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ABSTRACT 

The purpose of this paper is to introduce new space namely α*-regular, α*-normal, using α* - open sets and 
investigate their properties. We also study the relationships among themselves. 
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I. INTRODUCTION 
 
Separation axioms are useful in classifying topological spaces. Maheswari and Prasad introduces the notation of s- 
regular and s- normal spaces using semi-open sets, Dorsett introduces the concept of semi – regular and semi – normal 
spaced and investigate their propertied. 
 
In this paper, we define 𝛼 * - regular, 𝛼 *- normal, using 𝛼 *- open sets and investigate their basic properties. We 
further study the relationshiops among themselves  
 
II. PRILIMINARIES 
 
Throughout this paper (X, τ) will always denote a topological space on which no separation axioms are assumed, unless 
explicitly stated. If  A  is  a  subset  of  the  space (X, τ), Cl(A) and Int (A) respectively denote the closure and the 
interior of A in X. 
 
Definition 2.1[7]: A subset A of a topological space (X, τ) is called 

(i) generalized closed (briefly g - closed) if Cl(A)⊆U whenever A⊆U and U is open in X. 
(ii) generalized open (briefly g - open) if X \ A is g - closed in X. 

 
Definition 2.2: Let A be a subset of X. Then 

(i) generalized closure [5] of A is defined as the intersection of all g - closed sets containing A and is denoted by 
Cl*(A). 

(ii) generalized interior of A is defined as the union of all g - open subsets of A and is denoted by Int*(A). 
 
Definition 2.3: A subset A of a topological space (X, τ) is called 

(i) 𝛼 *-open [8] A⊆Int*(Cl(Int*(A))). 
(ii) 𝛼 *-closed [8]) if Cl*(Int(Cl*(A)) ⊆A. 

 
The class of all 𝛼 *-open (resp. 𝛼 *-closed) sets is denoted by 𝛼 *O (X, τ)  (resp. 𝛼*C (X, τ)). 
 
The 𝛼 *-interior of A is defined as the union of all 𝛼 *-open sets of X contained in A. It is denoted by 𝛼 *Int(A). The 𝛼 
*-closure of A is defined as the intersection of all 𝛼 *-closed sets in X containing A. It is denoted by 𝛼 *Cl(A). 
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Definition 2.4: A topological space X is said to be regular if for every pair consisting of a point x and a closed set B 
not containing x, there are disjoint open sets U and V in X containing x and B respectively. [5] 
 
Definition 2.5: A topological space X is said to be normal if for every pair of disjoint closed sets A and B in X, there 
are disjoint open sets U and V in X containing A and B respectively. [5] 
 
Definition 2.6: A function f: X⟶Y is said to be 

(i) closed [5] if f (V) is closed in Y for every closed set V in X. 
(ii) 𝛼 *-continuous [6] if f -1(V) is 𝛼 *-open in X for every open set V in Y. 
(iii) 𝛼 *-open [7] if f (V) is 𝛼 *-open in Y for every open set V in X. 
(iv) pre- 𝛼 *-open [7] if the image of every 𝛼 *-open set of X is 𝛼 *-open in Y. 
(v) contra-pre- 𝛼 *-open [7] if f(V) is 𝛼 * - closed in Y for every 𝛼 *-open set V in X. 
(vi) pre- 𝛼 *-closed [7] if f(V) is 𝛼 *-closed in Y for every 𝛼 *-closed set V in X. 

 
III. REGULAR SPACES ASSOCIATE WITH α* - OPEN SETS 
 
In this section we introduce the concepts of α*-regular and α* - regular spaces. Also we investigate their basic 
properties and study their relationship with already existing concepts. 
 
Definition 3.1: A Space X is said to be 𝛼∗- regular if for every pair consisting of a point x and a 𝛼∗- closed set B not 
containing x, there are disjoint 𝛼∗-open sets U & V in X containg x & B respectively. 
 
Theorem 3.2: In a topological space X, the following are equivalent. 

1) X is 𝛼∗- regular. 
2) For 𝑥𝜖𝑋 and every 𝛼∗-open set U containing x, there exist a 𝛼∗-open set V containing x such that 𝛼∗𝐶𝑙(𝑉) ⊆

𝑈. 
3) For every set A & 𝛼∗-open set B such that 𝐴 ∩ 𝐵 ≠ 𝜑, there existes a 𝛼∗-open set U such that 𝐴 ∩ 𝑈 ≠ 𝜑 and 

𝛼∗𝐶𝑙(𝑈) ⊆ 𝐵. 
4) For every non - empty set A and 𝛼∗- closed sets B such that 𝐴 ∩ 𝐵 = 𝜑, there exist disjoint 𝛼∗- open set U and 

V such that 𝐴 ∩ 𝑈 ≠ 𝜑 and B ⊆ V. 
 
Proof: 
(i)⟹(ii): Let U be a 𝛼∗-open set containing x. Then 𝐵 = 𝑋 ∖ 𝑈  is a 𝛼∗- closed not containing x. Since X is 𝛼∗- regular, 
there exist disjoint 𝛼∗-open sets V and W containing x and B respectively. If 𝑦 𝜖 B, W is a 𝛼∗- openset containing y 
that does not intersect V. Therefore 𝛼∗𝐶𝑙 ⊆ 𝑈. 
 
(ii) ⟹(iii): Let 𝐴 ∩ 𝐵 ≠ 𝜑 and B is 𝛼∗- open. Let x 𝐴 ∩ 𝐵. Then by assumption, there exists a 𝛼∗- open set U 
containing x such that 𝛼∗𝐶𝑙 ⊆ 𝐵.Since x ⊆ A, 𝐴 ∩ 𝑈 ≠ 𝜑. This proves (iii). 
 
(iii) ⟹ (iv): Suppose 𝐴 ∩ 𝐵 = 𝜑, where A is non – emety and B is 𝛼∗- closed. Then 𝑋 ∖ 𝐵 is 𝛼∗- open set and ∩ (𝑋 ∖
𝐵)  ≠ 𝜑 . By (iii) there exist a 𝛼∗ - open set U such that 𝐴 ∩ 𝑈 ≠ 𝜑, and ⊆ 𝛼∗𝐶𝑙(𝑈) ⊆ 𝑋 ∖ 𝐵 . Put 𝑉 = 𝑋 ∖ 𝛼∗𝐶𝑙(𝑈). 
Hence V is a 𝛼∗-open set containing B such that 𝑈 ∩ 𝑉 = 𝑈 ∩ (𝑋 ∖ 𝛼∗𝐶𝑙(𝑈)) ⊆ 𝑋 ∖ 𝑈 =  𝜑.This proves (iv). 
 
(iv) ⟹(i): Let B be 𝛼∗- closed and 𝑥 ∉ 𝐵. Take A={𝑥}. Then 𝐴 ∩ 𝐵 = 𝜑.By (iv), there exist disjoint 𝛼∗- open sets U 
and V such that 𝑈 ∩ 𝐴 ≠ 𝜑 and B ⊆ V. Since 𝑈 ∩ 𝑉 ≠ 𝜑,  𝑥 ∈ 𝑈. This proves that X is 𝛼∗- regular. 
 
Theorem 3.3: Let X be a 𝛼∗- regular space. 

(i) Every 𝛼∗- open set in X is a union of 𝛼∗- closed sets. 
(ii) Every 𝛼∗- closed set in X is an intersection of 𝛼∗- open sets. 

 
Proof:  

(i) Suppose X is 𝛼∗- regular. Let G be a 𝛼∗- open set and x ∈ G. Then F = X \ G is 𝛼∗- closed and x ∉ F. Since X 
is 𝛼∗- regular, there exist disjoint 𝛼∗-open sets Ux and V in X such that x ∈ Ux and F ⊆ V. Since                    
Ux ∩ F ⊆ Ux ∩V= ϕ, we have Ux ⊆ X \ F = G. Take Vx = 𝛼∗Cl(Ux). Then Vx is 𝛼∗ - closed and Vx ∩ V = ϕ. 
Now F ⊆ V implies that Vx ∩ F ⊆ Vx∩V=ϕ. It follows that x ∈ Vx ⊆ X\F = G. This proves that G = ∪ {Vx:     
x ∈ G}. Thus G is a union of 𝛼∗ - closed sets. 
 

(ii) Follows from (i) and set theoretic properties. 
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Theorem 3.4: If f is a 𝛼∗ - irresolute and pre - 𝛼∗ - closed injection of a topological space X into a 𝛼∗ - regular space Y, 
then X is 𝛼∗ - regular. 
 
Proof: Let x ∈ X and A be a 𝛼∗ - closed set in X not containing x. Since f  is pre- 𝛼∗ -closed, f (A) is a 𝛼∗ - closed set in 
Y not containing  f (x). Since Y is 𝛼∗ - regular, there exist disjoint 𝛼∗-open sets V1 and V2 in Y such that f(x) ∈V1 and 
f(A)⊆V2. Since f is 𝛼∗ - irresolute, f  -1(V1) and f  -1(V2) are disjoint 𝛼∗ - open sets in X containing x and A respectively. 
Hence X is 𝛼∗ - regular. 
 
Theorem 3.5: If f is a 𝛼∗ - continuous and closed injection of a topological space X into a regular space Y and if every 
𝛼∗ - closed set in X is closed, then X is 𝛼∗ - regular. 
 
Proof: Let x ∈ X and A be a α*- closed set in X not containing x. Then by assumption, A is closed in X. Since f is 
closed, f (A) is a closed set in Y not containing f(x). Since Y is regular, there exist disjoint open sets V1 and V2 in Y 
such that f (x) ∈ V1 and f (A) ⊆ V2. Since f  is α*-continuous, f -1(V1) and f -1(V2) are disjoint α*-open sets in X 
containing x and A respectively. Hence X is α*- regular. 
 
Theorem 3.6: If f: X⟶Y is a α*-irresolute bijection which is pre-α*-open and X is α*-regular. Then Y is also α*-
regular. 
 
Proof: Let f : X⟶Y be a α*- irresolute bijection which is α* - open and X be α* - regular. Let y ∈Y and B be a α*- 
closed set in Y not containing y. Since f is α*- irresolute,  f -1(B) is a α*-closed set in X not containing f -1(y). Since X is 
α*-regular, there exist disjoint α*-open sets U1 and U2 containing f -1(y) and f -1(B) ⊆ U2 respectively. Since f is pre-α*-
open, f (U1) and f (U2) are disjoint α*- open sets in Y containing y and B respectively. Hence Y is α*-regular. 
 
Theorem 3.7: If f is a continuous α*-open bijection of a regular space X into a space Y and if every α*-closed set in Y 
is closed, then Y is α*-regular. 
 
Proof: Let y∈Y and B be a α*-closed set in Y not containing y. Then by assumption, B is closed in Y. Since f is a 
continuous bijection, f -1(B) is a closed set in X not containing the point f -1(y). Since X is regular, there exist disjoint 
open sets U1 and U2 in X such that f -1(y)∈U1 and f -1(B) ⊆ U2. Since f is α*-open, f ( U1) and 𝑓(𝑈2) are disjoint α*-open 
sets in Y containing x and B respectively. Hence Y is α*-regular. 
 
IV. NORMAL SPACES ASSOCIATED WITH 𝜶*- OPEN SETS 
 
In this section we introduce a normal spaces namely α* - normal spaces and investigate their basic properties.  
 
Definition 4.1: A space X is said to be α*-normal if for every pair of disjoint α*-closed sets A and B in X, there are 
disjoint α*-open sets U and V in X containing A and B respectively.  
 
Theorem 4.2: In a topological space X, the following are equivalent: 

(i) X is α*-normal. 
(ii) For every α*-closed set A in X and every α*-open set U containing A, there exists a α*-open set V containing 

A such that α*Cl(V) ⊆ U. 
(iii) For each pair of disjoint α*-closed sets A and B in X, there exists a α*-open set U containing A such that 

α*Cl(U)∩B=ϕ. 
(iv) For each pair of disjoint α*-closed sets A and B in X, there exist α*-open sets U and V containing A and B 

respectively such that α*Cl(U)∩α*Cl(V)=ϕ. 
 
Proof:  
(i) ⟹ (ii): Let U be a α*-open set containing the α*-closed set A. Then B=X\U is a α*-closed set disjoint from A. Since 
X is α*-normal, there exist disjoint α*-open sets V and W containing A and B respectively. Then α*Cl(V) is disjoint 
from B, since if y∈B, the set W is a α*-open set containing y disjoint from V. Hence α*Cl(V) ⊆ U. 
 
(ii) ⟹ (iii): Let A and B be disjoint α*-closed sets in X. Then X\B is a α*-open set containing A. By (ii), there exists a 
α*-open set U containing A such that α*Cl(U) ⊆ X\B. Hence α*Cl(U)∩B=ϕ. This proves (iii).  
 
(iii) ⟹ (iv): Let A and B be disjoint α*-closed sets in X. Then, by (iii), there exists a α*-open set U containing A such 
that α*Cl(U)∩B=ϕ. Since α*Cl(U) is α*-closed, B and α*Cl(U) are disjoint α*-closed sets in X. Again by (iii), there 
exists a α*-open set V containing B such that α*Cl(U) ∩α*Cl(V) = ϕ. This proves (iv). 
 
(iv) ⟹ (i): Let A and B be the disjoint α*-closed sets in X. By (iv), there exist α*-open sets U and V containing A and 
B respectively such that α*Cl(U) ∩ α*Cl(V)=ϕ. Since U∩V ⊆ α*Cl(U) ∩ α*Cl(V), U and V are disjoint α* - open sets 
containing A and B respectively. Thus X is α*-normal. 
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Theorem 4.3: For a space X, then the following are equivalent: 

(i) X is α*-normal. 
(ii) For any two α*-open sets U and V whose union is X, there exist α*-closed subsets A of U and B of V whose 

union is also X. 
 
Proof:  
(i) ⟹ (ii): Let U and V be two α*-open sets in a α*- normal space X such that X = U ∪ V. Then X \ U, X \ V are 
disjoint α*- closed sets. Since X is α*- normal, there exist disjoint α*-open sets G1 and G2 such that X\U⊆G1 and 
X\V⊆G2. Let A =X \ G1 and B = X \ G2. Then A and B are α*- closed subsets of U and V respectively such that 
A∪B=X. This proves (ii). 
 
(ii) ⟹ (i): Let A and B be disjoint α*-closed sets in X. Then X \ A and X \ B are α*- open sets whose union is X. By 
(ii), there exists α*- closed sets F1 and F2 such that F1 ⊆ X \ A,  F2 ⊆ X \ B and F1 ∪ F2 = X. Then X \ F1 and X \ F2 are 
disjoint α*- open sets containing A and B respectively. Therefore X is α*-normal.  
 
Theorem 4.4: If f is an injective and α*-irresolute and pre-α*-closed mapping of a topological space X into a             
α*-normal space Y, then X is α*-normal. 
 
Proof: Let  f  be an injective and α*-irresolute and pre-α*-closed mapping of a topological space X into a α*-normal 
space Y. Let A and B be disjoint α*-closed sets in X. Since f  is a pre-α*-closed function, f (A) and f (B) are disjoint α*-
closed sets in Y. Since Y is α*-normal, there exist disjoint α*-open sets V1 and V2 in Y containing f (A) and f (B) 
respectively. Since f is α*-irresolute, f -1(V1) and f -1(V2) are disjoint α*-open sets in X containing A and B respectively. 
Hence X is α*-normal. 
 
Theorem 4.5: If f is an injective and α*-continuous and closed mapping of a topological space X into a normal space Y 
and if every α*-closed set in X is closed, then X is α*- normal. 
 
Proof: Let A and B be disjoint α*-closed sets in X. By assumption, A and B are closed in X. Then f (A) and f (B) are 
disjoint closed sets in Y. Since Y is normal, there exist disjoint open sets V1 and V2 in Y such that f (A) ⊆ V1 and          
f (B) ⊆ V2.Then f -1(V1) and f -1(V2) are disjoint α*-open sets in X containing A and B respectively. Hence X is           
α*- normal. 
 
Theorem 4.6: If f : X⟶Y is a α*- irresolute injection which is pre-α*-open and X is α*- normal, then Y is also α*- 
normal. 
 
Proof: Let f : X⟶Y be a α*-irresolute surjection which is α*- open and X be α*- normal. Let A and B be disjoint      
α*- closed sets in Y. Then f -1(A) and f -1(B) are disjoint α*- closed sets in X. Since X is α*-normal, there exist disjoint 
α*-open sets U1 and U2 containing f -1(A) and f -1(B) respectively. Since f is pre - α*- open, f (U1) and f (U2) are disjoint 
α*- open sets in Y containing A and B respectively. Hence Y is α* - normal. 
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