International Journal of Mathematical Archive-9(8), 2018, 44-58 MAAvailable online through www.ijma.info ISSN 2229 - 5046

VEDIC VINCULUM PROBLEMS WHEN THERE ARISE CARRY NUMBERS

D. N. GARAIN* AND SANJEEV KUMAR**

*Head, University Department of Mathematics, S. K. M. University, Dumka, Jharkhand, India.

**Research Scholar, S. K. M. University, Dumka, Jharkhand, India.

(Received On: 02-07-18; Revised & Accepted On: 05-08-18)

ABSTRACT

Vinculum makes the digits over five to less than five. So during the process of addition and multiplication the probability of appearance of carry number is very less. Many authors have worked on the problems of vinculum but they have not touched the problem when carry number appears. In the present study, we have tried to solve all those problems when carry numbers appear during the solution of vinculum problems.

Keywords: Vinculum, Vedic mathematics, Carry number.

Mathematics Subject Classification: 01A32, 97A30, 97A80.

1. INTRODUCTION

In Vedic Mathematics 'Vinculum' is an ingenious device to reduce single digit larger than 5. A digit larger than five creates problem in calculations by creating carry number. If all the digits are less than five then calculation becomes easier and probability of appearance of carry number is very less. With this idea the concept of vinculum was entered in Vedic mathematical calculations of numbers.

Kenneth R William (2003), in his book "Astronomical Applications of Vedic Mathematics" has not used carry number in the case of multiplication of numbers with vinculum digits rather he has changed the vinculum digits into nonvinculum and then performed the multiplication. Similar case is found in the book "vertically and crosswise" written by Nicholas, Williams and Pickles (1999).

Kenneth R William (2005), in his book "Vedic Mathematics Teacher's Manual" has mentioned the subtraction of two numbers and then he has changed the digits above number five into vinculum. But he has not performed subtraction of number which contains vinculum in their digits.

Garain and Kumar (2018) studied "Algebraic representation of Vinculum and generalized rule for Vinculum Structure. They framed the generalized rule for removing and imposing vinculum on the digit of a number.

As the concept of vinculum make a digit over 5 to less than 5. So during the process of addition and multiplication, the chance of appearance of carry number is very less.

Now, we shall try to solve all those problem of vinculum in which chance of appearance of carry number is possible.

Here, we'll try to find addition, subtraction and multiplication in which vinculum is involved. Also, we'll deal the same problems by removing vinculum.

Corresponding Author: Sanjeev Kumar** **Research Scholar, S. K. M. University, Dumka, Jharkhand, India.

2. SOME OPERATIONS OF NUMBERS HAVING VINCULUM IN THEIR DIGITS

(A) Addition:

Type – I

Calculation with Vinculum	Calculation by removing Vinculum
(1) Evaluate: $4 \overline{3}$	4 3
2 5	2 5
$+\frac{2}{6}\frac{3}{2}$	$+\frac{2}{3}$
\therefore $\overline{3} = -3$ and $5 + \overline{3} = 5 - 3 = 2$	By removing the vinculum in $4\overline{3}$.
	:. $4\overline{3} = 4 - 1/10 - 3 = 37$ Then,
	3 7
	$+\frac{2}{6}\frac{5}{2}$
(ii) Evaluate:	_
3 4	3 4
$+\frac{1}{4}\frac{2}{\overline{2}}$	$+\frac{1 2}{}$
By removing the vinculum in $4\overline{2}$.	By removing the vinculum in $3\overline{4}$.
$\therefore 4\overline{2} = 4 \cdot 1/10 \cdot 2$	$\therefore 3\overline{4} = 3 \cdot 1/10 \cdot 4 = 26$
= 38	Then,
	1 2
	$+\frac{1}{3}\frac{2}{8}$
	5 0
(iii) Evaluate:	_
3 4 2	3 4 2
$+\frac{4}{7} \frac{0}{4} \frac{1}{1}$	$+\frac{4 0 1}{}$
By removing the vinculum in $74\overline{1}$.	By removing the vinculum in $34\overline{2}$.
$\therefore 74\overline{1} = 7/4 \cdot 1/10 \cdot 1$ = 739	$\therefore 34\overline{2} = 3/4 \cdot 1/10 \cdot 2 = 338$ Then,
	3 3 8
	4 0 1
	$+\frac{7}{7}$ 3 9
(iv) Evaluate:	_
3 4 4	3 4 4
$+\frac{4}{7}\frac{3}{1}\frac{2}{6}$	$+\frac{4 3 2}{$
$\begin{array}{c} 1 & 1 & 0 \\ \end{array}$	\mathbf{D} and \mathbf{D} \mathbf{D} \mathbf{D}
By removing the vinculum in / 10. $.7\overline{1}6 - 7.1/10.1/6$	By removing the vinculum in 344. $3\overline{4}4 - 31/104/4 - 264$
= 696	$\frac{1}{10^{-4/4} - 204}$ Then,
	2 6 4

 $+\frac{4\quad 3\quad 2}{6\quad 9\quad 6}$

(v) Evaluate:

$$4 \quad \overline{2} \quad \overline{3}$$
$$+ \frac{2 \quad 5 \quad 1}{6 \quad 3 \quad \overline{2}}$$

 \therefore $\overline{3}+1=-3+1=-2=\overline{2}$ and $\overline{2}+5=-2+5=3$ By removing the vinculum in $63\overline{2}$.

$$\therefore 63\overline{2} = 6/3 - 1/10 - 2$$

= 628

Type – II

Calculation with Vinculum

(i) Evaluate:

$$7 \quad 2$$

$$+\frac{8 \quad \overline{3}}{15 \quad \overline{1}}$$

$$\therefore$$
 $\overline{3} = -3$ and $2 + \overline{3} = 2 + (-3) = 2 - 3 = -1 = \overline{1}$

By removing the vinculum in $15\overline{1}$.

 $\therefore 15\overline{1} = 1/5 - 1/10 - 1$

= 149

- (ii) Evaluate:
 - $8 \quad 9$ $+ \frac{5 \quad \overline{4}}{13 \quad 5}$

(iii) Evaluate:

 $\therefore \overline{4} = -4 \text{ and } 3 + \overline{4} = 3 + (-4) = 3 - 4 = -1 = \overline{1}$ By removing the vinculum in $76\overline{1}$. $\therefore 76\overline{1} = 7/6 \cdot 1/10 \cdot 1$

=759

 $\begin{array}{cccc} 4 & \overline{2} & \overline{3} \\ + & 2 & 5 & 1 \\ \end{array}$

By removing the vinculum in $4\overline{23}$. $\therefore 4\overline{23} = 4 \cdot \frac{1}{10 \cdot \frac{2}{3}} = \frac{3}{8} \cdot \frac{3}{3}$ $= \frac{3}{8} \cdot \frac{1}{10 \cdot 3} = \frac{377}{3}$ Then, $\frac{3}{6} \cdot \frac{7}{2} \cdot \frac{7}{8}$

Calculation by removing Vinculum

$$\begin{array}{ccc} 7 & 2 \\ + \frac{8 & \overline{3}}{} \end{array}$$

By removing the vinculum in $8\overline{3}$. $\therefore 8\overline{3} = 8 \cdot 1/10 \cdot 3 = 77$ Then, $7 \quad 2$ $+ \frac{7 \quad 7}{14 \quad 9}$ $8 \quad 9$

By removing the vinculum in $5\overline{4}$.

+ 5 4

$$\therefore 5\overline{4} = 5 - \frac{1}{10 - 4} = 46$$

Then,
$$8 \quad 9$$
$$+ \frac{4 \quad 6}{13 \quad 5}$$
$$2 \quad 4 \quad 3$$
$$+ \frac{5 \quad 2 \quad \overline{4}}{4}$$

By removing the vinculum in $52\overline{4}$. $\therefore 52\overline{4} = 5/2 \cdot 1/10 \cdot 4 = 516$ Then, $2 \quad 4 \quad 3$ $+ \frac{5 \quad 1 \quad 6}{7 \quad 5 \quad 9}$ (iv) Evaluate:

7	2	0
5	$\overline{4}$	3
$+\frac{12}{12}$	$\overline{2}$	3

By removing the vinculum in $12\overline{2}3$.

 $\therefore 12\overline{2}3 = 1/2 - 1/10 - 2/3$ = 1183

(v) Evaluate:

 $\begin{array}{r}
 8 \quad 9 \quad 2 \\
 + \frac{5 \quad \overline{3} \quad \overline{4}}{13 \quad 6 \quad \overline{2}}
 \end{array}$

By removing the vinculum in 1362.

$$\therefore 136\overline{2} = \frac{1}{3}6-\frac{1}{10-2} = \frac{1}{358}$$

Type – III <u>Calculation with Vinculum</u> (i) Evaluate: $6 \quad \overline{2}$ $+ \frac{5 \quad \overline{4}}{11 \quad \overline{6}}$ $\therefore \quad \overline{2} + \overline{4} = -2 + (-4) = -2 - 4 = -6 = \overline{6}$. By removing the vinculum in $11\overline{6}$. $\therefore \quad 11\overline{6} = 1/1 - 1/10 - 6$

= 104

(ii) Evaluate:

 $\therefore \overline{2} + 6 = -2 + 6 = 4 \text{ and } \overline{3} + \overline{4} = -3 + (-4) = -3 - 4 = -7 = \overline{7}$ By removing the vinculum in $13\overline{7}4$ $\therefore 13\overline{7}4 = \frac{1}{3} - \frac{1}{10} - \frac{7}{4}$

$$1374 = 1/3 = 1/1$$

= 1234

By removing the vinculum in 543. $\therefore 5\overline{4}3 = 5 \cdot 1/10 \cdot 4/3 = 463$ Then, 7 2 0 4 6 3 11 8 3 8 9 2 $+ \frac{5 \overline{3} \overline{4}}{4}$ By removing the vinculum in $5\overline{34}$. $\therefore 5\overline{3}\overline{4} = 5 \cdot 1/10 \cdot 3/\overline{4} = 4/7/\overline{4}$ = 4/7 - 1/10 - 4 = 466Then, 8 9 2 $+\frac{4}{13}$ $\frac{6}{5}$ $\frac{6}{8}$ **Calculation by removing Vinculum** $6 \overline{2}$

 $\begin{array}{cccc} 7 & 2 & 0 \\ 5 & \overline{4} & 3 \end{array}$

$$+\frac{5\overline{4}}{1}$$

By removing the vinculum in $6\overline{2}$ and $5\overline{4}$ $\therefore \quad 6\overline{2} = 6 \cdot 1/10 \cdot 2 = 58$ and $5\overline{4} = 5 \cdot 1/10 \cdot 4 = 46$ Then, $5 \quad 8$ $+ \frac{4 \quad 6}{10 \quad 4}$ $9 \quad \overline{3} \quad \overline{2}$ $+ \frac{4 \quad \overline{4} \quad 6}{4}$

By removing the vinculum in $9\overline{32}$ and $4\overline{46}$ $\therefore 9\overline{32} = 9 \cdot 1/10 \cdot 3/\overline{2} = 8/7/\overline{2}$ $= 8/7 \cdot 1/10 \cdot 2 = 868$ and $4\overline{46} = 4 \cdot 1/10 \cdot 4/6 = 366$

Then,

(iii) Evaluate:

 $\begin{array}{cccc} 6 & 2 & \overline{3} \\ + & 8 & \overline{4} & \overline{1} \\ \hline 14 & \overline{2} & \overline{4} \end{array}$

By removing the vinculum in $14\overline{24}$.

$$\therefore 14\overline{24} = \frac{1}{4} - \frac{1}{10} - \frac{2}{4}$$
$$= \frac{1}{3} / \frac{3}{4}$$
$$= \frac{1}{3} / \frac{3}{8} - \frac{1}{10} - 4$$
$$= \frac{1}{376}$$

(iv) Evaluate:

By removing the vinculum in $11\overline{14}$. $\therefore 11\overline{14} = 1/1 - 1/10 - 1/\overline{4}$ $= 1/0/9/\overline{4}$ = 1/0/9 - 1/10 - 4= 1086

(v) Evaluate:

By removing the vinculum in $61\overline{1}$.

 $\therefore 61\overline{1} = 6/1 \cdot 1/10 \cdot 1$ = 609

Туре	e – IV				
<u>Calc</u>	ulatio	n wi	ith V	/inc	<u>ulum</u>
(i)	Evalu	ate:			
		7	5	3	
		2	$\overline{4}$	$\overline{1}$	
		9	$\overline{2}$	$\overline{4}$	
	+	18	1	8	
$\cdot \cdot \frac{1}{2}$	$\overline{3} + \overline{1}$	+ 4 =	= -3	+ (-	$1) + (-4) = -3 - 1 - 4 = -8 = \overline{8}$
By re	emovi	ng tł	ne vi	ncu	lum in $18\overline{1}\overline{8}$,
© 20.	18, IJN	1A. A	ll Rig	ghts	Reserved

 $\begin{array}{cccc} 6 & 2 & \overline{3} \\ + \frac{8 & \overline{4} & \overline{1} \\ \end{array}$

By removing the vinculum in $62\overline{3}$ and $8\overline{4}\overline{1}$.

$\therefore 62\overline{3}$	5 = 6	/2-1/	/10-3	3 = 617
and $8\overline{4}\overline{1}$. = 8-	-1/10)-4/	$\overline{1} = 7/6/\overline{1}$
	= 7/	/6-1/	10-1	= 759
Then,				
	6	1	7	
	7	5	9	
+	13	7	6	
	0	$\overline{2}$	0	
	0	3	0	
+	3	2	4	

By removing the vinculum in $8\overline{3}0$ and $32\overline{4}$.

 $\therefore 8\overline{30} = 8 \cdot \frac{1}{10 \cdot \frac{3}{0}} = 770$ and $32\overline{4} = \frac{3}{2} \cdot \frac{1}{10 \cdot 4} = 316$ Then, $7 \quad 7 \quad 0$ $3 \quad 1 \quad 6$

+	10	8	6
	2	4	$\overline{1}$
	4	$\overline{3}$	0

+ -

By removing the vinculum in $24\overline{1}$ and $4\overline{3}0$. $\therefore 24\overline{1} = 2/4 \cdot 1/10 \cdot 1 = 239$ and $4\overline{3}0 = 4 \cdot 1/10 \cdot 3/0 = 370$

Then,

	2	3	9
	3	7	0
+	6	0	9

Calculation by removing Vinculum

7	5	3
2	$\overline{4}$	1
9	$\overline{2}$	4
T		

By removing the vinculum in $75\overline{3}$, $2\overline{4}\overline{1}$ and $9\overline{24}$.

 \therefore 18 $\overline{18}$ = 1/8-1/10-1/ $\overline{8}$ $= 1/7/9/\overline{8}$ = 1/7/9-1/10-8 = 1782

(ii) Evaluate:

$^{+}\overline{17}$	8	$\overline{2}$
8	$\overline{1}$	$\overline{4}$
6	3	5
3	$\overline{4}$	3

By removing the vinculum in $17\overline{82}$. $\therefore 17\overline{8}\overline{2} = 1/7 \cdot 1/10 \cdot 8/\overline{2}$ $= 1/6/2/\overline{2}$

> = 1/6/2-1/10-2 = 1618

> > $3\overline{4}\overline{4}$

(iii) Evaluate:

7
$$\overline{1}$$
 $\overline{3}$
8 $\overline{3}$ 2
 $+\frac{5 \overline{4} \overline{3}}{22 \overline{2} \overline{8}}$
 $\therefore \overline{4} + \overline{1} + \overline{3} + \overline{4} = -4 + (-1) + (-3) + (-4) = -4 - 1 - 3 - 4$
 $= -12 = \overline{12} = \overline{12}$
Here, carry number = $\overline{1}$
 $\therefore 3 + 7 + 8 + 5 + \overline{1} = 23 + (-1) = 23 - 1 = 22$

By removing the vinculum in $22\overline{28}$. $\therefore 22\overline{28} = 2/2 - 1/10 - 2/\overline{8}$ $= 2/1/8/\overline{8}$ = 2/1/8-1/10-8 = 2172

∴.	753 =	= 7/5	5-1/1	0-3	= 747,
	$2\overline{4}\overline{1}$	= 2-	-1/10)-4/	$\overline{1} = 1/6/\overline{1}$
		= 1/0	6-1/1	10-1	= 159
and	924	= 9-	-1/10)-2/	4 = 8/8/4
-		= 8/	/8-1/	10-4	4 = 876
Ther	1,	_		_	
		1	4	1	
		1	5	9	
		8	7	6	
	+	17	8	2	
		3	$\overline{4}$	3	
		6	3	5	
	+	8	1	4	
By r	emovi	ing t	he v	incu	flum in $3\overline{4}$

3. $6\overline{3}5$ and $8\overline{1}\overline{4}$. $\therefore 3\overline{43} = 3 - 1/10 - 4/\overline{3} = 2/6 - 1/10 - 3 = 257$ $6\overline{3}5 = 6 - 1/10 - 3/5 = 575$ and $8\overline{1}\overline{4} = 8-1/10-1/\overline{4} = 7/9-1/10-4$ = 786 Then, 2 5 7 5 7 5 $+\frac{7 \ 8 \ 6}{16 \ 1 \ 8}$ $3 \overline{4} \overline{4}$

By removing the vinculum in $3\overline{44}$, $7\overline{1}\overline{3}$, $8\overline{3}2$ and $5\overline{4}\overline{3}$. $\therefore 3\overline{44} = 3 \cdot \frac{1}{10 \cdot \frac{4}{4}} = \frac{2}{6} \cdot \frac{1}{10 \cdot 4} = \frac{256}{10 \cdot \frac{1}{10}}$ $7\overline{1}\overline{3} = 7 \cdot 1/10 \cdot 1/\overline{3} = 6/9 \cdot 1/10 \cdot 3 = 687$ $8\overline{3}2 = 8 \cdot 1/10 \cdot 3/2 = 772$

 $7 \overline{1} \overline{3}$ $\overline{3}$ 2

5 4 3

8

+

and $5\overline{43} = 5 - 1/10 - 4/\overline{3} = 4/6 - 1/10 - 3$ = 457 Then,

2	3	8	1	4	
4	$\overline{4}$	0	3	6	
3	$\overline{2}$	$\overline{3}$	4	3	
7	$\overline{4}$	$\overline{4}$	$\overline{4}$	$\overline{2}$	
$^{+}\overline{15}$	3	1	$\overline{4}$	3	

By removing the vinculum in $15\overline{3}1\overline{4}\overline{3}$.

$$\therefore 15\overline{3}1\overline{43} = \frac{1}{5} - \frac{1}{10} - \frac{3}{1-1} - \frac{1}{10} - \frac{4}{3}$$
$$= \frac{1}{4} - \frac{3}{7} - \frac{3}{10} - \frac{3}{$$

= 147057

(B) Subtraction:

Type – I	
Calculation with Vinculum	Calculation by removing Vinculum
(i) Evaluate:	
$5\overline{4}$	$5\overline{4}$
2 8	2 8
$-\frac{1}{2}\overline{2}$	
$\therefore \overline{4} - 8 = -4 - 8 = -12 = \overline{12} = \overline{12} \overline{2}$	By removing the vinculum in $5\overline{4}$.
Here, carry number = $\overline{1}$ and $5-2+\overline{1}=5-2-1=2$	$\therefore 5\overline{4} = 5 - 1/10 - 4 = 46$
By removing the vinculum in $2\overline{2}$.	Then,
$\therefore 2\overline{2} = 2 - 1/10 - 2$	
	4 6
10	2 8
= 10	$-\frac{1}{18}$

	2	5	6		
	6	8	7		
	7	7	2		
	4	5	7		
+	21	7	2		
		_		_	_
	2	3	8	1	4
	4	$\overline{4}$	0	3	6
	3	$\overline{2}$	$\overline{3}$	4	3
	7	$\overline{4}$	$\overline{4}$	$\overline{4}$	$\overline{2}$
+	-				

By removing the vinculum in $2\overline{3}8\overline{1}\overline{4}$, $4\overline{4}0\overline{3}6$, $3\overline{2}\overline{3}4\overline{3}$ and $7\overline{4}\overline{4}\overline{4}\overline{2}$. $\therefore 2\overline{3}8\overline{1}\overline{4} = 2 \cdot 1/10 \cdot 3/8 \cdot 1/10 \cdot 1/\overline{4}$ = 1/7/7/9-1/10-4 = 17786 $4\overline{4}0\overline{3}6 = 4\text{-}1/10\text{-}4/0\text{-}1/10\text{-}3/6$ $= 3/6/\overline{1}/7/6 = 3/6 \cdot 1/10 \cdot 1/7/6$ = 35976 $3\overline{2}\overline{3}4\overline{3} = 3-1/10-2/\overline{3}/4-1/10-3$ = 2/8-1/10-3/3/7 = 27737 and $7\overline{4}\overline{4}\overline{4}\overline{2} = 7 - 1/10 - 4/\overline{4}/\overline{4}/\overline{2}$ $= 6/6 - 1/10 - 4/\overline{4}/\overline{2}$ $= 6/5/6 - 1/10 - 4/\overline{2}$ = 6/5/5/6-1/10-2 = 65558 Then, 1 7 7 8 6 7 3 5 9 6 2 7 7 3 7 $+\frac{6\ 5\ 5\ 5\ 8}{14\ 7\ 0\ 5\ 7}$

(ii) Evaluate:

4	3
2	9
1	$\overline{2}$

By removing the vinculum in $1\overline{2}$.

$$\therefore 1\overline{2} = 1 - 1/10 - 2$$

= 08

(iii) Evaluate:

5 7 $\overline{2}$ 1 3 9 $\overline{4 \quad 3 \quad \overline{1}}$

By removing the vinculum in $43\overline{1}$.

$$\therefore$$
 43 1 = 4/3-1/10-1
= 429

(iv) Evaluate:

 $5\overline{4}1$ $-\frac{3 \quad 9 \quad 4}{1 \quad \overline{3} \quad \overline{3}}$

By removing the vinculum in $1\overline{3}\overline{3}$. $\therefore 1\overline{3}\overline{3} = 1 - 1/10 - 3/\overline{3} = 0/7 - 1/10 - 3$ = 067

(v) Evaluate:

9
$$\overline{3}$$
 $\overline{2}$
- $\frac{4}{4}$ $\frac{8}{1}$ $\frac{0}{\overline{2}}$

 $\therefore \overline{2} - 0 = -2 - 0 = -2 = \overline{2}$ and $\overline{3} - 8 = -3 - 8 = -11 = \overline{11} = \overline{11}$ By removing the vinculum in $4\overline{1}\overline{2}$. $\therefore 4\overline{1}\overline{2} = 4 - 1/10 - 1/\overline{2} = 3/9 - 1/10 - 2$ = 388

By removing the vinculum in 572.

 $\overline{2}$

By removing the vinculum in $4\overline{3}$.

 $\therefore 4\overline{3} = 4 - 1/10 - 3 = 37$

0 8

5 7

1 3 9

Then.

:. £	$57\overline{2}$	= 5/	7-1/	10-2	2 =50	58
Then	,					
		5	6	8		
		1	3	9		
		4	2	9		
		5	$\overline{4}$	1		
		3	9	4		

By removing the vinculum in 541.

 $\therefore 5\overline{4}1 = 5 \cdot \frac{1}{10 \cdot \frac{4}{1}} = 461$ Then, 4 6 1 3 9 4

5		•
0	6	7
9	3	$\overline{2}$
4	8	0

By removing the vinculum in $9\overline{3}\overline{2}$. $\therefore 9\overline{3}\overline{2} = 9 - 1/10 - 3/\overline{2} = 8/7/\overline{2}$ = 8/7-1/10-2 = 868 Then, 8 6 8 4 8 0 8 3 8

Type – II

Calculation with Vinculum	Calculation by removing Vinculum		
(i) Evaluate:			
7 8	7 8		
$-\frac{3}{4}$	$-\frac{3}{4}$		
5 2	-		
$\therefore \overline{4} = -4$ and $8 - \overline{4} = 8 - (-4) = 8 + 4 = 12$	By removing the vinculum in $3\overline{4}$.		
	$\therefore 3\overline{4} = 3 \cdot 1/10 \cdot 4 = 26$		
	Then,		
	$-\frac{2}{5}\frac{6}{2}$		
(ii) Evaluato:	5 2		
$\begin{array}{c} \text{(ii) Evaluate:} \\ 7 8 9 \end{array}$	789		
$3 5 \overline{4}$	$3 5 \overline{4}$		
$-\frac{3}{4}\frac{3}{4}\frac{3}{4}\frac{3}{3}$			
	By removing the vinculum in $35\overline{4}$		
	$35\overline{4} - 3/5 - 1/10 - 4 - 346$		
	Then, $334 - 373 + 100 + - 340$		
	7 8 9		
	3 4 6		
	$-\frac{1}{4}$ 4 3		
(iii) Evaluate: $5 \ 8 \ 2$	5 8 2		
$1 \overline{4} 6$			
$-\frac{1}{5}$ $+\frac{1}{2}$ $+\frac{1}{4}$			
5 2 4	\mathbf{D} and \mathbf{D} is the induction 1		
By removing the vinculum in 524. $52\overline{4} = 5/2 \cdot 1/10 \cdot 4$	By removing the vinculum in 146. $1\overline{46} = 11/10 4/6 = 0.66$		
524 = 5/2 - 1/10 - 4 = 516	140 = 1-1/10-4/8 = 000 Then,		
	5 8 2		
	0 6 6		
	5 1 6		
(iv) Evaluate:			
8 9 2	8 9 2		
$-\frac{5 \ \overline{3} \ \overline{4}}{4}$	$-\frac{5 \ \overline{3} \ \overline{4}}{7}$		
4 2 6			
	By removing the vinculum in $5\overline{34}$.		
	$\therefore 5\overline{3}\overline{4} = 5 \cdot 1/10 \cdot 3/\overline{4} = 4/7/\overline{4}$		
	= 4/7 - 1/10 - 4 = 466 Then		
	8 9 2		
	4 6 6		
	$-\frac{1}{4 \ 2 \ 6}$		

Type – III

Calculation with Vinculum	Calculation by removing Vinculum
(i) Evaluate: $\overline{2}$	\overline{a}
9 2 5 -	9 2
$-\frac{5}{4}\frac{4}{2}$	$-\frac{5}{-\frac{4}{-\frac{1}{1}{1}}}{1}}$
$\therefore \overline{2} - \overline{4} = -2 - (-4) = -2 + 4 = 2.$	By removing the vinculum in $9\overline{2}$ and $5\overline{4}$
	$\therefore 9\overline{2} = 9 - 1/10 - 2 = 88$
	and $5\overline{4} = 5 - 1/10 - 4 = 46$
	8 8
	4 6
	$-\frac{1}{4}$
(ii) Evaluate:	
9 $\overline{3}$ $\overline{2}$	9 3 2
$-\frac{4}{5} \frac{\overline{4}}{1} \frac{6}{\overline{8}}$	$-\frac{4 \overline{4} 6}{\overline{4}}$
$\therefore \overline{2} - 6 = -2 - 6 = -8 = \overline{8}$ and $\overline{3} - \overline{4} = -3 - (-4) = -3 + 4 = 1$	By removing the vinculum in $9\overline{32}$ and
By removing the vinculum in $51\overline{8}$	$4\overline{4}6$
$\therefore 51\overline{8} = 5/1 - 1/10 - 8$	$\therefore 9\overline{3}\overline{2} = 9 \cdot 1/10 \cdot 3/\overline{2} = 8/7/\overline{2}$
= 502	= 8//-1/10-2 = 868
	Then, $440 = 4 \cdot 1/10 \cdot 4/0 = 300$
	8 6 8
	3 6 6
	5 0 2
(iii) Evaluate: $\overline{2}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0 2 5 \\ 2 \overline{4} \overline{1} \end{array}$
$-\frac{3}{3}\frac{4}{6}\frac{1}{2}$	
By removing the vinculum in $36\overline{2}$	By removing the vinculum in $62\overline{3}$
$\therefore 36\overline{2} = 3/6 \cdot 1/10 \cdot 2$	and $3\overline{4}\overline{1}$.
= 358	$\therefore 62\overline{3} = 6/2 \cdot 1/10 \cdot 3 = 617$
	and $3\overline{4}\overline{1} = 3 \cdot 1/10 \cdot 4/\overline{1} = 2/6/\overline{1}$
	= 2/6 - 1/10 - 1 = 259
	6 1 7
	2 5 9
	$-\frac{3}{3}$ 5 8
(iv) Evaluate:	
9 3 0	9 3 0
$-\frac{7 \ 4 \ \overline{4}}{-1}$	$-\frac{7 \ 4 \ \overline{4}}{4}$
$2 \overline{7} 4$	
By removing the vinculum in $2\overline{7}4$.	By removing the vinculum in $9\overline{3}0$ and
$\therefore 2\overline{7}4 = 2 \cdot \frac{1}{10 \cdot \frac{7}{4}}$	$74\overline{4}$.

= 134

© 2018, IJMA. All Rights Reserved

 $\therefore 9\overline{3}0 = 9 - 1/10 - 3/0 = 870$

By removing the vinculum in
$$3\overline{1}1$$
.

$$\therefore 3\overline{1}1 = 3 \cdot \frac{1}{10} \cdot \frac{1}{10}$$

(C) Multiplication: <u>Calculation with Vinculum</u>

(i) Evaluate: $2 \overline{4}$

$$\frac{3}{8} \frac{4}{\overline{2}}$$

 $\therefore 3 \times \overline{4} = 3 \times -4 = -12 = \overline{12} = \overline{12}$ and $3 \times 3 + \overline{1} = 9 + (-1) = 9 - 1 = 8$ By removing the vinculum in $8\overline{2}$. $\therefore 8\overline{2} = 8 - 1/10 - 2 = 78$

(ii)	Eva	luate	e:			
				8	$\overline{4}$	
			×	6	3	
			$\overline{2}$	3	2	
		4	6	$\overline{4}$	0	
		4	4	7	2	
\cdot	$\overline{3}x$	$\overline{4} =$	-3 X	(-4)) = 12	2

By removing the vinculum in

$$\therefore 44\overline{7}2 = 4/4 - 1/10 - 7/2$$

= 4332

and
$$74\overline{4} = 7/4 \cdot 1/10 \cdot 4 = 736$$

Then,
 $-\frac{7 \cdot 3 \cdot 6}{1 \cdot 3 \cdot 4}$
 $7 \cdot \overline{4} \cdot \overline{1}$
 $4 \cdot \overline{3} \cdot \overline{2}$

By removing the vinculum in $7\overline{4}\overline{1}$ and $4\overline{3}\overline{2}$. $\therefore 7\overline{4}\overline{1} = 7 \cdot \frac{1}{10 \cdot \frac{4}{1}} = \frac{6}{6} \cdot \frac{1}{10 \cdot 1} = \frac{659}{6}$ and $4\overline{3}\overline{2} = \frac{4 \cdot \frac{1}{10 \cdot \frac{3}{2}}}{2} = \frac{3}{7} \cdot \frac{1}{10 \cdot 2}$ $= \frac{368}{2}$ Then, $\frac{6}{2} \cdot \frac{5}{9} \cdot \frac{9}{1}$

Calculation by removing Vinculum

3	$\overline{4}$
×	3

By removing the vinculum in $3\overline{4}$ $\therefore 3\overline{4} = 3 \cdot 1/10 \cdot 4 = 26$

Then,

2	6	
×	3	
7	8	
		_
	8	4
×	6	3

By removing the vinculum in $8\overline{4}$ and $6\overline{3}$

 $\therefore 8\overline{4} = 8 \cdot 1/10 \cdot 4 = 76$ and $6\overline{3} = 6 \cdot 1/10 \cdot 3 = 57$ Then, $7 \ 6$ $\times 5 \ 7$ $5 \ 3 \ 2$ $\frac{3 \ 8 \ 0 \ 0}{4 \ 3 \ 3 \ 2}$

(iii) Evaluate:

	3	2	$\overline{4}$
	×	3	$\overline{2}$
	$\overline{6}$	$\overline{4}$	8
9	5	$\overline{2}$	0
9	1	$\overline{6}$	8

By removing the vinculum in $9\overline{1}\overline{6}8$. $\therefore 9\overline{1}\overline{6}8 = 9 \cdot 1/10 \cdot 1/\overline{6}/8$

$$\frac{1\ 68 = 9 - \frac{1}{10 - 1}}{= \frac{8}{9}} \frac{6}{6} \frac{8}{8}$$

= 8/9-1/10-6/8

= 8848

(iv)	Eval	luate
(1)	Lva	iuuic.

		5	4	3
		х	5	$\overline{4}$
	1	9	5	$\overline{2}$
2	4	9	5	0
2	2	7	0	$\overline{2}$

By removing the vinculum in $22\overline{7}0\overline{2}$. $\therefore 22\overline{7}0\overline{2} = 2/2 \cdot 1/10 \cdot 7/0 \cdot 1/10 \cdot 2$ $= 2/1/3/\overline{1}/8$ $= 2/1/3 \cdot 1/10 \cdot 1/8$ = 21298

(v) Evaluate:

				3	4	2
			×	4	$\overline{1}$	4
			1	3	$\overline{6}$	8
			3	$\overline{4}$	2	0
1		3	6	$\overline{8}$	0	0
1	l	3	1	5	4	8

By removing the vinculum in $131\overline{5}\overline{4}8$. $\therefore 131\overline{5}\overline{4}8 = \frac{1}{3}1-\frac{1}{10-5}\overline{4}/8$ $= \frac{1}{3}0/5\overline{4}/8$ $= \frac{1}{3}0/5-\frac{1}{10-4}/8$

3	2	4
×	3	$\overline{2}$

By removing the vinculum in $32\overline{4}$ and $3\overline{2}$. $\therefore 32\overline{4} = 3/2 \cdot 1/10 \cdot 4 = 316$

and $3\overline{2} = 3 \cdot 1/10 \cdot 2 = 28$ Then, $3 \quad 1 \quad 6$ $\times \quad 2 \quad 8$ $6 \quad 3 \quad 2 \quad 0$

8	8	4	8
	5	$\overline{4}$	3
	×	5	4

By removing the vinculum in $5\overline{4}3$ and $5\overline{4}$

 \therefore 5 $\overline{4}3 = 5 \cdot 1/10 \cdot 4/3 = 463$ and 5 $\overline{4} = 5 \cdot 1/10 \cdot 4 = 46$ Then.

		4	6	3
		×	4	6
	2	7	7	8
1	8	5	2	0
2	1	2	9	8
			_	
	3	4	2	
×	4	1	4	

By removing the vinculum in $34\overline{2}$ and $4\overline{1}\overline{4}$ $\therefore 34\overline{2} = 3/4 \cdot 1/10 \cdot 2 = 338$ and $4\overline{1}\overline{4} = 4 \cdot 1/10 \cdot 1/\overline{4} = 3/9 \cdot 1/10 \cdot 4$ = 386Then, D. N. Garain* and Sanjeev Kumar** / Vedic Vinculum Problems when There Arise Carry Numbers / IJMA- 9(8), August-2018.

			3	3	8
		×	3	8	6
		2	0	2	8
	2	7	0	4	0
1	0	1	4	0	0
1	3	0	4	6	8

3. VERTICALLY AND CROSSWISE VEDIC METHOD FOR MULTIPLICATION IN VINCULUM NUMBERS

For vertically and crosswise product of $m\overline{n}$ and $p\overline{q}\overline{r}$, we have to make number of digits of two number to be same. For this we include 0 (Zero) at hundreds place of $m\overline{n}$ and $m\overline{n}$ is written as $0m\overline{n}$. Multiplication is written as –

$$\begin{array}{cccc} p & q & r \\ \times & 0 & m & \overline{n} \end{array}$$

Multiplication process is as follow

(i) Step - 1.

$$\begin{array}{l}
p \quad \overline{q} \\
0 \quad m \\
\overline{n}
\end{array} = \overline{r} \times \overline{n} = ab \\
a, b \in \mathbb{N} \cup \{0\}, ab = 1 \times b + 10 \times a
\end{array}$$

Here, a be the carry number and b is included in the result.

(ii) Step - 2.
$$p\begin{pmatrix} \overline{q} & \overline{r} \\ m & \overline{n} \end{pmatrix} = \overline{n} \times \overline{q} + \overline{r} \times m = cd$$
and $cd + a = ef$

Here, e be the carry number and f is included in the result left to b of step -1.

(iii) Step - 3.
$$\begin{pmatrix} p & \overline{q} & \overline{r} \\ 0 & m & \overline{n} \end{pmatrix} = \overline{n} \times p + \overline{r} \times 0 + \overline{q} \times \overline{n} = gh$$

and gh + e = ij

Here, i be the carry number and j is included in the result left to f of step -2.

(iv) Step - 4.
$$\begin{pmatrix} p & \overline{q} \\ 0 & m \end{pmatrix} \frac{\overline{r}}{\overline{n}} = m \times p + \overline{q} \times 0 = kl$$

and $kl + i = st$

Here, s be the carry number and t is included in the result left to j of step -3.

(v) Step - 5.
$$\begin{pmatrix} p \\ 0 \end{pmatrix} \frac{\overline{q}}{m} \frac{\overline{r}}{\overline{n}} = p \times 0 = 0$$

and o + s = sHere, s is included in the result left to t of step -4. Hence,

$$\therefore m\overline{n} \times p\overline{q}\overline{r} = \text{stifb}$$

Example – Evaluate: $6\overline{3} \times 32\overline{4}$

We write

	3	$\overline{2}$	$\overline{4}$
×	0	6	3

Fig.-5

(iii) (ii) (i)

> (v) (iv) Fig.-11 $3 \overline{2} \overline{4}$ \times 0 6 $\overline{3}$ $\overline{2}$ $\overline{7}$ 2 6 1 \therefore Answer = $16\overline{27}2$ By removing the vinculum in $16\overline{272}$

 $\therefore \ 16\overline{272} = 1/6 - 1/10 - 2/\overline{7}/2 = 1/5/8/\overline{7}/2 = 1/5/8 - 1/10 - 7/2 = 15732.$

© 2018, IJMA. All Rights Reserved

(1) Step - 1.

$$0 \quad 6 \quad (\overline{3}) = 4 \times 3 = 12$$
Here 1 here the set of the set

 $3\overline{2}(\overline{4})$ $\overline{4}$ $\overline{2}$ 12

Here, 1 be the carry number and 2 is included in the result.

(ii) Step - 2.
$$\begin{pmatrix} 3 \\ 0 \\ 6 \\ \hline 3 \end{pmatrix} = \overline{3} \times \overline{2} + \overline{4} \times 6 = \overline{18}$$

and
$$18 + 1 = 17$$

Here, $\overline{1}$ be the carry number and $\overline{7}$ is included in the result left to 2 of step – 1.

(iii) Step - 3.
$$\begin{pmatrix} 3 & \overline{2} & \overline{4} \\ 0 & 6 & \overline{3} \end{pmatrix} = \overline{3} \times 3 + \overline{4} \times 0 + 6 \times \overline{2} = \overline{21}$$

and $\overline{21} + \overline{1} = \overline{22}$

Here,
$$\overline{2}$$
 be the carry number and $\overline{2}$ is included in the result left to $\overline{7}$ of step – 2.

(iv) Step - 4.
$$\begin{pmatrix} 3 & \overline{2} \\ 0 & 6 \end{pmatrix} = 6 \times 3 + \overline{2} \times 0 = 18$$

and $18 + \overline{2} = 16$

Here, 1 be the carry number and 6 is included in the result left to $\overline{2}$ of step – 3.

(v) Step - 5.
$$\begin{pmatrix} 3 \\ 0 \end{pmatrix} = \frac{2}{6} = \frac{4}{3} = 3 \times 0 = 0$$

and $0 + 1 = 1$

Here, 1 is included in the result left to 6 of step -4.

Hence,

 $\therefore 6\overline{3} \times 32\overline{4} = 16\overline{2}\overline{7}2$ By removing the vinculum in $16\overline{2}\overline{7}2$ $\therefore 16\overline{272} = 1/6 - 1/10 - 2/\overline{7}/2 = 1/5/8/\overline{7}/2 = 1/5/8 - 1/10 - 7/2 = 15732.$

In short we may calculate this multiplication with the help of above process as follow step -

Fig.-8

Multiplication with vinculum Method:

	3	$\overline{2}$	4
	×	6	3
	9	7	2
7	$\overline{4}$	$\overline{4}$	0
6	3	3	2
	7	3 × 9 7 4 6 3	$\begin{array}{ccc} 3 & \overline{2} \\ \times & 6 \\ \hline 9 & 7 \\ 7 & \overline{4} & \overline{4} \\ \hline 6 & \overline{3} & 3 \end{array}$

By removing the vinculum in $16\overline{3}32$.

 $\therefore 16\overline{3}32 = 1/6 \cdot 1/10 \cdot 3/3/2 = 15732$

Example – Evaluate: $8\overline{4} \times 6\overline{3}$ Multiplication process is done by following steps -

4. CONCLUSION

We have performed addition, subtraction and multiplication of numbers with involvement of vinculum in which carry number appears. During the process by vertically and crosswise Vedic method it becomes simpler.

REFERENCES

- 1. Garain, D.N. and Kumar, Sanjeev "Algebraic representation of Vinculum and generalized rule for Vinculum Structure", International Journal of Mathematical Archive, 9 (6), (2018) 48 51.
- 2. Nicholas, A.P. William, K.R. and Pickles, j. Vertically and Crosswise, Motilal Banarsidass Publishers Private Limited, Delhi, 4 7. (1999).
- 3. Jagadguru Śańkarācārya Śrī Bhāratī Kṛṣṇa Tīrthajī Mahārāja and Agrawala, V.S. Vedic mathematics, Motilal Banarsidass Publishers Private Limited, Delhi, (1965) 33 44.
- 4. Ginsburg, Jekuthial and Smith, David Eugene "New Light on our numerals", Bulletin of the American Mathematical society, Second Series, 23(8), (1917) 366 369.
- 5. Williams, K.R. Vedic Mathematics Teacher's Manual (Intermediate level), Motilal Banarsidass Publisher Private Limited, Delhi, (2005) 24 26.
- 6. Williams, K.R. Astronomical Applications of Vedic Mathematics, Motilal Banarsidass Publisher Private Limited, Delhi, (2003) 4 7.

Source of support: Nil, Conflict of interest: None Declared.

[Copy right © 2018. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]