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ABSTRACT 
In this paper we introduce a new class of open sets called the class of  #𝛼𝑟𝑔 -open and study their relationship with 
other open sets.   Also we introduce of  #𝛼𝑟𝑔 neighbourhood (shortly#𝛼𝑟𝑔 -nbhd) in topological spaces #𝛼𝑟𝑔-closure. 
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`  
1. INTRODUCTION 
 
Regular open sets and rw-open sets have been introduced and investigated by stone [18] and Benchalli and Wali [1] 
Maki [10] defined α-generalized closed sets in 1994. Dontchev, Gnanambal and Palaniappan and Rao [5, 7, 13] 
introduce gsp closed sets. Syed Ali Fatima [19] defined #rg-closed sets.  In this paper we introduce new class of sets 
called: #𝛼𝑟𝑔 -open sets which is properly placed in between the class of #rg -open sets and the class of 𝜶g-open sets. 
 
Throughout this paper (X,𝜏)  represents a  on-empty topological space on which no separation axiom is assumed unless 
otherwise mentioned.  For a subset A of a topological space X, cl(A) and int(A) denote the closure of A and the interior 
of A respectively (X,𝜏)  will be replaced by X if there is no chance of confusion. X\A or Ac denotes the complement of 
A in X.  Let us recall the following definitions. 
 
Definition 1.1: A Subset A of a space X is called   
(1)  a preopen set [11] if A⊆ int(cl (A)) and a preclosed set if cl(int (A) ) ⊆A 
(2)  a semiopen set [8] if A⊆cl(int (A)) and a semiclosed set if int(cl (A) ⊆A 
(3) an α-open set [ 21] if A⊆int(cl(int(A))) and an α-closed set [ ]if cl(int(cl(A))) ⊆A 
(4) a regular open set [13] if A=int(cl (A))and a regular closed set if A=cl(int (A)) 
(5)  a π-open set [1] if A is a  finite union of regular open sets. 
(6)  regular semi open [15] if there is a regular open U such  U⊆A⊆cl(U) 
 
Definition 1.2: A subset A of a topological space  (X,𝜏)  is called.  
(1) an α-generalized  closed set (briefly  αg-closed)[14] if αcl(A) ⊆U whenever A⊆U and  U is open in (X,𝜏) .  
(2)  a generalized pre closed set (briefly gp-closed) [14] if pcl(A)⊆U whenever A ⊆U  and U is open (X,𝜏)  
(3)  a generalized  semi pre closed set (briefly gsp-closed) [14] if spcl(A)⊆U whenever  A⊆U and U is a open (X,𝜏)     
(4)  a generalized α--closed (i.e., g α--closed) set [21] if αcl(A) ⊆U  whenever  A⊆U  and U is open set in X. 
(5)  #rg-closed (19) if cl(A) ⊆U whenever A⊆U  and U is rw-open. 
(6) #𝛼𝑟𝑔-closed ( ) if αcl(A) ⊆U whenever A⊆U  and U is rw-open, 
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2. #𝜶-REGULAR GENERALIZED OPEN SETS 
 
In this section we introduce the concept of #𝛼𝑟𝑔 − 𝑜𝑝𝑒𝑛 sets and characterize their properties. 
 
Definition 2.1: A subset A of a space X is called #𝛼 − 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 generalized open (briefly #𝛼𝑟𝑔 − 𝑜𝑝𝑒𝑛) set if its 
complement  is #𝛼𝑟𝑔 − 𝑐𝑙𝑜𝑠𝑒𝑑.  We denote the set of all #𝛼𝑟𝑔 − 𝑜𝑝𝑒𝑛 sets in  X by #𝜶𝑹𝑮O(𝑿) 
 
Remark 2.2: 𝛼𝑐𝑙(𝑋\𝐴) = 𝑋\𝛼𝑖𝑛𝑡(𝐴) 
 
Theorem 2.3: A subset A of X is #𝛼𝑟𝑔 − 𝑜𝑝𝑒𝑛  if and only if 𝐹 ⊆ 𝛼𝑖𝑛𝑡(𝐴) whenever F is rw-closed and  𝐹 ⊆A. 
 
Proof: 
 
Necessity: Let A be #𝛼𝑟𝑔 − 𝑜𝑝𝑒𝑛. Let F be rw-closed and 𝐹 ⊆ 𝐴 then 𝑋\𝐴 ⊆ 𝑋\𝐹 Since X\A is #𝛼𝑟𝑔 − 𝑐𝑙𝑜𝑠𝑒𝑑, 
𝛼𝑐𝑙(𝑥\𝐴) ⊆ 𝑋\𝐹 by Remark 2.2 𝑋\𝛼𝑖𝑛𝑡(𝐴) ⊆ 𝑋\𝐹 that is 𝐹 ⊆ 𝛼𝑖𝑛𝑡 (𝐴). 
 
Sufficiency: Suppose F is rw-closed and 𝐹 ⊆ 𝐴 implies 𝐹 ⊆ 𝛼𝑖𝑛𝑡 (𝐴). Let X\A U where U is rw-open.Then X\∪⊆ 𝐴  
and X\U is rw-closed. By hypothesis     𝑋\∪⊆ 𝛼𝑖𝑛𝑡(𝐴). That is 𝑋\𝛼𝑖𝑛𝑡(𝐴) ⊆ 𝑈 by Remark 2.2  𝛼𝑐𝑙(𝑥\𝐴) ⊆ 𝑈.  Hence 
X\A is  #𝛼𝑟𝑔 −closed.   Thus A is #𝛼𝑟𝑔 − open. 
 
Theorem 2.4:  If  𝛼𝑖𝑛𝑡(𝐴) ⊆ 𝐵 ⊆ 𝐴  and A is #𝛼𝑟𝑔 − open then B is #𝛼𝑟𝑔 − open. 
 
Proof: Let A be #𝛼𝑟𝑔 − open set and  𝛼𝑖𝑛𝑡(𝐴) ⊆ 𝐵 ⊆ 𝐴.  Now 𝛼𝑖𝑛𝑡(𝐴) ⊆ 𝐵 ⊆ 𝐴 implies 𝑋\𝐴 ⊆ 𝑋\𝐵 ⊆ 𝑋\𝛼𝑖𝑛𝑡 (𝐴).   
That is 𝑋\𝐴 ⊆ 𝑋\𝐵 ⊆ 𝛼𝑐𝑙(𝑥\𝐴).  Since X\A is #𝛼𝑟𝑔 − 𝑐𝑙𝑜𝑠𝑒𝑑   then A is #𝛼𝑟𝑔 − 𝑜𝑝𝑒𝑛. X\B is #𝛼𝑟𝑔 − 𝑐𝑙𝑜𝑠𝑒𝑑  then 
B is #𝛼𝑟𝑔 − 𝑜𝑝𝑒𝑛. 
 
Remark 2.5: For any 𝐴 ⊆ 𝑋, 𝛼𝑖𝑛𝑡(𝛼𝑐𝑙(𝐴)\𝐴) = 𝜙 
 
Theorem 2.6: If 𝐴 ⊆ 𝑋 is #𝛼𝑟𝑔 − 𝑐𝑙𝑜𝑠𝑒𝑑 then 𝛼𝑐𝑙(𝐴)\𝐴 is #𝛼𝑟𝑔 − 𝑜𝑝𝑒𝑛. 
 
Proof: Let A be #𝛼𝑟𝑔 − 𝑐𝑙𝑜𝑠𝑒𝑑.  Let F be rw-closed set such that 𝐹 ⊆ 𝛼𝑐𝑙(𝐴)\𝐴.  Then by theorem 3.2  [21] F= 𝜙      
So,   𝐹 ⊆  𝛼𝑖𝑛𝑡( 𝛼𝑐𝑙(𝐴)\𝐴).  This shows that  𝛼𝑐𝑙(𝐴)\𝐴 is  # 𝛼𝑟𝑔 − 𝑜𝑝𝑒𝑛. 
 
Theorem 2.7: If a subset A of a space X is # 𝑟𝑔 − 𝑜𝑝𝑒𝑛 then it is # 𝛼𝑟𝑔 − 𝑜𝑝𝑒𝑛  but not conversely. 
 
Proof: Let A be #𝑟𝑔 − 𝑜𝑝𝑒𝑛  set in space X. Then X\A is #𝑟𝑔 − 𝑐𝑙𝑜𝑠𝑒𝑑 set. By Theorem 3.2 [21] X\A is # 𝛼𝑟𝑔 −
𝑐𝑙𝑜𝑠𝑒𝑑.  Therefore A is # 𝛼𝑟𝑔 − 𝑜𝑝𝑒𝑛 set in X.  
  
The converse of the theorem need not be true as seen from the following example. 
 
Example 2.8: Let 𝑋 = {𝑎, 𝑏, 𝑐,𝑑} be with topology 𝜏 = {𝑋,𝜙, {𝑎, 𝑏}} then the set A={a,b,c} is #𝛼𝑟𝑔 − 𝑜𝑝𝑒𝑛  but not 
#𝑟𝑔 − 𝑜𝑝𝑒𝑛 in X. 
 
Corollary 2.9: Every regular open set is #𝛼𝑟𝑔 − 𝑜𝑝𝑒𝑛 but not conversely. 
 
Proof: Follows from Fathima [20] and Theorem [2.7] 
 
Corollary 2.10: Every 𝜋 − 𝑜𝑝𝑒𝑛  sent is #𝛼𝑟𝑔 − 𝑜𝑝𝑒𝑛 but not conversely. 
 
Proof: Follows from Fathima [20] and Theorem [2.7] 
 
Theorem 2.11: If a subset A of a topological space (X,𝜏) is open that it is #𝛼𝑟𝑔 − 𝑜𝑝𝑒𝑛 but not conversely. 
 
Proof:  Let A be an open set in a space X. Then X\A is closed set. By Theorem 3.7 [21] X\A is #𝛼𝑟𝑔 − 𝑐𝑙𝑜𝑠𝑒𝑑.    
Therefore A is #𝛼𝑟𝑔 − 𝑜𝑝𝑒𝑛 set in X. The converse of the theorem need not be true as seen from the following 
example. 
 
Example 2.12: Let X ={a, b, c, d} be with topology 𝜏 = {𝑋,𝜙, {𝑐}, {𝑎, 𝑏}, {𝑎, 𝑏, 𝑐}} then the set {b} is #𝛼𝑟𝑔 − 𝑜𝑝𝑒𝑛 
but not open set in X. 
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Theorem 2.13: If a subset A of a topological Space (X,𝜏) is 𝛼 −open then it is #𝛼𝑟𝑔 − 𝑜𝑝𝑒𝑛 but not conversely. 
 
Proof: Let A be 𝛼 − 𝑜𝑝𝑒𝑛 set in X. Then X\A is 𝛼 − 𝑐𝑙𝑜𝑠𝑒𝑑 set then by theorem 3.10 [21] X\A is  #𝛼𝑟𝑔 − 𝑐𝑙𝑜𝑠𝑒𝑑 set 
in X. Therefore A is  #𝛼𝑟𝑔 − 𝑜𝑝𝑒𝑛 set in X. 
 
The converse of the theorem need not be true as seen from the following example. 
 
Example 2.14: Let X = {a, b, c, d} be with topology 𝜏 = {𝑋,𝜙, {𝑐}, {𝑎, 𝑏}{𝑎, 𝑏, 𝑐}} then the set {a} is #𝛼𝑟𝑔 − 𝑜𝑝𝑒𝑛 but 
not 𝛼 − 𝑜𝑝𝑒𝑛 set in X. 
 
Theorem 2.15: If a subset A of X is #𝛼𝑟𝑔 − 𝑜𝑝𝑒𝑛 then it is gp-open but not conversely. 
 
Proof: Let A be #𝛼𝑟𝑔 − 𝑜𝑝𝑒𝑛 set in a space X. Then X\A is #𝛼𝑟𝑔 − 𝑐𝑙𝑜𝑠𝑒𝑑  set in X then by theorem 3.12 [21] X\A 
is gp-closed set in X.  Therefore A is gp-open in X. 
 
The converse of the theorem need not be true as seen from the following example. 
 
Example 2.16: Let X ={a,b,c,d} be with the topology 𝜏 = {𝑋,𝜙, {𝑎, 𝑏}} then the set A={a,d} is gp-open but not  
#𝛼𝑟𝑔 − 𝑜𝑝𝑒𝑛 set in X. 
 
Theorem 2.17: If a subset A of a space X is #𝛼𝑟𝑔 − 𝑜𝑝𝑒𝑛 then it is 𝛼𝑔 − 𝑜𝑝𝑒𝑛. 
 
Proof: Let A be #𝛼𝑟𝑔 − 𝑜𝑝𝑒𝑛 in X. Then X\A is #𝛼𝑟𝑔 − 𝑐𝑙𝑜𝑠𝑒𝑑 set in X. Then By theorem 3.14 [21] X\A is        
𝛼𝑔 − 𝑐𝑙𝑜𝑠𝑒𝑑 set in X.  Therefore A is 𝛼𝑔 − 𝑜𝑝𝑒𝑛 in X. 
 
The converse of the theorem need not be true as seen from the following example. 
 
Example 2.18: Let X ={a,b,c} be with the topology 𝜏 = {𝑋,𝜙, {𝑐}, {𝑎, 𝑏}} the set A={a,c} is 𝛼𝑔 − 𝑜𝑝𝑒𝑛 but not 
#𝛼𝑟𝑔 − 𝑜𝑝𝑒𝑛 set in X. 
 
Theorem 2.19: If a subset A of a space X is #𝛼𝑟𝑔 − 𝑜𝑝𝑒𝑛 then it is gsp-open. 
 
Proof: Let A be #𝛼𝑟𝑔 − 𝑜𝑝𝑒𝑛 in X. Then X\A is #𝛼𝑟𝑔 − 𝑐𝑙𝑜𝑠𝑒𝑑 set in X. Then by theorem 3.16 [21] X\A is gsp-
closed set in X.  Therefore A is gsp-open in X. 
 
The converse of the theorem need not be true as seen from the following example. 
 
Example 2.20: Let X ={a, b, c} be with the topology 𝜏 = �𝑋,𝜙, {𝑐}, {𝑎,𝑏}� then the set A={a,c} is gsp-open but not 
#𝛼𝑟𝑔 − 𝑜𝑝𝑒𝑛  
 
Theorem 2.21: If A and B are #𝛼𝑟𝑔 − 𝑜𝑝𝑒𝑛 set in a space X.  The 𝐴⋂𝐵 is also #𝛼𝑟𝑔 − 𝑜𝑝𝑒𝑛 set in X. 
 
Proof: If A and B are #𝛼𝑟𝑔 − 𝑜𝑝𝑒𝑛 sets in a space X. Then X\A and X\B are #𝛼𝑟𝑔 − 𝑐𝑙𝑜𝑠𝑒𝑑 sets in a space X. By 
theorem 3.20 [21]  (X\A)∪ (𝑋\𝐵) is also #𝛼𝑟𝑔 − 𝑐𝑙𝑜𝑠𝑒𝑑 sets in X. Therefore 𝐴⋂𝐵 is #𝛼𝑟𝑔 − 𝑜𝑝𝑒𝑛 set in X. 
 
Theorem 2.22: The union of two #𝛼𝑟𝑔 − 𝑜𝑝𝑒𝑛 sets in X is not a #𝛼𝑟𝑔 − 𝑜𝑝𝑒𝑛 set in X. 
 
Example 2.23: Let X = {a,b,c,d} be with topology 𝜏 = �𝑋,𝜙, {𝑎}, {𝑏}, {𝑎, 𝑏}�  then the set A={b,c} and B={b,d} are 
  #𝛼𝑟𝑔 − 𝑜𝑝𝑒𝑛 set in X  but 𝐴 ∪ 𝐵 = {𝑏. 𝑐,𝑑} is not #𝛼𝑟𝑔 − 𝑜𝑝𝑒𝑛 set in X. 
 
Theorem 2.24: If a set A is #𝛼𝑟𝑔 − 𝑜𝑝𝑒𝑛 set in X then G=X whenever G is rw-open and  (𝛼 𝑖𝑛𝑡(𝐴) ∪ (𝑋\𝐴)) ⊆ 𝐺. 
 
Proof: Suppose that A is #𝛼𝑟𝑔 − 𝑜𝑝𝑒𝑛 set in X. Let G be rw-open and  (𝛼𝑖𝑛𝑡(𝐴) ∪ (𝑋\𝐴)) ⊆ 𝐺.  This implies 
𝐺𝑐  ⊆ (𝛼𝑖𝑛𝑡(𝐴)𝑈𝐴𝑐 )𝑐=(𝛼𝑖𝑛𝑡(𝐴))𝑐 ∩A. That is 𝐺𝑐  ⊆ (𝛼𝑖𝑛𝑡(𝐴))𝑐\𝐴𝑐.  Thus 𝐺𝑐  ⊆ 𝛼𝑐𝑙(𝐴𝑐 )\𝐴𝑐  Now 𝐺𝑐 is rw-closed 
and 𝐴𝑐 is #𝛼𝑟𝑔 − 𝑐𝑙𝑜𝑠𝑒𝑑,  by theorem 3.23 [21]  it follows that 𝐺𝑐=𝜙.  Hence G=X. 
 
Theorem 2.25: Every Singleton point set in a space is either #𝛼𝑟𝑔 − 𝑜𝑝𝑒𝑛 or rw-closed. 
 
Proof:  Follows from theorem 3.27 [21] 
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3. #𝜶-REGULAR GENERALIZED NEIGHBOURHOODS 
 
Definition 3.1: Let X be a topological space and let x ∈ 𝑋. A subset N of x is said to be  #𝛼rg − Neighbourhood 
(briefly #𝛼𝑟𝑔 − 𝑛𝑏ℎ𝑑) of x if and only if there exists a #𝛼𝑟𝑔 − 𝑜𝑝𝑒𝑛 set U such that x∈∪⊂ 𝑁. 
 
Definition 3.2: A subset N of space X is called a #𝛼𝑟𝑔 − 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑 (briefly #𝛼𝑟𝑔 − 𝑛𝑏ℎ𝑑) of A⊂ 𝑋 if and 
only if there exists a #𝛼𝑟𝑔 − 𝑜𝑝𝑒𝑛 set U such that A⊂ 𝑈 ⊂ 𝑁. 
 
Theorem 3.3: Every neighbourhood of N of x ∈ 𝑋 is a #𝛼rg − Neighbourhood  of X. 
 
Proof: Let N be a neighbourhood of point 𝑥 ∈ 𝑋 by definition of neighbourhood, there exists an open set U such that 
x∈∪⊂ 𝑁. Since every open set is #𝛼𝑟𝑔 − 𝑜𝑝𝑒𝑛 set, U is #𝛼𝑟𝑔 − 𝑜𝑝𝑒𝑛 set such that 𝑥 ∈∪⊆ 𝑁. This implies N is 
#𝛼rg − Neighbourhood of X.    
 
The converse of the above theorem need not be true as seen from the following example. 
 
Example 3.4: Let  X={a, b, c, d} be   with  topology  𝜏 = {𝑋.𝜙, {𝑐}, {𝑎, 𝑏}, {𝑎, 𝑏, 𝑐}} Then #𝛼RGO(X) 
{X,𝜙,{a},{b},{c},{a,b},{a,b,c}}.  The set {b, d} is #𝛼𝑟𝑔 − 𝑛𝑏ℎ𝑑 of the point b, since the  #𝛼𝑟𝑔 − 𝑜𝑝𝑒𝑛 set {b} is 
such that b∈ {𝑏} ⊆ {𝑏,𝑑}.  However the set {b, d} is not a nbhd of the point b.  Since no open set U exists such that 
𝑏 ∈ {𝑏} ⊆ {𝑏,𝑑}.  However the set {b, d} is not a nbhd of the point b.  Since no open set U exists such that b∈ 𝑈 ⊆
{𝑏,𝑑}. 
 
Theorem 3.5: If a subset N of a space X is #𝛼𝑟𝑔 − 𝑜𝑝𝑒𝑛 then N is #𝛼𝑟𝑔 − 𝑛𝑏ℎ𝑑 of each of its point. 
 
Proof: Suppose N is #𝛼𝑟𝑔 − 𝑜𝑝𝑒𝑛 let 𝑥 ∈ 𝑁,  For N is  #𝛼𝑟𝑔 − 𝑜𝑝𝑒𝑛   set such that 𝑥 ∈ 𝑁 ⊆ 𝑁 Since ‘x’ is an 
arbitrary point of  N, it follows that N is a #𝛼𝑟𝑔 − 𝑛𝑏ℎ𝑑 of each of its points. The converse of the theorem is not true as 
seen from the following example. 
 
Example 3.6: Let X={a, b, c, d} be with topology 𝜏 = {𝑋,𝜙, {𝑐}, {𝑎, 𝑏}, {𝑎, 𝑏, 𝑐}} then #𝛼𝑅𝐺𝑂(𝑋) = {𝑋,𝜙, {𝑎}, {𝑏}, {𝑐},        
{𝑎, 𝑏, 𝑐}}  The set {b,c} is a #𝛼𝑟𝑔 − 𝑛𝑏ℎ𝑑 of the point b. Since the #𝛼𝑟𝑔 − 𝑜𝑝𝑒𝑛 set {b} is such that b∈ {𝑏} ⊂ {𝑏, 𝑐}.   
Also the set {b,c} is #𝛼𝑟𝑔 − 𝑛𝑏ℎ𝑑 of the point {c} since the  #𝛼𝑟𝑔 − 𝑜𝑝𝑒𝑛 set {c} is such that 𝑐 ∈ {𝑐} ⊆ {𝑏, 𝑐}, That 
is {b,c} is a #𝛼𝑟𝑔 − 𝑛𝑏ℎ𝑑 of each of its points.  However the set {b,c} is not #𝛼𝑟𝑔 − 𝑜𝑝𝑒𝑛  set in X. 
 
Theorem 3.7: If F is a #𝛼𝑟𝑔 − 𝑐𝑙𝑜𝑠𝑒𝑑  subset of X and 𝑥 ∈ 𝐹𝑐 then there exists a #𝛼𝑟𝑔 − 𝑛𝑏ℎ𝑑   N of x such that 
N∩ 𝐹 = 𝜙. 
 
Proof: Let F be #𝛼𝑟𝑔 − 𝑐𝑙𝑜𝑠𝑒𝑑 subset of X and x∈ 𝐹𝑐 then 𝐹𝑐 is #𝛼𝑟𝑔 − 𝑜𝑝𝑒𝑛 set of  X.  So by theorem 3.5 𝐹𝑐 
contains a #𝛼𝑟𝑔 − 𝑛𝑏ℎ𝑑 of each of its points. Hence there exists a  #𝛼rg − nbhd.N of  x such that 𝑁 ⊆ 𝐹𝐶 . Hence 
𝑁 ∩ 𝐹 = 𝜙 
 
Definition 3.8: Let x be a point in a space X. The set of all #𝛼𝑟𝑔 − 𝑛𝑏ℎ𝑑 of x is called #𝛼𝑟𝑔 − 𝑛𝑏ℎ𝑑 system at X and  
is denoted by #𝛼𝑟𝑔 − 𝑁(𝑋). 
 
Theorem 3.9: Let  X be a topological space and for each x∈ 𝑋.  #𝛼𝑟𝑔 − 𝑁(𝑥) be the collection of all #𝛼𝑟𝑔 − 𝑛𝑏ℎ𝑑𝑠 of  
x.  Then we have the following results. 

(i) 𝑉𝑥 ∈ 𝑋,    #𝛼𝑟𝑔 − 𝑁(𝑥) ≠ 𝜙 
(ii) 𝑁 ∈ #𝛼rg-N(x) ⇒ x N 
(iii) 𝑁 ∈ #𝛼rg-N(x), 𝑁 ⊂ 𝑀 ⇒ 𝑀 ∈ #𝛼rg-N(x) 
(iv) 𝑁 ∈ #𝛼rg-N(x)  𝑀 ∈ #𝛼rg-N(x) ⇒ N∩𝑀 ∈ #𝛼rg-N(x) 
(v) 𝑁 ∈ #𝛼rg-N(x) there exists M∈ #𝛼rg-N(x) such that M⊂ 𝑁 and 𝑀 ∈ #𝛼rg-N(y) For every y∈ 𝑀. 

 
Proof: 

(i) Since X is a #𝛼𝑟𝑔 − 𝑜𝑝𝑒𝑛 set, it is #𝛼𝑟𝑔 − 𝑛𝑏ℎ𝑑 of every 𝑥 ∈ 𝑋. Hence there exists atleast one #𝛼𝑟𝑔 − 𝑛𝑏ℎ𝑑 
(namely X) for each 𝑥 ∈ 𝑋.  Hence #𝛼𝑟𝑔 − 𝑁(𝑥) ≠ 𝜙 for every  𝑥 ∈ 𝑋. 

(ii) If 𝑁 ∈ #𝛼𝑟g-N(x)  then N is a #𝛼𝑟𝑔 − 𝑛𝑏ℎ𝑑 of  x.  So by the definition of  #𝛼 𝑟𝑔 − 𝑛𝑏ℎ𝑑,  x∈ 𝑁. 
(iii) Let 𝑁 ∈ #𝛼rg-N(x) 𝑎𝑛𝑑  𝑁 ⊂ 𝑀.  Then there is a #𝛼rg-open set U such that x U⊂ 𝑁   since 𝑁 ⊂ 𝑀, x

U⊂ 𝑁   and so M is # 𝛼𝑟𝑔 − 𝑛𝑏ℎ𝑑 of x.  Hence M #𝛼𝑟𝑔 − 𝑁(𝑥).  
(iv) Let N∈ #𝛼rg-N(x) and M #𝛼rg-N(x).  Then by definition of # 𝛼𝑟𝑔 − 𝑛𝑏ℎ𝑑 there exists #𝛼rg-open sets U1 

and U2 such that x∈ 𝑈1⊂ 𝑁 and x U2⊂ 𝑀. Hence x U1 U2⊂ 𝑁 ∩𝑀. Since U1 2 is #𝛼𝑟𝑔 − 𝑜𝑝𝑒𝑛 𝑠𝑒𝑡,  N∩𝑀 
is a # 𝛼𝑟𝑔 − 𝑛𝑏ℎ𝑑 of x.  Hence N M∈ 𝛼𝑔𝑟 − 𝑁(𝑥).  
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(v) If N∈ #𝛼𝑟𝑔 − 𝑁(𝑥) then there exists a # 𝛼𝑟𝑔 − 𝑜𝑝𝑒𝑛 set M. Such that x∈ 𝑀 ⊂ 𝑁.  Since M is a #𝛼𝑟𝑔 −

𝑜𝑝𝑒𝑛 𝑠𝑒𝑡,  it is #𝛼𝑟𝑔 − 𝑛𝑏ℎ𝑑 of each of its points.  Therefore M∈ #𝛼𝑟𝑔 − 𝑁(𝑦) for every y∈ 𝑀. 
 
4.  #𝜶-REGULAR GENERALIZED   CLOSURE AND THEIR PROPERTIES. 
 
Definition 4.1: For a subset A of X # 𝛼𝑟𝑔-cl(A)= ∩{F:A⊆ 𝐹, F is # 𝛼𝑟𝑔 − 𝑐𝑙𝑜𝑠𝑒𝑑 𝑖𝑛𝑋} 
 
Definition 4.2: Let (X,𝜏) be a topological space and 𝜏#𝛼𝑟𝑔={V⊆X, # 𝛼𝑟𝑔 − 𝑐𝑙(𝑋\𝑉)=X\V). 
 
Remark 4.3: If A⊆ 𝑋 is  # 𝛼𝑟𝑔 − 𝑐𝑙𝑜𝑠𝑒𝑑 then # 𝛼𝑟𝑔 − 𝑐𝑙(𝐴) = 𝐴. But the converse is not time, it is seen from the 
following example. 
 
Example 4.4: Let X = {a,b,c,d} be with topology. 𝜏 = {𝑋,𝜙, {𝑎}, {𝑏}, {𝑎, 𝑏}} Let A={b, c}  then # 𝛼𝑟𝑔-cl(A) =A but A 
is not # 𝛼𝑟𝑔 − 𝑐𝑙𝑜𝑠𝑒𝑑. 
 
Remark 4.5: # 𝛼𝑟𝑔 − 𝑐𝑙(𝜙) = 𝜙 and # 𝛼𝑟𝑔 − 𝑐𝑙(𝑋) = 𝑋. 

(i) A ⊆# 𝛼𝑟𝑔 − 𝑐𝑙(𝐴) for every subset A of X. 
(ii) Let A and B be subsets of X if A⊆ 𝐵 then # 𝛼𝑟𝑔-cl(A)⊆ #𝛼𝑟𝑔-cl(B). 

 
Theorem 4.6: Suppose 𝜏#𝛼𝑟𝑔 is a topology. If A is # 𝛼𝑟𝑔-closed in (X,𝜏) then A is 𝛼 − 𝑐𝑙𝑜𝑠𝑒𝑑 𝑖𝑛 (X, 𝜏#𝛼𝑟𝑔). 
 
Proof: Suppose A is # 𝛼𝑟𝑔-closed in (X,𝜏), # 𝛼𝑟𝑔 − 𝑐𝑙(𝐴) = 𝐴.  This implies X\A∈ 𝜏#𝛼𝑟𝑔. That is X\A is 𝛼 −
𝑜𝑝𝑒𝑛 𝑖𝑛 �𝑋, 𝜏#𝛼𝑟𝑔�.   Hence A is 𝛼 − 𝑐𝑙𝑜𝑠𝑒𝑑 𝑖𝑛 (𝑋, 𝜏#𝛼𝑟𝑔) 
 
Theorem 4.7: For any x∈ 𝑋, 𝑥 ∈ # 𝛼𝑟𝑔 − 𝑐𝑙(𝐴) if and only  if V∩ 𝐴 ≠ 𝜙 for every # 𝛼𝑟𝑔 − 𝑜𝑝𝑒𝑛 𝑠𝑒𝑡  V containing  
x. 
 
Proof:  
Necessity: Let x∈ # 𝛼𝑟𝑔 − 𝑐𝑙(𝐴).  Suppose there exists a #𝛼𝑟𝑔 − 𝑜𝑝𝑒𝑛 set V containing x such that V∩ 𝐴 = 𝜙.  Since 
A X\V, # 𝛼𝑟𝑔 − 𝑐𝑙(𝐴) ⊆\𝑉 this implies that x∉ # 𝛼𝑟𝑔 − 𝑐𝑙(𝐴)a contradiction. 
 
Sufficiency: Suppose x∉ # 𝛼𝑟𝑔 − 𝑐𝑙(𝐴), then there exists a # 𝛼𝑟𝑔 −closed subset F containing A such that x F, Then 
x X\F and X\F is #𝛼𝑟𝑔 − 𝑜𝑝𝑒𝑛.  Also (X\F) ∩ 𝐴 = 𝜙 a contradiction. 
 
Theorem 4.8: Let A and B be subsets of X then # 𝛼𝑟𝑔-cl(A∩ 𝐵) ⊆ # 𝛼𝑟𝑔 − 𝑐𝑙(𝐴) ∩# 𝛼𝑟𝑔 − 𝑐𝑙(𝐵). 
 
Proof: Since A∩ 𝐵 ⊆A and B, by Remark 4.5 # 𝛼𝑟𝑔 − 𝑐𝑙(A∩ 𝐵) ⊆ #𝛼 𝑟𝑔-cl(A) and  # 𝛼𝑟𝑔 − 𝑐𝑙(A∩ 𝐵) ⊆ # 𝛼𝑟𝑔-
cl(B) thus # 𝛼𝑟𝑔 − 𝑐𝑙(A∩ 𝐵) ⊆ # 𝛼𝑟𝑔-cl(A) ∩  # 𝛼𝑟𝑔 − 𝑐𝑙 (B). 
 
Remark 4.9: # 𝛼𝑟𝑔 − 𝑐𝑙(A) ∩ # 𝛼𝑟𝑔-cl(B) # 𝛼𝑟𝑔-cl(A∩ 𝐵) it is seen from the following example. 
 
Example 4.10: Let X ={a, b, c, d} be with topology 𝜏 = �𝑋,𝜙, {𝑎}, {𝑏}, {𝑎, 𝑏}, {𝑎, 𝑏, 𝑐}�. Let A={a} and B={d} 
𝐴 ∩ 𝐵 = ∅ # 𝛼𝑟𝑔-cl(A)={a,d} and # 𝛼𝑟𝑔-cl(B)={d} Then # 𝛼𝑟𝑔-cl(A) ∩  # 𝛼𝑟𝑔-cl(B) ={d} # 𝛼𝑟𝑔-cl(𝐴 ∩ 𝐵) 
 
Theorem 4.11: If A and B are # 𝛼𝑟𝑔-closed sets then # 𝛼𝑟𝑔-cl(𝐴 ∪ 𝐵) = # 𝛼𝑟𝑔-cl(A)  # 𝛼𝑟𝑔-cl(B). 
 
Proof: Let A and B be # 𝛼𝑟𝑔-closed in X. Then 𝐴 ∪ 𝐵 is also # 𝛼𝑟𝑔-closed. Then  # 𝛼𝑟𝑔-cl(𝐴 ∪ 𝐵)= 𝐴 ∪ 𝐵= # 𝛼𝑟𝑔-
cl(A)  # 𝛼𝑟𝑔-cl(B)  
 
Definition 4.12: For any A⊆ 𝑋, # 𝛼𝑟𝑔 − 𝑖𝑛𝑡(𝐴) is defined as the union of all # 𝛼𝑟𝑔-open set contained in A. 
 
Theorem 4.13: (X\# 𝛼𝑟𝑔 − 𝑖𝑛𝑡(𝐴)) = # 𝛼𝑟𝑔-cl(x\A) 
 
Proof:  Let x∈  X\# 𝛼𝑟𝑔 − 𝑖𝑛𝑡(𝐴) then x ∉ #𝛼𝑟𝑔 − 𝑖𝑛𝑡(𝐴) That is every #𝛼𝑟𝑔 − 𝑜𝑝𝑒𝑛 set B containing x is such that 
B ⊄ 𝐴.  This implies that every #𝛼𝑟𝑔 − 𝑜𝑝𝑒𝑛 set B containing x intersects X\A. By theorem 4.6 x # 𝛼𝑟𝑔-cl(X\A).   
Hence (X\# 𝛼𝑟𝑔-int (A))⊆ # 𝛼𝑟𝑔-cl(X\A). Conversely let x # 𝛼𝑟𝑔-cl(X\A). Then every # 𝛼𝑟𝑔-open set U containing x 
intersects X\A. That is every # 𝛼𝑟𝑔-open set U containing x is such that U A, implies x # 𝛼𝑟𝑔-int(A).  Hence # 𝛼𝑟𝑔-
cl(X\A) (X\# 𝛼𝑟𝑔-int (A))  Thus (X\# 𝛼𝑟𝑔-int (A))=# 𝛼𝑟𝑔-cl(X\A).        
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CONCLUSION  
In this paper we study #αrg- open sets and their basic properties relationship with some generalized sets in topological 
space  also  we have discuss #αrg-neighbourhood and #αrg-closure and their properties.. 
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