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ABSTRACT 
In this article, we study the optimal replacement model for degenerating failure systems. We obtained optimal 
replacement model 𝑁∗ by minimizing the average cost rate 𝐶(𝑁). We show that uniqueness of the optimal replacement 
model 𝑁∗.  
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1. INTRODUCTION 
 
A critical machine or facility failure may interrupt the production of a manufacturing firm. Such an interruption will 
have negative impacts on a firm’s performance such as the revenue and customer service. To minimize the negative 
effects of machine failures, practitioners are interested in finding the appropriate machine maintenance and replacement 
models. Usually, a machine, also called a system, experience two stages consecutively before its replacement an 
operating stage (productive) and a repair stage (non-productive). We model both stages and consider a threshold 
replacement model for the system subject to random shocks. 
 
There are extensive studies on the maintenance problems for the system with operating and repair stages. This is mainly 
because that some classical assumptions are not realistic in modeling the real systems. Barlow and Proschan (1983) 
introduced an imperfect repair model, where the repair is prefect with probability 𝑝 and minimal with probability   
1 − 𝑝. Other studies along this line include Block et al. (1985), Kijima (1989), Makis and Jardine (1992), Dekker 
(1996), Moustafa et al.  (2004), Sheu et al. (2006), Wang and Zhang (2009), Zhang and Wang (2011), and Yuan and     
Xu  (2011). 
 
We also consider the non-zero repair and replacement times in contrast to a classical assumption that that repairs are 
instantaneous. In most practical situations, to reflect the aging process of the system, the consecutive repair times are 
assumed to become longer and longer till the system is replaced with a new one according to some replacement rule. 
Lam (1988) first introduced the geometric processes (GP) to study the maintenance for such a deteriorating system.  
 
The rest of the paper is structured as follows: In Section 2 we give the preliminaries. Develops the average cost per unit 
time 𝐶(𝑁) and determines the optimal replacement model  𝑁∗ in Section 3. Finally conclusion is given in section 4.  
 
2. PRELIMINARIES 
  
Definition 2.1: A stochastic process { 𝜉𝑛 ,𝑛 = 1,2, … } is called a geometric increasing or decreasing process if there 
exists a real number(0 < 𝑎 ≤ 1  𝑜𝑟  𝑎 > 1 ), thus,  {𝑎𝑛−1 𝜉𝑛, 𝑛 = 1,2, … . } forms a new renewal process. The real 𝑎 is 
called the ratio of the geometric process (GP). Letting 𝐸(𝜉𝑛) = 𝜏  and 𝑉𝑎𝑟(𝜉1) = 𝜎2,  we have 𝐸(𝜉𝑛) = 𝜏

𝑎𝑛−1
  and 

𝑉𝑎𝑟(𝜉1) = 𝜎2

𝑎2(𝑛−1). Therefore, a geometric process (GP) has three parameters of  𝑎,  𝜏 and 𝜎2. 
 
Definition 2.2: Consider a continuous positive random variable 𝑋 having distribution function 𝐹 and density 𝑓. The 
failure (or hazard) rate function 𝑟(𝑡) is defined by 

𝑟(𝑡) =
𝑓(𝑡)

1 − 𝐹(𝑡)
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Definition 2.3: A stochastic process  {𝑋𝑛 ,𝑛 = 1,2, … . } is called an 𝛼-series process, if there exists a real, such that 
{𝑛𝛼𝑋𝑛,𝑛 = 1,2,3 … } forms a renewal process. The real 𝛼 is called the exponent of the process. Obviously, for an           
𝛼  -series process, if the distribution function of 𝑋1  is F, then the distribution function of 𝑋𝑛  will be 𝐹𝑛  with            
𝐹𝑛(𝑡) = 𝐹(𝑛𝛼𝑡),𝑛 = 1,2,3 …  If  𝛼 > 0 , the 𝛼-series process { X𝑛 , n = 1, 2, . . . } is stochastically decreasing; and when  
𝛼 < 0, the 𝛼 -series process is stochastically increasing; and when 𝛼 = 0, the 𝛼 -series process reduces to the renewal 
process. 

If    E(X1)  = λ  then we have the   E(Xn)  = λ
nα

 
 
Assumption 2.1: At t = 0, a new system is installed. Whenever the system fails, it is either repaired or replaced with a 
new one. 
 
Assumption 2.2: Shocks arrive according to a Poisson process with rate 𝜆1 or 𝐸𝑋𝑖 = 1

𝜆
 where 𝑋𝑖 is the 𝑖-th inter-arrival 

time of two consecutive shocks. Let 𝛿𝑖 be another exponentially distributed random variable associated with 𝑋𝑖. We 
assume that the sequence {𝛿𝑖, 𝑖 = 1,2 … . }  forms an increasing geometric process with 0 < 𝑎 ≤ 1 . Then 𝛿𝑖  has 
cumulative distribution function 𝑄(𝑎𝑖−1𝑥), where 𝑄(𝑥) is the cumulative distribution function of 𝛿𝑖. {𝑋𝑖 , 𝛿𝑖} follows a 
𝛿-shock model if the system fails at 𝑖-th shock which satisfies 𝑋𝑖 ≤  𝛿𝑖 , and then the life time or equivalently the 
operating time is the sum of all 𝑋𝑖  until the one satisfying the above condition. Further, we assume that 𝑋𝑖  is 
independent of 𝛿𝑖. 
 
Assumption 2.3: Let 𝑇𝑛  be the operating time after the (𝑛 − 1) -th repair. {𝑇𝑛 , 𝑛 = 1,2, … }  is a stochastically 
decreasing random variable sequence induced by the 𝛿-shock model. 
 
Assumption 2.4: Let 𝑌𝑛  be the repair time after the 𝑛-th failure and forms an increasing geometric process with 
0 < 𝑏 ≤ 1 . Then  𝑌𝑛  has cumulative distribution function 𝐺(𝑏𝑛−1𝑦 ) , where G(y)  is the cumulative distribution 
function of  Y1  with EY1 = μ > 0. 
 
Assumption 2.5:  Tn  and  Yn , n = 1,2,3 ….  are two independent sequences. 
 
Assumption 2.6:  Assume that the repair cost rate is 𝑐, the operating reward rate is 𝑟, and the replacement cost consists 
of fixed cost 𝑅 and variable cost 𝑣 = 𝑟𝑝𝑍, where 𝑍 is the replacement time and 𝑟𝑝 is the rate of cost per time unit during 
replacement. Let  E(Z) = t. 
 
Assumption 2.7: A threshold 𝑁 replacement models is adopted. Under such a model, the system will be replaced with 
a new one after it fails for 𝑁 times. 
 
3. LONG-RUN AVERAGE COST PER UNIT TIME C(N) 
 
Now we develop the average cost function of the N -replacement model under the imposed cost structure. According to 
renewal reward theorem. 

 

𝐶(𝑁) =
Expected cost incurred in a renewal cycle

Expected length in a renewal cycle
                                                                                  (1) 

 
Now, let W be the length of a renewal cycle under N-replacement model. Thus, we have          

𝑊 = �𝑇𝑛

𝑁

𝑛=1

+ �𝑌𝑛

𝑁−1

𝑛=1

+ 𝑍                                                                                                                                   (2) 

 
To evaluate the expected cost in a cycle, we first calculate 𝐸(𝑇𝑛), the expected operating time of the system after the 
(𝑛 − 1)-th failure. Let 𝑙𝑛𝑖  be the inter-arrival time between the (𝑖 − 1)-th and 𝑖-th shock following the (𝑛 − 1)-th 
repair, where 𝑖 = 1,2,3 …  Define       

 𝑀𝑛 = min {𝑚|𝑙𝑛1 > 𝑎𝑛−1𝛿1, … , 𝑙𝑛(𝑚−1) > 𝑎𝑛−1𝛿1, 𝑙𝑛𝑚 < 𝑎𝑛−1𝛿1 }  
And   

𝑇𝑛 = �𝑙𝑛𝑗

𝑀𝑛

𝑗=1

                                                                                       

Thus 𝑀𝑛 denotes the number of shocks till the first deadly shock occurs. Obviously, 𝑀𝑛 has a geometric distribution, 
with 

𝑃(𝑀𝑛 = 𝑘) = 𝑞𝑛𝑘−1𝑝𝑛 , 𝑘 = 1,2,3..                                             
Where 𝑝𝑛 is the probability of a shock, following the (𝑛 − 1)-th repair and 𝑞𝑛 = 1 − 𝑝𝑛. Therefore, we have  

𝐸(𝑀𝑛) = 1
𝑝𝑛

.  



U. Rizwan and R. Mathan / Optimal Replacement Model for a Degenerating Failure System / IJMA- 9(9), Sept.-2018. 

© 2018, IJMA. All Rights Reserved                                                                                                                                                                           7  

 
As 𝑀𝑛 is a stopping time with respect to the random sequence {𝑙𝑛𝑗 , 𝑗 = 1,2,3 … } which are independent identically 
distributed random variables. Using Wald equation (1983), we have 

𝐸(𝑇𝑛) = 𝐸 ��𝑙𝑛𝑗

𝑀𝑛

𝑗=1

� = 𝐸𝑙𝑛1𝐸𝑀𝑛 =
𝐸𝑙𝑛1
𝑝𝑛

                                  

 
According to Assumption 2.2, as 𝐹(𝑥) and 𝑄(𝑥) are all exponentially distributed, we have 

𝐹(𝑥) = 1 − 𝑒−𝜆1𝑥, 𝑥 ≥ 0,     𝑄(𝑎𝑛−1 𝑥) = 1 − 𝑒𝑎𝑛−1𝜆2𝑥  , 𝑥 ≥ 0                                                               (3) 
and            

 𝐸𝑙𝑛1 = � 𝑥𝑑𝐹(𝑥)
∞

0
=  � 𝑥𝑑�1 − 𝑒−𝜆1𝑥� =

1
𝜆1

∞

0
                      

 
Furthermore, as 𝑙𝑛𝑗 and 𝛿𝑛(𝑎𝑛−1𝛿1) are independent and have the marginal exponential distributions with means of 1

𝜆1
 

and  1
𝑎𝑛−1𝜆2

, respectively. Therefore, we obtain 

𝑝𝑛 = 𝑃�𝑙𝑛𝑗 < 𝛿𝑛� = � 𝑒−𝑎𝑛−1𝜆2𝑥𝜆1
∞

0
𝑒−𝜆1𝑥𝑑𝑥 = 𝜆1 � 𝑒−�𝑎𝑛−1𝜆2+𝜆1�𝑥𝑑𝑥 =

𝜆1
𝜆1 + 𝑎𝑛−1 𝜆2

∞

0
            (4) 

and 

 𝜁𝑛 = 𝐸(𝑇𝑛) =
𝜆1 + 𝑎𝑛−1𝜆2

𝜆12
                                                                                                                              (5) 

 
Consequently, 

𝐸 ��𝑇𝑛

𝑁

𝑛=1

 � = �𝐸(𝑇𝑛)
𝑁

𝑛=1

= �
𝜆1 + 𝑎𝑛−1 𝜆2

𝜆12

𝑁

𝑛=1

                                                                                                (6) 

 
On the other hand, since 𝑌𝑛 , 𝑛 = 1,2,3 …  is an increasing geometric processes (GP). with ratio 0 < 𝑏 ≤ 1, we have 

𝐸(𝑌𝑛) =
𝜇

𝑏𝑛−1                                                                                                                                                        (7) 
 

Then, by  the equation (1), the long-run average cost 𝐶(𝑁) of the system under the models N is given by 

𝐶(𝑁) =
𝐸�𝑐 ∑ 𝑌𝑛 − 𝑟∑ 𝑇𝑛𝑁

𝑛=1 + 𝑅 + 𝑟𝑝𝑍𝑁−1
𝑛=1 �
𝐸(∑ 𝑇𝑛 + ∑ 𝑌𝑛𝑁−1

𝑛=1 + 𝑍𝑁
𝑛=1 )  

 

=
𝑐 ∑ 𝐸(𝑌𝑛) − 𝑟 ∑ 𝐸(𝑇𝑛)𝑁

𝑛=1 + 𝐸𝑅 + 𝐸(𝑟𝑝𝑍)𝑁−1
𝑛=1

∑ 𝐸(𝑇𝑛) + ∑ 𝐸(𝑌𝑛𝑁−1
𝑛=1 ) + 𝐸(𝑍)𝑁

𝑛=1
 

 

=
𝑐 ∑ 𝜇

𝑏𝑛−1 − 𝑟 ∑ 𝜆1 + 𝑎𝑛−1𝜆2
𝜆12

𝑁
𝑛=1 + 𝑅 + 𝑟𝑝𝑡𝑁−1

𝑛=1

∑ 𝜆1 + 𝑎𝑛−1𝜆2
𝜆12

+ ∑ 𝜇
𝑏𝑛−1

𝑁−1
𝑛=1 + 𝑡𝑁

𝑛=1

                                                                                (8) 

 
The optimal replacement models 𝑁∗  can be determined by minimizing 𝐶(𝑁) . To determine the optimal 𝑁∗ , the 
equation (8) can be re-written as. 

𝐶(𝑁) =
(𝑐 + 𝑟)∑ 𝜇

𝑏𝑛−1  +  𝑅 +  (𝑟𝑝 + 𝑟)𝑡𝑁−1
𝑛=1

∑ 𝜆1 + 𝑎𝑛−1𝜆2
𝜆12

 +  ∑ 𝜇
𝑏𝑛−1

𝑁−1
𝑛=1 + 𝑡𝑁

𝑛=1

− 𝑟                                                                                      (9) 

 
Thus, to minimize 𝐶(𝑁) is equivalent to minimize the first term of the equation (9) denoted by 𝐵(𝑁) 

𝐵(𝑁) =
(𝑐 + 𝑟)∑ 𝜇

𝑏𝑛−1  +  𝑅 +  (𝑟𝑝 + 𝑟)𝑡𝑁−1
𝑛=1

∑ 𝜆1 + 𝑎𝑛−1𝜆2
𝜆12

 +  ∑ 𝜇
𝑏𝑛−1

𝑁−1
𝑛=1 + 𝑡𝑁

𝑛=1

                                                                                          (10) 

 
Now, we study the difference between 𝐵(𝑁 + 1) and 𝐵(𝑁). Let  

   𝑓(𝑁) = �
𝜆1 + 𝑎𝑛−1𝜆2

𝜆12
 

𝑁

𝑛=1

�
𝜇

𝑏𝑛−1

𝑁−1

𝑛=1
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Then 

 𝐵(𝑁 + 1) − 𝐵(𝑁) =
(𝑐+𝑟)∑ 𝜇

𝑏𝑛−1
 + 𝑅 + (𝑟𝑝+𝑟)𝑡𝑁

𝑛=1

∑ 𝜁𝑛 + ∑ 𝜇
𝑏𝑛−1

𝑁
𝑛=1 +𝑡𝑁+1

𝑛=1
−

(𝑐+𝑟)∑ 𝜇
𝑏𝑛−1

 + 𝑅 + (𝑟𝑝+𝑟)𝑡𝑁−1
𝑛=1

∑ 𝜁𝑛 + ∑ 𝜇
𝑏𝑛−1

𝑁−1
𝑛=1 +𝑡𝑁

𝑛=1
 

=
1

𝑓(𝑁 + 1)𝑓(𝑁)
��(𝑐 + 𝑟)�

𝜇
𝑏𝑛−1

𝑁

𝑛=1

+  𝑅 +  (𝑟𝑝 + 𝑟)𝑡� ��𝜁𝑛  +  �
𝜇

𝑏𝑛−1

𝑁−1

𝑛=1

+ 𝑡
𝑁

𝑛=1

�

− �(𝑐 + 𝑟) �
𝜇

𝑏𝑛−1

𝑁−1

𝑛=1

+  𝑅 +  (𝑟𝑝 + 𝑟)𝑡� �� 𝜁𝑛  +  �
𝜇

𝑏𝑛−1

𝑁

𝑛=1

+ 𝑡
𝑁+1

𝑛=1

��            

 =
1

𝑓(𝑁 + 1)𝑓(𝑁)
�(𝑐 + 𝑟)𝜇 �

1
𝑏𝑛−1

𝑁

𝑛=1

�𝜁𝑛

𝑁

𝑛=1

+ (𝑐 + 𝑟)𝜇2�
1

𝑏𝑛−1

𝑁

𝑛=1

�
1

𝑏𝑛−1

𝑁−1

𝑛=1

 � 

+(𝑐 + 𝑟)𝜇𝑡�
𝜇

𝑏𝑛−1

𝑁

𝑛=1

+ [ 𝑅 +  (𝑟𝑝 + 𝑟)𝑡]��𝜁𝑛  +  �
𝜇

𝑏𝑛−1

𝑁−1

𝑛=1

+ 𝑡
𝑁

𝑛=1

� 

−(𝑐 + 𝑟)𝜇�
1

𝑏𝑛−1

𝑁−1

𝑛=1

(�𝜁𝑛 + 𝜁𝑁+1) − (𝑐 + 𝑟)𝜇2  �
1

𝑏𝑛−1

𝑁

𝑛=1

�
1

𝑏𝑛−1

𝑁−1

𝑛=1

𝑁

𝑛=1

 

−(𝑐 + 𝑟)𝜇𝑡�
1

𝑏𝑛−1
−

𝑁−1

𝑛=1

[ 𝑅 +  (𝑟𝑝 + 𝑟)𝑡] ���� 𝜁𝑛 + 𝜁𝑁+1

𝑁−1

𝑛=1

�   + ��
𝜇

𝑏𝑛−1
+

𝜇
𝑏𝑁−1

+ 𝑡
𝑁−1

𝑛=1

� + 𝑡�� 

=
1

𝑏𝑁−1𝑓(𝑁 + 1)𝑓(𝑁) �
(𝑐 + 𝑟)𝜇 ��𝜁𝑛 − 𝜁𝑁+1

𝑁

𝑛=1

� 𝑏𝑁−𝑛 + 𝑡
𝑁−1

𝑛=1

� − � 𝑅 +  (𝑟𝑝 + 𝑟�𝑡]� 

�              (𝜁𝑁+1𝑏𝑁−1 + 𝜇)}                                                                                                                            (11) 
 
Define the auxiliary function, 𝐴(𝑁) as follow, 

𝐴(𝑁) =
(𝑐 + 𝑟)𝜇(∑ 𝜁𝑛 − 𝜁𝑁+1𝑁

𝑛=1 ∑ 𝑏𝑁−𝑛 + 𝑡𝑁−1
𝑛=1 )

[ 𝑅 +  (𝑟𝑝 + 𝑟)𝑡](𝜁𝑁+1𝑏𝑁−1 + 𝜇)
                                                                                  (12) 

 
As the denominator of 𝐵(𝑁 + 1) − 𝐵(𝑁) is always positive, it is clear that the sign of 𝐵(𝑁 + 1) − 𝐵(𝑁) is the same as 
that of its numerator. Thus, we have 

𝐵(𝑁 + 1) > (=, <)𝐵(𝑁) ⟺ 𝐴(𝑁) > (=, <)1 
 
Furthermore, it is clearly that, 

   𝐴(𝑁 + 1) − 𝐴(𝑁)  = (𝑐+𝑟)𝜇�∑ 𝜁𝑛−𝜁𝑁+2𝑁+1
𝑛=1 ∑ 𝑏𝑁+1−𝑛 +𝑡𝑁

𝑛=1 �
[ 𝑅 + (𝑟𝑝+𝑟)𝑡](𝜁𝑁+2𝑏𝑁+𝜇)

 − (𝑐+𝑟)𝜇�∑ 𝜁𝑛−𝜁𝑁+1𝑁
𝑛=1 ∑ 𝑏𝑁−𝑛 +𝑡𝑁−1

𝑛=1 �
[ 𝑅 + (𝑟𝑝+𝑟)𝑡](𝜁𝑁+1𝑏𝑁−1+𝜇)

  

=
(𝑐 + 𝑟)𝜇(𝜁𝑁+1 − 𝑏𝜁𝑁+2)(∑ 𝜁𝑛 + 𝜇 ∑ 𝑏1−𝑛 + 𝑡𝑁

𝑛=1
𝑁+1
𝑛=1 )

[ 𝑅 +  (𝑟𝑝 + 𝑟)𝑡](𝜁𝑁+2𝑏𝑁 + 𝜇)(𝜁𝑁+1𝑏𝑁−1 + 𝜇)
                                                                  (13) 

0 < 𝑎 ≤ 1 and the equation (5) imply that 𝜁𝑛 is a decreasing function (or non-increasing function) in 𝑛. Meanwhile, 
0 < 𝑏 ≤ 1, so 𝜁𝑁+1 ≥ 𝜁𝑁+2 ≥ 𝑏𝜁𝑁+2 . Then, we have𝐴(𝑁 + 1) ≥ 𝐴(𝑁). Therefore, for any integer 𝑁, this indicates 
that 𝐴(𝑁) is an increasing function (or non-decreasing function). Then the optimal 𝑁∗ can be determined by 

𝑁∗ = 𝑚𝑖𝑛{𝑁|𝐴(𝑁) ≥ 1}                                                                                                                                  (14) 
 
Furthermore, if 𝐴(𝑁∗) > 1 for certain 𝑁∗, then the optimal 𝑁∗ is unique. Because 𝐴(𝑁) is non-decreasing in 𝑁, there 
exists an integer 𝑁∗, thus 

𝐴(𝑁) ≥ 1 ⟺𝑁 ≥ 𝑁∗ 
and               𝐴(𝑁) < 1 ⟺𝑁 < 𝑁∗ 
 
4. CONCLUSION 
 
In this paper, we studied the optimal replacement model for degenerating failure systems. We obtained optimal 
replacement model 𝑁∗ by minimizing the average cost rate 𝐶(𝑁). We show that uniqueness of the optimal replacement 
model 𝑁∗.  
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