
International Journal of Mathematical Archive-9(8), 2018, 34-39 

Available online through www.ijma.info ISSN 2229 – 5046 

International Journal of Mathematical Archive- 9(8), August-2018                                                                                                               34 

 
ENTIRE RATE SEQUENCE SPACE OF INTERVAL NUMBERS 

 
Dr. D. CHRISTIAJEBA KUMARI 

 
Assistant professor, Department of Mathematics,  

Pope’s College, Sawyerpuram-628251, Thoothukudi District,  
Affiliated to Manonmaniam Sundaranar University,  

Tirunelveli-627012, Tamilnadu, India. 
 

(Received On: 17-04-18; Revised & Accepted On: 13-08-18) 
 
 

ABSTRACT 
In this paper we introduced the new concept of interval valued sequence space )(IRπΓ where ( )kπ is a sequence of 
positive  numbers. We present the different properties like completeness, solidness, AB property etc.  
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1. INTRODUCTION 
 
The power of interval arithmetic lies in its implementation on computers. In particular, outwardly rounded interval 
arithmetic allows rigorous enclosures for the ranges of operations and functions. This makes a qualitative difference in 
scientific computations, since the results are now intervals in which the exact result must lie. It also enables the use of 
computations for proving automated theorem. 
 
Interval arithmetic is a tool in numerical computing where the rules for the arithmetic of intervals are explicitly stated. 
It was first suggested by P.S.Dwyer [10] in 1951. Development of interval arithmetic as a formal system and evidence 
of its value as a computational device was provided by R.E.Moore [34], [35] in 1959 and 1962. 
 
A set consisting of a closed interval of real numbers x  such that bxa ≤≤  is called an interval number. A real 
interval can also be considered as a set. We denote the set of all real valued closed intervals by ℜI . Any element of 
ℜI  may be called closed interval and denoted by x̂ . That is, }.:{],[ˆ rlrl xxxxxxx ≤≤ℜ∈== An interval 

number x̂ is a closed subset of real numbers. Let rl xx and  be respectively referred to as the infimum (lower bound) 

and supremum (upper bound) of the interval number x̂ . If ]0,0[ˆ =x , then x̂ is said to be a zero interval. It is denoted 

by 0̂ . 

For ℜ∈ Ixx 21 , , we define 21 xx =  if and only if rrll xxandxx 2121 ==
 

)}:{ 212121 rrll xxxxxxxx +≤≤+ℜ∈=+  

)},,,max(),,,min(:{ 212121212121212121 rrlrrlllrrlrrlll xxxxxxxxxxxxxxxxxxxx ≤≤ℜ∈=×  
 
The set of all interval numbers ℜI is a complete metric space defined by  

},max{),( 212121 rrll xxxxxxd −−=  
 
In the special case ],[1 aax = and ],[2 bbx = , we obtain usual metric of ℜ . 
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Let us define transformation f: N→ℜ , k→ f(k)= ,kx then )( kxx = is called sequence of interval numbers. kx  is 

called kth term of sequence )( kxx = , iω  denotes the set of all interval numbers with real terms and the algebraic 

properties of iω  are in[7]. 
 
A sequence )( kxx = of interval numbers is said to be convergent to the interval number 0x if for each ε >0 there 

exists a positive integer k0 such that ε<),( 0xxd k  for all k≥ k0 and we denote it by 0lim xxkk
= . Equivalently 

0lim xxkk
= iff rkrklklk

xxandxx 00 limlim == . 

 
2. MAIN RESULTS 
 
The entire sequence space of symmetric interval numbers is denoted by )(IRπΓ where ( )kπ is a sequence of positive 

numbers and the set of functional of interval numbers is denoted by )(IRπΛ . 
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The metric d~ is defined by   
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which satisfies the metric space axioms . 
 
Theorem 2.1: The sequence space of interval numbers )(IRπΓ  is a complete metric space with respect to the metric 
defined by (2.1). 
 

Proof: Let 
( )
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positive integer 0n  such that 
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This leads to the fact 
( )

( )n
k

n
kx

π

~
is a interval number fundamental sequence in IR .Since IR is a complete metric space,  

( )

( )n
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is convergent 

( )

( )
k

k
n

k

n
k

n

xx
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Hence ( ) )(~ IRxk πΓ∈ .This completes the proof. 
 

Theorem 2.2: A necessary and sufficient condition that  
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Theorem 2.3: The sequence spaces of interval numbers )(IRπΓ  and )(IRπΛ  are solid. 
 

Proof: Consider, )(IRπΓ . Now let 
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It is clear that )(~ IRyk πΓ∈  
 
Therefore )(IRπΓ is solid. 
 
Similarly, it can be proved that )(IRπΛ  is solid. 
 
Theorem 2.4: The sequence of interval numbers   ,..)~....~,~( 21 keee  is schauder base for )(IRπΓ ,  

where ,...}0~],1,1,...[0~,0~{~ =ke . 
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Theorem 2.5: The β dual of the sequence space of interval numbers )( IRπΓ is )(IRπΛ . 
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