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ABSTRACT 
Let 𝐺 = (𝑉,𝐸) be a (𝑝, 𝑞)- graph. A Triangular divisor cordial labeling of a graph G with vertex set V is a bijection  
𝑓 ∶ 𝑉 → {𝑇1,𝑇2,𝑇3,….,𝑇𝑝} where  𝑇𝑖  is the 𝑖𝑡ℎ Triangular number such that if each edge uv is assigned the label 1 if f(u) 
divides f(v) or f(v) divides f(u) and 0 otherwise, then the number of edges labeled with 0 and the number of edges 
labeled with 1 differ by at most 1. If a graph has a Triangular divisor cordial labeling, then it is called Triangular 
divisor cordial graph. In this paper, we proved the standard graphs such as Switching a pendant vertex in path             
𝑃𝑛 , wheel(𝑊𝑛), Flower graph  𝐹𝑙𝑛,  A book with rectangular pages, A book with pentagonal pages, Shell 𝑆𝑛 , Umbrella  
𝑈(𝑛, 3) , The tensor product graph (𝐺1�𝑇𝑝�𝐺2) are Triangular divisor cordial graphs.  
 
AMS subject classification: 05C78. 
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1. INTRODUCTION 
 
By a graph, we mean a finite, undirected graph without loops and multiples edges, for terms not defined here, we refer 
to Harary [6]. 
 
In a labeling of a particular type, the vertices are assigned values from a given set, the edges have a prescribed induced 
labeling must satisfy certain properties. An excellent reference on this subject is the survey by Gallian [3]. Two of the 
most important types of labeling are called graceful and harmonious, Graceful labeling were introduced independently 
by Rosa [7] in 1966 and Golombo [4] in 1972, while harmonious labeling were first studied by Graham and Sloane [5] 
in 1980.A third important type of labeling which contains aspects of both of the other two, is called cordial and was 
introduced by Cahit [1] in 1990. Whereas the label of an edge uv for graceful and harmonious labeling is given 
respectively by |𝑓(𝑢) − 𝑓(𝑣)| and 𝑓(𝑢) + 𝑓(𝑣)(𝑚𝑜𝑑𝑢𝑙𝑜𝑞), cordial labeling use only labels 0 and 1 and the induced 
label 𝑓(𝑢) + 𝑓(𝑣)(𝑚𝑜𝑑𝑢𝑙𝑜2), which is of course equals |𝑓(𝑢) − 𝑓(𝑣)|. Because arithmetic modulo 2 is an integral 
part of computer science, cordial labeling has close connections with that field. 
 
More precisely, cordial graphs are defined as follows. 
 
Definition 1.1: Let 𝐺 = (𝑉,𝐸) be an (𝑝, 𝑞)-graph, let 𝑓:𝑉 → {0,1} and for each edge 𝑢𝑣, assign the label             
|𝑓(𝑢) − 𝑓(𝑣)|.    𝑓 is called a cordial labeling if  the number of vertices labeled 0 and the number of vertices labeled 1 
differ by at most 1 and the number of edges labeled 0 and the number of edges labeled 1 differ by at most 1. A graph is 
called cordial if it has a cordial labeling. 
 
Definition 1.2: Let 𝑓 be a function from the vertices of a graph 𝐺𝑡𝑜 {0,1} and for each edge 𝑢𝑣 assign the label    
|𝑓(𝑢) − 𝑓(𝑣)|. The function 𝑓 is called a cordial labeling of G if �𝑣𝑓(0) − 𝑣𝑓(1)�. 
 
Definition 1.3: Let 𝐺 = (𝑉,𝐸) be an (𝑝, 𝑞)- graph. A mapping𝑓:𝑉 → {0,1} is called binary vertex labeling of G and 
𝑓(𝑣) is called the label of the vertex 𝑣 of G under 𝑓. 
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For an edge 𝑒 = 𝑢𝑣, the induced edge labeling 𝑓∗ ∶ 𝐸(𝐺) → {0,1} is given by 𝑓∗(𝑒) = |𝑓(𝑢) − 𝑓(𝑣)|. Let 𝑣𝑓(0), 𝑣𝑓(1) 
be the number of vertices of G having labels 0 and 1 respectively under 𝑓 and 𝑒𝑓(0), 𝑒𝑓(1) be the number of edges 
having labels 0 and 1 respectively under𝑓∗. 
 
Graph labeling [3] is a strong communication between number theory [2] and structure of graphs [6]. By combining the 
triangular number and divisibility concept in Number Theory and cordial labeling concept in graph labeling, we 
introduce a new concept called Triangular divisor cordial labeling. In this paper, we proved the standard graphs such as 
Switching a pendant vertex in path 𝑃𝑛 , wheel(𝑊𝑛),Flower graph 𝐹𝑙𝑛 ,  A book with rectangular pages, A book with 
pentagonal pages, Shell 𝑆𝑛 , Umbrella 𝑈(𝑛, 3) , The tensor product graph (𝐺1�𝑇𝑝�𝐺2) are Triangular divisor cordial 
graphs. First we give the some concepts in Number Theory [6]. 
 
Definition 1.4: Let a and b be two integers. If a divides b means that there is a positive integer k such that b = ka. It is 
denoted by a/b.If a does not divide b, then we denote 𝑎 ∤ 𝑏 
 
Definition 1.5: The triangular number can be defined by 

𝑇𝑛 = �
𝑛 + 1

2
� 𝑛 ≥ 1 

this generates the infinite sequence of integers beginning 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91,…. 
 
2. MAIN RESULTS 
 
R.Varatharajan,   S.Navaneethakrishnan and K.Nagarajan [8], introduced the notion of Divisor Cordial Labeling. 
 
Definition 2.1: Let 𝐺 = (𝑉,𝐸) be a simple graph and𝑓 ∶ 𝑉 → {1,2,3,….,|𝑉|} be a bijection. For each edge𝑢𝑣, assign 
the label 1 if either𝑓(𝑢)/𝑓(𝑣) or𝑓(𝑣)/𝑓(𝑢)  and the label 0 if 𝑓(𝑢)  𝑓(𝑣).𝑓is called a divisor cordial labeling  
�𝑒𝑓(0) − 𝑒𝑓(1)� ≤ 1. A graph with a divisor cordial labeling is called a divisor cordial graph [8]. 
 
R.Sridevi, S.Navaneethakrishnan introduced the notion of Fibonacci Divisor Cordial Labeling. 
 
Definition 2.2: Let G = (V, E)be a simple (𝑝, 𝑞)- graph and 𝑓 ∶ 𝑉 → {𝐹1,𝐹2,𝐹3,…,𝐹𝑝} where  𝐹𝑖 is the 𝑖𝑡ℎ Fibonacci 
number, be a bijection.For each edge  𝑢𝑣, assign the label 1 if either𝑓(𝑢)/𝑓(𝑣) or𝑓(𝑣)/𝑓(𝑢)  and the label 0       
if𝑓(𝑢) ∤ 𝑓(𝑣).𝑓is called a Fibonacci divisor cordial labeling �𝑒𝑓(0) − 𝑒𝑓(1)� ≤ 1. A graph with a Fibonacci divisor 
cordial labeling is called a Fibonacci divisor cordial graph [9]. 
 
These definitions motivate us to define a new type of cordial labeling called Triangular divisor cordial labeling as 
follows. 
 
Definition 2.3: Let G = (V, E)be a simple (𝑝, 𝑞)- graph and 𝑓 ∶ 𝑉 → {𝑇1,𝑇2,𝑇3,…,𝑇𝑝} where  𝑇𝑖  is the 𝑖𝑡ℎ Triangular 
number, be a bijection. For each edge 𝑢𝑣, assign the label 1 if either 𝑓(𝑢)/𝑓(𝑣) or𝑓(𝑣)/𝑓(𝑢)  and the label 0 
otherwise.𝑓 is called a Triangular divisor cordial labeling �𝑒𝑓(0) − 𝑒𝑓(1)� ≤ 1. A graph with a Triangular divisor 
cordial labeling is called a Triangular divisor cordial graph. 
 
Theorem 2.4: Switching a pendant vertex in path 𝑃𝑛 ,𝑛 ≥ 4 is triangular divisor cordial graph. 
 
Proof: Let 𝑣1, 𝑣2, 𝑣3, … . , 𝑣𝑛 be the vertices of path 𝑃𝑛. 
 
The graph 𝐺 is obtained by switching of a pendant vertex in path 𝑃𝑛,  𝑣1 and 𝑣𝑛are pendant vertex of path 𝑃𝑛. 
 
Without loss of generality, let the switched vertex be 𝑣1  
Then |𝑉(𝐺)| = 𝑛 and |𝐸(𝐺)| = 2𝑛 − 4 
 
Let  𝑓: 𝑉(𝐺) → {𝑇1,𝑇2,𝑇3, … . ,𝑇𝑛} be defined as follows 

𝑓(𝑣𝑖) = 𝑇𝑖   ,           𝑖 = 1,2 
𝑓(𝑣3) = 𝑇4 
𝑓(𝑣4) = 𝑇3   
𝑓(𝑣𝑖) = 𝑇𝑖 ,   5 ≤ 𝑖 ≤ 𝑛 

Then 𝑒𝑓(0) = 𝑒𝑓(1) = 𝑛 − 2 
 
Therefore, �𝑒𝑓(0) − 𝑒𝑓(1)� ≤ 1 
 
Hence the graph 𝐺 is triangular divisor cordial graph. 
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Theorem 2.5: Wheel  𝑊𝑛,𝑛 ≥ 4 is triangular divisor cordial graph. 
 
Proof:  Let 𝐺 be the graph Wheel  𝑊𝑛 
 
Let 𝑉(𝐺) = {𝑢𝑖  ∶ 0 ≤ 𝑖 ≤ 𝑛 }  
and 𝐸(𝐺) = {𝑢𝑖𝑢𝑖+1 ∶ 1 ≤ 𝑖 ≤ 𝑛 − 1} ∪ {𝑢1𝑢𝑛 } ∪ {𝑢0𝑢𝑖  ∶ 1 ≤ 𝑖 ≤ 𝑛}     
Then |𝑉(𝐺)| = 𝑛 + 1   and  |𝐸(𝐺)| = 2𝑛 
 
Let  𝑓: 𝑉(𝐺) → {𝑇1,𝑇2,𝑇3, … . ,𝑇𝑛+1 }  be defined as follows 
 
Case-(i): 𝑛 = 4  𝑎𝑛𝑑  5 

 
𝑒𝑓(0) = 4     𝑎𝑛𝑑    𝑒𝑓(1) = 4            
�𝑒𝑓(0) − 𝑒𝑓(1)� = 0 < 1 

 
𝑒𝑓(0) = 5     𝑎𝑛𝑑    𝑒𝑓(1) = 5            
�𝑒𝑓(0) − 𝑒𝑓(1)� = 0 < 1 
 
Case-(ii): 𝑛 ≡ 0 (𝑚𝑜𝑑 3)  

𝑓(𝑢0) = 𝑇1 
𝑓(𝑢1) = 𝑇2 
𝑓(𝑢2) = 𝑇4 
𝑓(𝑢3) = 𝑇3 
𝑓(𝑢𝑖) = 𝑇𝑖+1       4 ≤ 𝑖 ≤ 𝑛   

Then 𝑒𝑓(0) = 𝑛    𝑎𝑛𝑑    𝑒𝑓(1) = 𝑛      
 
Therefore, �𝑒𝑓(0) − 𝑒𝑓(1)� ≤ 1 
 
Case-(iii): 𝑛 ≡ 1 (𝑚𝑜𝑑 3)  

𝑓(𝑢0) = 𝑇1 
𝑓(𝑢1) = 𝑇2 
𝑓(𝑢2) = 𝑇4 
𝑓(𝑢3) = 𝑇3 
𝑓(𝑢𝑖) = 𝑇𝑖+1       4 ≤ 𝑖 ≤ 𝑛 − 2   
𝑓(𝑢𝑛−1) = 𝑇𝑛+1   
𝑓(𝑢𝑛) = 𝑇𝑛   

Then 𝑒𝑓(0) = 𝑛    𝑎𝑛𝑑    𝑒𝑓(1) = 𝑛      
Therefore, �𝑒𝑓(0) − 𝑒𝑓(1)� ≤ 1 
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Case-(iv): 𝑛 ≡ 2 (𝑚𝑜𝑑 3)  

𝑓(𝑢0) = 𝑇1 
𝑓(𝑢1) = 𝑇2 
𝑓(𝑢2) = 𝑇4 
𝑓(𝑢3) = 𝑇3 
𝑓(𝑢𝑖) = 𝑇𝑖+1        4 ≤ 𝑖 ≤ 𝑛 − 3  
𝑓(𝑢𝑛−2) = 𝑇𝑛   
𝑓(𝑢𝑛−1) = 𝑇𝑛+1   
𝑓(𝑢𝑛) = 𝑇𝑛−1 

Then 𝑒𝑓(0) = 𝑛    𝑎𝑛𝑑    𝑒𝑓(1) = 𝑛      
 
Therefore, �𝑒𝑓(0) − 𝑒𝑓(1)� ≤ 1 
 
Hence the graph Wheel  𝑊𝑛 ,𝑛 ≥ 4 is triangular divisor cordial graph. 
 
Theorem 2.5: Flower graph  𝐹𝑙𝑛,𝑛 ≥ 3 is triangular divisor cordial graph. 
 
Proof: Let 𝐺 be the Flower graph  𝐹𝑙𝑛 
 
Let 𝑣 be the apex, 𝑣1, 𝑣2, 𝑣3, … . , 𝑣𝑛  be the vertices of degree 4 and 𝑢1,𝑢2,𝑢3, … . ,𝑢𝑛 be the vertices of degree 2 of  𝐹𝑙𝑛  
Then |𝑉(𝐺)| = 2𝑛 + 1   and   |𝐸(𝐺)| = 4𝑛 
 
Let  𝑓: 𝑉(𝐺) → {𝑇1,𝑇2,𝑇3, … . ,𝑇2𝑛+1 }  defined as follows 
 
Case-(i): 𝑛 ≡ 0 (𝑚𝑜𝑑 10)  𝑒𝑥𝑐𝑒𝑝𝑡  0  𝑎𝑛𝑑 2  

𝑓(𝑣) = 𝑇1 
𝑓(𝑣1) = 𝑇4 
𝑓(𝑣2) = 𝑇3 
𝑓(𝑣𝑖) = 𝑇2𝑖 ,            3 ≤ 𝑖 ≤ 𝑛                
𝑓(𝑢1) = 𝑇2 
𝑓(𝑢2) = 𝑇5 
𝑓(𝑢𝑖) = 𝑇2𝑖+1,        3 ≤ 𝑖 ≤ 𝑛  

Then 𝑒𝑓(0) = 2𝑛    𝑎𝑛𝑑    𝑒𝑓(1) = 2𝑛      
 
Therefore, �𝑒𝑓(0) − 𝑒𝑓(1)� ≤ 1 
 
Case-(ii): 𝑛 ≡ 0 𝑎𝑛𝑑 2 (𝑚𝑜𝑑 10)       

𝑓(𝑣) = 𝑇1 
𝑓(𝑣1) = 𝑇4 
𝑓(𝑣2) = 𝑇3 
𝑓(𝑣𝑖) = 𝑇2𝑖 ,              3 ≤ 𝑖 ≤ 𝑛 − 1               
𝑓(𝑣𝑛) = 𝑇2𝑛+1 
𝑓(𝑢1) = 𝑇2 
𝑓(𝑢2) = 𝑇5 
𝑓(𝑢𝑖) = 𝑇2𝑖+1,        3 ≤ 𝑖 ≤ 𝑛 − 1  
𝑓(𝑢𝑛) = 𝑇2𝑛 

Then 𝑒𝑓(0) = 2𝑛    𝑎𝑛𝑑    𝑒𝑓(1) = 2𝑛      
 
Therefore, �𝑒𝑓(0) − 𝑒𝑓(1)� ≤ 1 
 
Hence the graph Flower  𝐹𝑙𝑛,𝑛 ≥ 3 is triangular divisor cordial graph. 
 
Theorem 2.6: A book with rectangular pages is triangular divisor cordial graph. 
 
Proof: Let 𝐺 be the graph of book with rectangular pages  
 
Let 𝑉(𝐺) = {𝑢,𝑢𝑖, 𝑣𝑖  ∶ 1 ≤ 𝑖 ≤ 𝑛 }  
and 𝐸(𝐺) = {𝑢𝑣,𝑢𝑢𝑖 , 𝑣𝑣𝑖 ,𝑢𝑖𝑣𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑛 }  
Then |𝑉(𝐺)| = 2𝑛 + 2    and     |𝐸(𝐺)| = 3𝑛 + 1 
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Let  𝑓: 𝑉(𝐺) → {𝑇1,𝑇2,𝑇3, … . ,𝑇2𝑛+2 } be defined as follows 

𝑓(𝑢) = 𝑇1 
𝑓(𝑣) = 𝑇2 
𝑓(𝑢1) = 𝑇3         
𝑓(𝑣1) = 𝑇4               

 
Case-(i): 𝑛 ≡ 2 𝑚𝑜𝑑(3) 

𝑓(𝑢𝑛) = 𝑇2𝑛+1  
𝑓(𝑣𝑛) = 𝑇2𝑛+2  

 
Case-(ii): 𝑛 ≡ 0 𝑚𝑜𝑑(3) 

𝑓(𝑢𝑛) = 𝑇2𝑛+2  
𝑓(𝑣𝑛) = 𝑇2𝑛+1  

 
Case-(iii): 𝑛 𝑖𝑠 𝑜𝑑𝑑 
 
Subcase-(i): 𝑛 ≡ 1 𝑚𝑜𝑑(3), 𝑛 ≠ 1  and 𝑛 = 6𝑖 − 2,   1 ≤ 𝑖 ≤ �𝑛

6
� 

𝑓(𝑢𝑛) = 𝑇2𝑛+1  
𝑓(𝑣𝑛) = 𝑇2𝑛+2  

 
Subcase-(ii): 𝑛 ≡ 1 𝑚𝑜𝑑(3), 𝑛 ≠ 1  and 𝑛 = 6𝑖 + 1,   1 ≤ 𝑖 ≤ �𝑛

6
� 

𝑓(𝑢𝑛) = 𝑇2𝑛+2 
𝑓(𝑣𝑛) = 𝑇2𝑛+1  

 
Case-(iv): 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛 
 
Subcase-(i): 𝑛 ≡ 1 𝑚𝑜𝑑(3), 𝑛 ≠ 1  and 𝑛 = 6𝑖 − 2,   1 ≤ 𝑖 ≤ �𝑛

6
� 

𝑓(𝑢𝑛) = 𝑇2𝑛+1  
𝑓(𝑣𝑛) = 𝑇2𝑛+2  

Then 𝑒𝑓(0) = 𝑛 + 𝑛+1
2

 𝑎𝑛𝑑    𝑒𝑓(1) = 𝑛 + 𝑛+1
2

      𝑖𝑓  𝑛 𝑖𝑠 𝑜𝑑𝑑   
and   𝑒𝑓(0) = 𝑛 + 𝑛

2
     𝑎𝑛𝑑    𝑒𝑓(1) = 𝑛 + 𝑛

2
+ 1    𝑖𝑓  𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛   

 
Therefore, �𝑒𝑓(0) − 𝑒𝑓(1)� ≤ 1 
 
Hence a book with rectangular pages are triangular divisor cordial graph . 
 
Theorem 2.6: A book with pentagonal pages is triangular divisor cordial graph. 
 
Proof: Let 𝐺 be the graph of book with pentagonal pages  
 
Let 𝑉(𝐺) = {𝑢, 𝑣,𝑢𝑖 , 𝑣𝑖 ,𝑤𝑖 : 1 ≤ 𝑖 ≤ 𝑛 }  
and 𝐸(𝐺) = {𝑢𝑣,𝑢𝑢𝑖 , 𝑣𝑣𝑖 ,𝑢𝑖𝑤𝑖 , 𝑣𝑖𝑤𝑖 , ∶ 1 ≤ 𝑖 ≤ 𝑛}  
Then |𝑉(𝐺)| = 3𝑛 + 2    and     |𝐸(𝐺)| = 4𝑛 + 1 
 
Let  𝑓: 𝑉(𝐺) → {𝑇1,𝑇2,𝑇3, … . ,𝑇3𝑛+2 } be defined as follows 

𝑓(𝑢) = 𝑇1 
𝑓(𝑣) = 𝑇2 
𝑓(𝑢𝑖) = 𝑇3𝑖                     1 ≤ 𝑖 ≤ 𝑛        
𝑓(𝑣𝑖) = 𝑇3𝑖+2                 1 ≤ 𝑖 ≤ 𝑛    
𝑓(𝑤𝑖) = 𝑇3𝑖+1                1 ≤ 𝑖 ≤ 𝑛             

Then 𝑒𝑓(0) = 2𝑛   𝑎𝑛𝑑    𝑒𝑓(1) = 2𝑛 + 1 
 
Therefore, �𝑒𝑓(0) − 𝑒𝑓(1)� ≤ 1 
 
Hence a book with pentagonal pages is triangular divisor cordial graph. 
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Theorem 2.7: The graph Shell 𝑆𝑛 is triangular divisor cordial graph for 𝑛 ≥ 4,𝑛 ∈ 𝑁. 
 
Proof: Let 𝑢1,𝑢2,𝑢3, … ,𝑢𝑛 be the successive vertices of Shell 𝑆𝑛 where 𝑢1 is the apex vertex Shell 𝑆𝑛 
Then |𝑉(𝐺)| = 𝑛  and  |𝐸(𝐺)| = 2𝑛 − 3 
 
Let  𝑓: 𝑉(𝐺) → {𝑇1,𝑇2,𝑇3, … . ,𝑇𝑛 } be defined as follows 

𝑓(𝑢𝑖) = 𝑇𝑖 ,    1 ≤ 𝑖 ≤ 2 𝑎𝑛𝑑 5 ≤ 𝑖 ≤ 𝑛   
𝑓(𝑢3) = 𝑇4               
𝑓(𝑢4) = 𝑇3            

Then 𝑒𝑓(0) = 𝑛 − 2     𝑎𝑛𝑑    𝑒𝑓(1) = 𝑛 − 1 
 
Therefore, �𝑒𝑓(0) − 𝑒𝑓(1)� ≤ 1 
Hence the graph Shell 𝑆𝑛 is triangular divisor cordial graph for 𝑛 ≥ 4,𝑛 ∈ 𝑁. 
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