International Journal of Mathematical Archive-9(8), 2018, 81-82
IMAAvailable online through www.ijma.info ISSN 2229-5046

TO DIVIDE THE GIVEN ANGLE INTO ANY NUMBER OF EQUAL PARTS

HITLAR*

Vill \& Post- Suithakalan, District- Jaunpur - (U.P.), India.
(Received On: 30-06-18; Revised \& Accepted On: 27-08-18)

GIVEN: $\angle \mathrm{ABC}$ is the given angle.
REQUIRED: Let us divide $\angle \mathrm{ABC}$ into five equal parts.
CONSTRUCTION: Cut the five equal parts BD, DE, EF, FG and GC.
Divide $\angle \mathrm{ABC}$ in two equal parts with line BK . Draw an arc HD from centre B with radius BD . Which cuts the line BA at H and BK at L. Join HD which cuts BK at X.

Draw an arc from centre B with radius $B C$ which cuts $B A$ at A and $B K$ at J. Draw an arc from centre B with radius $B G$ which cuts BA at I and BK at M .

Draw line HH' and DD' parallel BK from H and D . Draw an arc from centre M with radius MJ which cuts DD' at R and HH' at S. Join BR and BS to cut the arc AC at O and P. Thus OP is the fifth part of arc AC.

Cut arc AC into five equal parts $\mathrm{CN}, \mathrm{NO}, \mathrm{OP}, \mathrm{PQ}$ and QA with radius OP . Join BN, BO, BP, and BQ.
Thus $\angle \mathrm{ABQ}, \angle \mathrm{QBP}, \angle \mathrm{PBO}, \angle \mathrm{OBN}$, and $\angle \mathrm{NBC}$ are the five equal parts of $\angle \mathrm{ABC}$.
Proof: Let $\angle \mathrm{ABC}=\theta$ and $\mathrm{BD}=\mathrm{r}$
$\therefore B C=5 r$
$\therefore \mathrm{HD}=\mathrm{r} \theta$
and $\operatorname{arc} \mathrm{AC}=5 \mathrm{r} \theta$
\therefore arc AC $=5$ arc HD
arc RS $=r \theta$

$$
\therefore \theta=\frac{\operatorname{arc} R S}{r}
$$

If the length of arc RS is fixed then

$$
\begin{array}{ll}
& \\
& \theta \propto \frac{1}{r} \\
\Rightarrow & \frac{\theta}{2} \propto \frac{1}{2 r} \\
\Rightarrow & \frac{\theta}{3} \propto \frac{1}{3 r} \\
\Rightarrow & \frac{\theta}{4} \propto \frac{1}{4 r} \\
\text { and } & \frac{\theta}{5} \propto \frac{1}{5 r}
\end{array}
$$

To draw an arc for angle θ we take the centre M and radius MJ , for $\frac{\theta}{2}$ centre M_{2} and radius $\mathrm{M}_{2} \mathrm{~J}$, for $\frac{\theta}{3}$ centre M_{3} and radius $\mathrm{M}_{3} \mathrm{~J}$, for $\frac{\theta}{4}$ centre L and radius LJ and for $\frac{\theta}{5}$ centre B and radius BJ .

These arcs will be equal in length but not in shape and these arcs will go from the point J .
Remarks: (We can divide the arc AC with chord OP into five equal parts. This will be better method than that of division of $\angle \mathrm{ABP}$ and $\angle \mathrm{CBO}$ into two equal parts.) In my opinion this proof satisfy the learned mathematicians.

Source of support: Nil, Conflict of interest: None Declared.

[Copy right © 2018. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]

