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ABSTRACT 
In this paper, we prove a unique common fixed point theorem in cone metric spaces which generalize and extend 
metric space into cone metric spaces without appealing to commutativity. These results generalize and extend some 
recent results.           
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1. INTRODUCTION AND PRELIMINARIES  
    
In 2007 Huang and Zhang [6] have generalized the concept of a metric space, replacing the set of real numbers by an 
ordered Banach space and obtained some fixed point theorems for mapping satisfying different contractive conditions. 
Subsequently, Abbas and Jungck [1] and Abbas and Rhoades [2] have studied common fixed point theorems in cone 
metric spaces (see also [6], [15] and the references mentioned therein).Recently S.L. Singh, Apichai Hematulin and 
Rajendra Pant [21] have obtained coincidence points and fixed points results for three mappings in metric spaces. In 
this paper, we extend the fixed point theorem of S.L. Singh et.al. [21] in metric space into cone metric space without 
appealing to commutativity.  
 
In all that follows B is a real Banach Space. For the mapping f, g: X → X, let C (f, g) denote the set of coincidence 
points of f and g, that is C(f, g) = {z ∈ X: fz = gz}. 
 
We recall some definitions of cone metric spaces and some of their properties [6].  
 
Definition 1.1: Let B be a real Banach Space and P a subset of B .The set P is called a cone if and only if: 
(a). P is closed, non-empty  and P };0{≠  
(b). a, b R∈ , a, b 0≥ , x, y P∈ implies ax+by P∈ ; 
(c). x∈P and -x P∈ implies x =0.  
   
Definition 1.2: Let P be a cone in a Banach space B, define partial ordering ‘ ≤ ’ with respect to P by x ≤  y if and only 
if y-x P∈ .We shall write x<y to indicate x y≤  but x y≠  while x<<y will stand for y-x∈Int P, where Int P denotes 
the interior of the set P. This cone P is called an order cone. 
 
Definition 1.3: Let B be a Banach space and P ⊂ B be an order cone. The order cone P is called normal if there exists 
L>0 such that for all x, y ∈  B. 

yx ≤≤0  implies ║x║ ≤ L║y║. 
 
The least positive number L satisfying the above inequality is called the normal constant of P. 
 
Definition 1.4: Let X be a nonempty set of B .Suppose that the map d: X ×X → B satisfies: 
(d1). ),(0 yxd≤   for all x, y X∈ and  d(x, y) = 0 if and only if x = y ; 

(d2). d(x, y) = d(y, x) for all x, y ;X∈  
(d3). d(x, y) ≤  d(x, z) +d(y, z) for all x, y, z .X∈  
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Then d is called a cone metric on X and (X, d) is called a cone metric space.  
 
The concept of a cone metric space is more general than that of a metric space. 
 
Example 1.5: ([6]). Let E = R2, P = {(x, y)∈E such that: x, y ≥ 0} ⊂  R2, X = R and d: X ×  X → E such that  
 
d(x, y) = (│x - y│, α│x - y│), where α ≥ 0 is a constant Then (X, d) is a cone metric space. 
 
Definition 1.6: Let (X, d) be a cone metric space. We say that {xn} is  
 
(i) a Cauchy sequence if for every c in B with c >>0, there is N such that for all n, m>N, d(xn, xm) <<c; 
 
(ii) a convergent sequence if for any c >>0, there is an N such that for all n > N, d(xn, x) <<c, for some fixed x in X. We 
denote this xn → x (as n )∞→ . 
 
Lemma 1.7: Let (X, d) be a cone metric space, and let P be a normal cone with normal constant L. Let {xn} be a 
sequence in X .Then  
(i) {xn } converges to x if and only if d(xn ,x) →  0 (n ∞→ ). 
(ii) {xn } is a Cauchy sequence if and only if d (xn , xm )→0 (n, m ∞→ ). 
 
Definition 1.8: Let f, g and h be maps on X with values in a cone metric space (X, d). The pair (f, g) is asymptotically 
regular with respect to h at x0∈X if there exists a sequence {xn} in X such that    

 
hx2n+1 = fx2n, 

hx2n+2  =  gx2n+1, n = 0, 1, 2,…, and 
∞→n

lim
 d(fxn, fxn+1) = 0 . 

 
Definition 1.9[21]: Let ϕ  denote the class of all functionsϕ : R+  →   R+ satisfying: for any ε > 0 there exists 

εδ > such that δε << t  implies ϕ (t) ≤ε . 
 
2. MAIN RESULT 
 
In this section we obtain, a common fixed point theorem for self-mappings without appealing to commutativity 
condition, defined on a cone metric space, which is an extension of metric space into cone metric space. 
 
The following Theorem generalizes the Theorem 2.7 of [21]. 
 
Theorem 2.1:  Let (X, d) be a cone metric space, P be a normal cone with normal constant L and f, g, h: X → X be self 
maps. Let (f, g) be asymptotically regular with respect to h at x0∈X and the following conditions are satisfied.  
 
(E1):  f(X)   g(X) ⊆  h(X); 
                                             
(E2): d(fx , gy) ≤ ϕ  (s (x, y)) for all x, y ∈  X, where    s(x, y) = d(hx, hy ) + γ  [d(fx , hx) + d(gy , hy)] ,0 ≤ γ ≤  1, and 
ϕ : R+  →   R + continuous. 
                                
If f(X) or g(X) or h(X) is a complete subspace of X, then the maps f, g and h have a coincidence points in X. Then f, g, 
and h have a unique common fixed point.  
 
Proof: Let x0 be an arbitrary point in X.Since (f, g) is asymptotically regular with respect to h, then there exist a 
sequence {xn}in X  such that    
                            
hx2n+1 = fx2n 

 
hx2n+2 =  gx 2n+1,     n = 0, 1, 2 … and d( hxn, hxn+1) = 0 . 
 
Now we shall show that {hxn} is Cauchy sequence. 
 
Suppose {hxn} is not Cauchy. 
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Then there exists µ > 0 and increasing sequences {mk} and {nk} of positive integers, Such that for all n ≤  mk < nk ,                
 
d(hxm k , hxn k

) ≥    µ and   d(hxm k ,hxn 1−k
) < µ.           

 
By the triangle inequality,  
  
d(hxm k , hxn k ) ≤ d(hxm k ,  hxn 1−k ) +d( hxn 1−k ,hxn k ) .                                        
 
Letting k →  ∞, we get   
 
d(hxm k ,hxn k )  <  µ.  

                                                                                                                                     

Thus d(hxm k , hxn k
) → µ  as  k →  ∞.                                

 
By (E2) we have 
   
d(hxm 1+k , hxn 1+k ) = d(fxm k , gxn k ) 

 

                        ≤ ϕ (s(xm k , xn k )) 

 

                              =ϕ (d(fxm k , gxn k ) +γ [d(fxm k , hxm k ) + d(gxn k , hxn k )]). 
Letting k →  ∞,     
   
µ ≤  ϕ ( µ ) < µ , a contradiction. 

 
Thus {hxn } is Cauchy Sequence.   
 
Then {hxn} being contained in h(X) has limit in h(X), let it be z. 
 
Let u = h-1 z. 
 
Thus hu = z for some u ∈  X. 
 
Note that the subsequences {hx2n+1} and {hx2n+2} also converge to z. Now by (E2)      
                
d(fu,gx2n+1 ) ≤  ϕ (d(hu,hx2n+1) + γ [d(fu, hu) + d(gx2n+1, hx2n+1)]). 
 
Letting n →  ∞.  
 
d(fu, hu) ≤ ϕ  (γ d(fu, hu)) < d(fu, hu), which is a contradiction. 
    
Therefore, fu = hu = z, u is a coincidence point of f and h.                                                                                              (1) 
                                            
Since, f(X)   g(X) ⊆  h(X). 
 
Therefore, there exists v∈X such that  
 
fu = hv. We claim that hv = gv using (E2) 
 
d(hv, gv) = d(fu, gv) 
 
              ≤ ϕ  (d(hu, hv) + γ [d(fu, hu) + d(gv, hv)])  
 
               = ϕ (d(hv, gv))          
                     
               < d(hv, gv), which is a contradiction. 
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Therefore, hv = gv = z, v is a coincidence point of g and h.                 …                                                          (2) 
 
From (1) and (2), fu = hu = gv = hv = z.                                                     …                                                                  (3) 
 
Now using (E2), 
  
 d(hu,hhu) = d(hu,yn+1) +  d(yn+1,hhu)    (By the triangle inequality)                         
                 

           = d(hu,yn+1) +  d(fx2n,ghu)   (since hu = gu) 
 
                 ≤  d(hu,yn+1) +ϕ  (d(hx2n, hhu) + γ [d(fx2n, hx2n) + d(ghu, hhu)] ). 
                    
From (1.3)  
 
║d(hu,hhu)║ ≤  L(║d(hu,yn+1) +ϕ  (d(hx2n, hhu) +γ [d(fx2n, hx2n) + d(ghu, hgu)] )║) 
 
                     ≤  L(║d(hu,yn+1)║+║ϕ (d(hx2n, hhu)║+ γ [║d(fx2n, hx2n)║+║d(ghu, ghu)║])). 
 
Letting n →  ∞,  
                        
║d(hu,hhu) ║ ≤   L(║d(z, z)║ +ϕ  (║d(z, hhu)║ + γ [║d(z, z)║ + ║d(ghu, ghu)║])) 
                                                          
                       ≤  L(ϕ ║d(hu, hhu)║) < ║d(hu, hhu)║,    which is a contradiction. 
   
⇒  ║d(hu, hhu)║= 0 
 
⇒  d(hu, hhu)  = 0 
         
⇒  hhu = hu( = z).                                                    …                                                                                                    (4)  
 
Now, 
d(gu,ggu)  =  d(fu,ggu)    (since gu=fu) 
                         
                 ≤  ϕ  (d(hu, hgu) + γ [d(fu,hu) + d(ggu, hgu)])  (by E2)  
 
From (1.3)      
         
║d(gu,ggu)║ ≤  L(║ϕ  (d(gu, ggu)  +  γ [d(z,z)  +  d(ggu, ggu)])║) (since hu = gu  = z) 
 
                     ≤  L (ϕ ║d(gu, ggu)║ ) < ║d(gu, ggu)║,           
                                 
which is a contradiction 
   
⇒    ║d(gu,ggu)║   = 0 
 
⇒    d(gu,ggu) = 0 
                
⇒    ggu = gu( =z)                                                                   …                                                                                     (5) 
 
 And   d(fu,ffu)  = d(fu,gfu)   (since fu = gu) 
                         
                           ≤ ϕ  (d(hu, hfu) + γ [d(fu,hu) + d(gfu, hfu)] )  (by E2)                   
From (1.3)  
              
  ║d(fu,ffu)║ ≤  L(║ϕ  (d(fu, ffu) +γ [d(z,z) +d(gfu, gfu)] )║) (since hu = fu = gu = z) 
 
                     ≤  L(ϕ ║d(fu, ffu)║) < ║d(fu, ffu)║                   
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Which is a contradiction. 
 
⇒    ║d(fu, ffu)║= 0 
 
⇒    d(fu, ffu) = 0 
                       
⇒    ffu = fu (=z).                                            …                                                                                                             (6) 
 
From (4), (5) and (6) it follows that the mappings f, g, and h have a common fixed point. 
 
Uniqueness 
 
Let z and z1 be two distinct common fixed points of mappings f, g and h. From (E2)           
            
d(z, z1) = d(fz,gz1) ≤  ϕ  (d(hz,hz1) + γ [d(fz,hz) + d( gz1,h z1)]) 
 
                              ≤ ϕ  (d(z,z1) + γ [d(z,z) + d( z1, z1)]) 
 
                              ≤ ϕ  d(z,z1) 
 
                               < d(z,z1),  a contradiction. 
 
           ⇒   d(z,z1)  = 0. 
 
           ⇒    z = z1. 
 
Therefore f, g and h have a unique common fixed point.   
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