r is threshold flexible anti fuzzy soft M-subgroup of Γ. 
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Proposition 3.3: Let ѠA: X→X1 be a soft homomorphism of M-subgroups. If ѠA is threshold flexible fuzzy soft     
M-subgroup of X, then ѠA is threshold flexible fuzzy soft M-subgroup of X1. 
 
Proof: Suppose ѠA is threshold flexible fuzzy soft M-subgroup of X1, then  

(i) Let x1, y1∈X1, then exists x , y ∈X such that  
f(x) = x1 and f(y)=y1, we have 
max{ѠA(x1-y1), }= min{ѠA(f(x)-f(y)), θ} 
                                ≤ min{ѠA(f(x)),ѠA(f(y)), θ} 
max{ѠA(x1-y1), } =  min{ѠA

1 (x),ѠA
1(y), θ} 

 
(ii) max{ѠA (mx1),}= min{ѠA(mf(x)), θ} ≤ min {ѠA

f(x), θ} 
      max{ѠA(mx1), }= min{ѠA

f(x), θ}. 
      .: ѠA is threshold flexible fuzzy soft M-subgroupX . 

 
Proposition 3.4: Let ѠA be threshold flexible soft M-sub group of X and ѠA

α be a flexible fuzzy soft set in X given 
by ѠA

α(x)=ѠA(x)+1-Ѡ(1) for all x ∈X. Then ѠA
α is threshold flexible fuzzy soft M-subgroup of X and               

ѠA ⊆ѠA
α. 

 
Proof: Since ѠA is threshold flexible fuzzy soft M-subgroup of X and ѠA

α(x)=ѠA(x)+1- ѠA(1) for x ∈X. For any              
x, y ∈ X, we have ѠA(1)=ѠA(1)+1-ѠA(1)=1>ѠA

α(x) and for all x ,y ∈ X, we have 
max{ѠA

α (x-y), } = max{ѠA(x-y)+1-ѠA(1), } 
≤ min{(ѠA(x),ѠA(y))+1-ѠA(1), θ} 
= min{ѠA(x)+1-ѠA(1),ѠA(y)+1-ѠA(1),θ} 
= min{ѠA

α(x),ѠA
α(y), θ} 

 
max{ѠA

α(mx), } = max{ѠA(mx)+1-ѠA(1), } 
= min{ѠA(x)+1-ѠA(1), θ} 
= min{ѠA

α(x), θ} 
Hence ѠA

α is threshold flexible fuzzy soft M-subgroup of  X and ѠA ⊆ѠA
α. 

 
Proposition 3.5: Let ѠA and GB two flexible fuzzy soft sets over Γ, where A and B are M- groups of Γ and ø: A → B 
is an  M-homomorphism. If ѠA is threshold flexible fuzzy soft M- subgroup of Γ, then so is ø (ѠA). 
 
Proof: Let α1, α2∈ B such ø is surjective, there exists a1,a2∈A such that ø(a1)=α1 and ø(a2)=α2.Thus 

 max{ (ø ѠA)(α1 - α2),  } = max{Ѡ(a)/A ∈A, ø(A)=α1- α2, } 
= max{Ѡ(a)/A∈A,A=ø-1(α1 - α2), } 
= max{Ѡ(a)/A∈A,A=ø-1(ø(a1- a2))= A1 - A2, } 
= max{Ѡ(a1 - a2)/α1,α2∈B, ø(ai)= αi ,i =1,2, } 
= min{max{Ѡ(a1)/α1∈B,ø(a1) = α1,θ}, max{Ѡ(a2)/α2∈B,ø(a2)=α2, θ}} 
= min{ø(ѠA)(α1),ø(ѠA)( α2), θ} 

 
Now let m∈M and α∈ B. Since ø surjective, then exists Ā∈A such that ø(Ā)=0. We have  

 max {ø(ѠA)(mα), } = max{Ѡ(A)/A∈A, ø (A)=mα, } 
= max{Ѡ(A)/A∈A,A=ø-1(mα), } 
= max{Ѡ(A)/A∈A,A=ø-1(mø(Ā)), } 
= max{Ѡ(A)/A∈A,A=ø-1(ø(mA))=mĀ, } 
= max{Ѡ(mĀ)/Ā∈A ,ø(Ā)=α, } 
= min{Ѡ(Ā)/Ā∈A ,ø(Ā)=α, θ} 
= min{ø(ѠA)(α), θ }. Hence 

Hence Ø(ѠA) is threshold flexible fuzzy soft M-subgroup of  Γ. 
 
Proposition 3.6: Let ѠA:X→Y be a soft homomorphism of M-subgroups. If ѠA is threshold flexible fuzzy soft        
M-subgroup of Y, then ѠA

f is threshold flexible fuzzy soft M-subgroup of X. 
 
Proof: Suppose ѠA is threshold flexible fuzzy soft M-subgroup of Y, then 

i) For all x ,y ∈ X ,we have 
max {ѠA (x- y),  } = max{ѠA(f(x- y), } 
                                  = max{ѠA (f(x)-f(y), }  
                                  = min{ѠA(f(x)),ѠA(f(y)), θ} 
                                  = min{ѠA

f(x),ѠA
f(y), θ} 
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ii) max {ѠA

f(mx), } = max{ѠA (f(mx)), }≤min {ѠA (f(x)), θ}  
                                    = min{ѠA

f(x), θ}.                                                                                       
 
Therefore ѠA

f is threshold flexible fuzzy soft M- subgroup of X. 
 
Proposition 3.7: Let ѠA and GB be flexible fuzzy soft sets over Γ, where A and B are M-subgroups of Γ. Let Ø be on 
M-homomorphism from A to B. If GB is a threshold flexible fuzzy soft M-subgroup of Γ, then  so is Ø-1(GB). 
 
Proof: Let a1, a2∈A. Then 

max{(Ø-1(GB)) (a1-a2), }= max{G(Ø(a1-a2)), } 
 ≥ min{G(Ø (a1), Ø (a2), θ} 
 = min{(Ø-1(GB)(a1),Ø-1(GB)(a2), θ} 

 
Now let m∈M and A∈A, then 

max{(Ø-1(GB)) (mA), } = max{G(Ø(mA)), } 
= min{G(mØ(A)), θ} 
= min{G(Ø(A)), θ} 
= min{(Ø-1(GB))(A), θ}. 

 
Hence Ø-1(GB) is a flexible fuzzy soft M-subgroup of Γ. 
 
CONCLUSION 
 
This paper summarized the basic concepts of flexible soft sets. By using these concepts we studied the algebraic 
properties of flexible fuzzy soft M-groups. This work focused on flexible fuzzy soft pre-image, flexible fuzzy soft 
image, flexible fuzzy soft anti image. To extend this work one could study the properties of flexible fuzzy soft M-
groups in other algebraic structures such as rough set and vague set. 
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