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ABSTRACT 
In this paper, we investigate the Hyers - Ulam stability of second order difference equations of the form  

 )(=)()()(2 nrnqynypny +∆+∆  
and  

 )(=)()()()()(2 nrnynqnynpny +∆−∆  
where , p q R∈  and )}({ )},({ )},({ nrnqnp  are sequences of reals. Examples are provided to illustrate the main 
results. 
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1. INTRODUCTION 
 
In recent years, there has been a great interest in investigating the Hyers - Ulam stability of various types of functional 
equations. This problem was first raised by Ulam [15] concerning the stability of group homomorphism, and the answer 
was given by Hyers [3], we refer the reader to [13] for the exact definition of Hyers - Ulam stability. Since then, the 
stability problems of various functional equations has been studied by many authors, see [13] and the references 
contained therein. 
 
After that, Ulam stability problem for functional equations was replaced by stability of differential equations and 
difference equations. The differential equation  
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has the Hyers - Ulam stability, if for given I 0,>ε  be an open interval and for any function f satisfying the 
differential inequality  
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then there exists a solution )(0 tf  of the above equation such that  
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In [9], the authors studied the Hyers - Ulam stability of second order differential equation of the form  

0=yyy βα +′+′′  
and  

)(= tfyyy βα +′+′′  
where R∈βα  , . The Hyers - Ulam stability of differential equations have been studied in many papers, see for 
example [4, 5, 6, 9, 10, 14], and the references cited therein. However only few results are reported in the literature 
regarding the Hyers - Ulam stability of difference equations, see [1, 2, 8, 11, 12, 14] and the references cited therein. 
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The aim of this paper is to study the Hyers - Ulam stability of second order difference equations of the form   

0,=)()()(2 nqynypny +∆+∆                                                                                                    (1.1) 
   

),(=)()()(2 nrnqynypny +∆+∆                                                                                               (1.2) 
 and   

)(=)()()()()(2 nrnynqnynpny +∆−∆                                                                       (1.3) 
 where R∈qp  ,  and )}({ )},({ )},({ nrnqnp  are sequences of reals. 

 
Definition 1.1: The difference equation  
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has the Hyers - Ulam stability, if for given I 0,>ε  be an open interval and for any real function )(nf  satisfying the 
inequality  
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then there exists a function )(0 nf  of the above difference equation such that )(|)()(| 0 εKnfnf ≤−  and 

0=)(lim 0 εε K→  for .}. . . 2, 1, {0,=(0)NIn ⊂∈   
 

Definition 1.2: The difference equation (1.2) has the Hyers - Ulam stability if there exists a constant 0>K  with the 
property: for every )( ),( 0,> nrnyε  defined for ,<<<0 1),,( ∞+∈ baban  if   

ε≤−+∆+∆ |)()()()(| 2 nrnqynypny                                                                                     (1.4) 
then there exists some 1),( ),( +∈ bannz  satisfying  

)(=)()()(2 nrnqznzpnz +∆+∆  
such that εKnzny ≤− |)()(| . We call such K  as a Hyers - Ulam stability constant for equation (1.2).  

 
The results presented in this paper are new and complement to the results reported in the literature for difference 
equations. 

 
2. STABILITY RESULTS 

 
In this section, we study the Hyers - Ulam stability of equations (1.1), (1.2) and (1.3). We begin with the following 
theorem. 

 
Theorem 2.1: If the characteristic equation 0=1)(2)(2 +−+−+ pqmpm  have two different positive roots, then 
the equation (1.1) has the Hyers - Ulam stability.  
 
Proof: Let 0>ε  and 1),( ),( +∈ banny  be a solution of equation (1.1) satisfying the property  

.|)()()(| 2 ε≤+∆+∆ nqynypny  
 
Let λ  and µ  be the two different positive roots of the characteristic equation. For 1),( +∈ ban , define 

)()(=)( nynyng λ−∆ . Then  

)()(=)( 2 nynyng ∆−∆∆ λ  
and hence  

|)()()()(|=|)()(| 2 nynynynyngng λµµλµ +∆−∆−∆−∆  

                              .|)()()(=| 2 ε≤+∆+∆ nqynypny  
 
Thus, )(ng  satisfies the relation   

.)()( εµε ≤−∆≤− ngng                                                                                                    (2.1) 
 
From (2.1), we have  

1)(1)(1)( )(1)]()(11)([)(1)(1 +−+−+− +≤+−++≤+− nnn ngng µεµµµε  
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that is,   

( ) .)(1)()(1)(1 1)(1)( +−−+− +≤+∆≤+− nnn ng µεµµε                                                        (2.2) 
 
Summing (2.2) from n  to b , we obtain  
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which on simplification implies that  
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that  
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Proceeding as above, one obtains  
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then 
λµ
ε

λ
ε =|)()(| 1≤− nynu . It is easy to see that )()(=)( nznunu +∆ λ  and hence  

 )()(=)(2 nznunu ∆+∆∆ λ  
              )()(= nznu µλ +∆  
              ))()(()(= nununu λµλ −∆+∆  
              )()()(= nunu λµµλ −∆+  

 or  
0.=)()()(2 nqunupnu +∆+∆  

Consequently, the equation (1.1) has the Hyers - Ulam stability with the stability constant 
λµ
1=K . This completes 

the proof.   
 

Theorem 2.2: Assume that the characteristic equation 0=1)(2)(2 +−+−+ pqmpm  have two different positive 
roots. If condition (1.4) holds, then the equation (1.2) has the Hyers - Ulam stability.  
 
Proof: Proceeding as in the proof of Theorem 2.1, we obtain  

|)()()()()(|=|)()()(| 2 nrnynynynynrngng −+∆−∆−∆−−∆ λµµλµ  

                                          .|)()()()(=| 2 ε≤−+∆+∆ nrnqynypny  
Hence, )(ng  satisfies the relation  

.)()()( εµε ≤−−∆≤− nrngng  
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Similar to the proof of Theorem 2.1, we have  
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and 1|)()(| ε≤− nzng . Using the same type of argument as in Theorem 2.1, one can show that there exists  

)()(11)()(1=)( 1)(

=

1)( jzbgnu nj
b

nj

nb +−−+−− +−++ ∑ λλ  

such that 
λµ
ε

≤− |)()(| nynu  and )(nu  satisfies the equation  
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This completes the proof.   
 
Next, we study the Hyers - Ulam stability of equation (1.3). For this, we need the following result. 

 
Lemma 2.3: Assume that ∞≤≤ <)(0 αα n  for every In∈ . Then for 1),( +∈ ban , the equation   
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 has the Hyers - Ulam stability.  
 
Proof: Let 0>ε  and 1),( ),( +∈ banny  be a solution of equation (2.3) satisfying the property  
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Summing the last inequality from a  to 1−n , we have  
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where we have used the convention 1.=))((11

=
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Using this in (??), we obtain  
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then it is easy to see that  
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Hence equation (2.3) has the Hyers - Ulam stability with stability constant 
α
α 1)(1= −+ b

K . This completes the 

proof.   
 

 
Theorem 2.4: Assume that )}({ np  and )}({ nq  are positive real sequences for every n . If )}({ nc  is a particular 
solution of   
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Hyers - Ulam stability.  
 
Proof: Let 0>ε  and 1),( ),( +∈ banny  be a solution of equation (1.3) satisfying the property  
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Using )(nv  in 
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Hence, equation (1.3) has the Hyers - Ulam stability with the stability constant 
cd

K 1= . The proof is now complete.   

 
3. EXAMPLE 
 
In this section we provide two examples to illustrate the main results. 

 
 
Example 3.1: Consider the second order difference equation  
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The characteristic equation is 0=
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 Therefore by 

Theorem 2.1 the equation (3.1) has Hyers-Ulam stability with stability constant 6.=K  
 

Example 3.2: Consider the second order difference equation   
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By Theorem 2.4, 
3

2=))((1 1,<
2

1=)( 1

1=

+
+≤

+ ∏ − nidd
n

nd n

i
 and 

2
1=))((11

1=

+
+∏ − nicn

i
. It is easy to 

verify that 
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1)( . Indeed, 
n

ny 1=)(  is a solution of equation (3.2) and 

cd
nzny ε

≤− |)()(| . Hence equation (3.2) has the Hyers - Ulam stability. 

 
We conclude this paper with the following remark. 

 
Remark 3.3: In this paper we investigated the Hyers - Ulam stability of different types of second order difference 
equations, and the results presented here are new and complement to the results reported in the literature for difference 
equations.  
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