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ABSTRACT 
The variance of estimated response of Second Order Response Surface Design Model satisfying the property that, at 
any given point in a design,  it is a function of the distance from that point to the origin, specifically; it is a spherical or 
nearly spherical variance function, are called rotatable designs.  This paper provides new series for the construction of 
Second Order Rotatable Design using Balanced Ternary Design. 
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1. INTRODUCTION 
 
Let X1, X2, … , Xv are ‘v’ factors, each has ‘s’ levels for experimentation. Let D denote the design matrix of 
combination of the factor levels, given by  

D = ( ( xu1, xu2, … , xuv) )                                              (1.1) 
where xui be the level of the ith factor in the uth factors combination (i=1, 2, ... v; u =1, 2 … N).  Let Yu denote the 
response at the uth combination.  The factor-response relationship is given by 

E(Yu) = f (xu1, xu2, … , xuv)                                              (1.2) 
is called the ‘Response Surface’. The design ‘D’ used for fitting the response surface models are termed as ‘Response 
Surface Design’. The functional form of the response surface to be fitted to the design is polynomial of degree k, may 
be linear, second order, third order etc. The second order response surface design model at the uth design point is  

Yu = β0 +∑
=

v

1i

βi xui  +∑
=

v

1i

βii xui
2 + ∑

<

v

ji
βij xui

 xuj + ε      u = 1, 2, … N                            (1.3) 

where, Yu is the response at the uth design point, 
β = (β0, β1, β2, … βv, β11, β22, … β vv, βl2, … βv-1v)' be the vector of parameters 
xu = (1, xu1, xu2, … xuv, x2

u1, x2
u2, … x2

uv, xulxu2, …  xuv-1xuv) be the uth row of the design matrix X,  
εu is the random error corresponding to Yu. Assume the random errors are independent follows N(0, σ2). 

 
The model (1.3) can be expressed in the matrix form as  

Y = X β + ε                                                            (1.4) 
where, YNx1= [Y1 Y2 … YN] ' is the vector of responses,  βk×1 is the vector of parameters and  εN×1 = [ ε1, ε2, ... , εN ] ′ is 
the vector of random errors.  XN×k is the design matrix,   
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The least square estimate of the parameters and responses are β̂ = (X′X)-1X′Y and =Υ̂ (X′X)-1X′Y and the variance of 

estimated response is V ( Υ̂ ) = (X′X)-1 σ2, where the moment matrix (X′X) is 



















































=

∑∑∑∑∑∑∑

∑∑∑∑∑∑∑

∑∑∑∑∑∑∑

∑∑∑∑∑∑∑

∑∑∑∑∑∑∑

∑∑∑∑∑∑∑

∑∑∑∑∑∑

=
−

=
−

=
−

=
−

=
−

=
−

=

=
−

======

=
−

======

=
−

======

=
−

======

=
−

======

======

N

1i

2
iv

2
1iv

N

1i
iv1ivi2i1

N

1i

3
iv1iv

N

1i
iv1iv

2
i1

N

1i

2
iv1iv

N

1i
iv1ivi1

N

1i
iv1-iv

N

1i
iv1ivi2i1

N

1i

2
i2

2
i1

N

1i

2
ivi2i1

N

1i
i2

3
i1

N

1i
ivi2i1

N

1i
i2

2
i1

N

1i
i2i1

N

1i

3
iv1iv

N

1i

2
ivi2i1

N

1i

4
iv

N

1i

2
iv

2
i1

N

1i

3
iv

N

1i

2
ivi1

N

1i

2
iv

N

1i
iv1iv

2
i1

N

1i
i2

3
i1

N

1i

2
iv

2
i1

N

1i

4
i1

N

1i
iv

2
i1

N

1i

3
i1

N

1i

2
i1

N

1i

2
iv1iv

N

1i
ivi2i1

N

1i

3
iv

N

1i
iv

2
i1

N

1i

2
iv

N

1i
ivi1

N

1i
iv

N

1i
iv1ivi1

N

1i
i2

2
i1

N

1i

2
ivi1

N

1i

3
i1

N

1i
ivi1

N

1i

2
i1

N

1i
il

N

1i
iv1-iv

N

1i
i2i1

N

1i

2
iv

N

1i

2
i1

N

1i
iv

N

1i
il

xx...xxxxxx...xxxxx...xxxxx
..............................

xxxx...xxxxx...xxxxx...xxxx

xx...xxxx...xxx...xxx
..............................

xxx...xxxx...xxx...xx

xx...xxxx...xxx...xxx
..............................

xxx...xxxx...xxx...xx

xx...xxx...xx...xN

XX'
 

 
The V(Ŷ u) is not in a simplified form as the elements in moment matrix are in higher order, hence imposing the 
restrictions on the moment matrix that all odd power summations are zero, towards reaching to near orthogonality, i.e. 

δ4
ul

δ3
uk

δ2
uj

δ1
ui xxxx∑ = 0,  where all the summations are over the design points u= 1, 2, …N and  for distinct i, j, k,         

l = 1, 2, v. Let Σ x2
ui = N λ2 ; Σ x4

ui = CN λ4 ;  Σx2
ui x2

uj = Nλ4 then the moment matrix will be in the form  

N-1X′X = 
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where,   ∆ =  [ λ4 (c+v–1) – vλ2
2]  > 0;   Zv×v = kk ,2
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Let ∑
=

v

i 1

xui
2 = ρ2 ; then∑

=

v

i 1

xui
4 = ρ4 – 2∑

<

v

ji

2
uj

2
ui xx .  The variance of estimated response at the uth design point is  

V (Ŷu) = V ( 0β̂ ) +ρ2 V( iβ̂ ) + [ρ4–2∑
<

v

ji

2
uj

2
ui xx ] V( iiβ̂ ) +∑

<

v

ji

2
uj

2
ui xx V( ijβ̂ ) + 2 Cov( 0β̂ , iiβ̂ )ρ2    

                                              + 2 Cov( iiβ̂ , jjβ̂ )∑
<

v

ji

2
uj

2
ui xx                                                                       (1.5) 

where,  

V ( 0β̂ ) = [ λ4 (c+k–1)/ N∆] σ2 ] 

V ( iβ̂ ) = (1/ Nλ2) σ2 

V ( ijβ̂ ) = (1/ Nλ4) σ2 

Cov ( 0β̂ , iiβ̂ ) = [-λ2 / N∆] σ2 

V ( iiβ̂ ) = [{λ4(c+k–2)–(k–1)λ2
2}/{Nλ4 (c–1) ∆}] σ2 

Cov ( iiβ̂ , jjβ̂ ) = [( λ2
2 – λ4) /{(c–1) Nλ4 ∆}] σ2 
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V(Ŷu)=V( 0β̂ ) + [V( iβ̂ ) + 2Cov( 0β̂ , iiβ̂ )]ρ2 + V( iiβ̂ )ρ4 + [V( ijβ̂ )–2V( iiβ̂ ) + 2Cov( iiβ̂ , jjβ̂ )]∑
<

v

ji

2
uj

2
ui xx   

       ⇒V(Ŷu) = { } ∑
<
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The condition [λ4(v+2) – vλ2

2] > 0 is a non-singularity condition necessary for the v+2Cv coefficients in the response 
function to be estimated. The condition can always be satisfied by mere addition of central points.  The variance of the 
estimated response at any design point in the design  is a function of ρ2, i.e. the distance from design point to the origin.  
Such a design is called as Second Order Rotatable Design. From (1.6), when c = 3, the variance of estimated response 
can be expressed in the form of a function of ρ2 as      

V(Ŷu) = Aρ4 + Bρ2 + C                                              (1.7) 

where,  A = 
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This paper provides new series for the construction of Second Order Rotatable Designs using Balanced Ternary 
Designs.   

 
2. CONSTRUCTION OF NEW CLASS OF SORD   
 
This section provides a new series  for the construction Second Order Rotatable Design using Balanced Ternary 
Designs. The constructions are illustrated with suitable examples and presented. 
 
Series 2.1: Second Order Rotatable Designs can be constructed using Balanced Ternary Designs provided by Tyagi and 
Rizwi (1979) are presented below  
Step-1: Let N1 be the incidence matrix of a Balanced Incomplete Block Design with parameters v, b, r, k, λ (assume 

9λ2 ≥ 4rλ(v-1) ) and let N2 = Iv, where Iv is the identity matrix of order ‘v’ and ‘p’ is a positive integer. The 
Balanced Ternary Designs are derived by adding the elements of jth row of N2 to those rows of N1, which 
contain unity in the jth column, constitute a Balanced Ternary Design with parameters V = v, B = vr, R = (k+1)r, 
K = k+1 and π = λ(k+2). 

Step-2: Replace the elements 2 with α and 1 with β, then associate each block with an appropriate fraction of factorials    
             (say 12k ) with levels ±1 such that no lower order interaction effects are confounded.  
Step-3: Add n0 (n0 > 0) central design points (0, 0, … 0) to the resulting design, then total number design points in the 

design are: N = 12k vr + n0. 
Step-4: The levels ‘α’ and ‘β’ can be obtained such that t = α2 / β2. Real roots for t can be obtained as                             

t = 
r

1)-(v4r93 2 λλλ −± . Choose the value for β then obtain the value of α as α2 = tβ2. The resulting design 

provides a v-dimensional Second Order Rotatable Design with five levels ( ± α, ± β, 0).  
 
Theorem 2.1: A Second Order Rotatable Design exists with five levels (±α, ±β, 0) using a Balanced Ternary Design 
with parameters V = v, B = vr , R = (k+1)r, K = k+1 and π = λ(k+2) satisfying the condition 9λ2 ≥ 4rλ(v-1). 
 
Proof: Let NBXV be the incidence matrix of a balanced Ternary Design with parameters V = v, B = vr, R = (k+1)r,        
K = k+1 and π = λ(k+2). Each column of NBxV contains ‘r’ times 2, λ(v-1) times 1 and (r-λ)(v-1) times 0. Every pair of 
columns contains the pairs (1, 2) or (2, 1)’s 2λ times and (2, 2) and (1, 1) pairs zero times. Replace the elements 1 with 
β and 2 with α. Associate each block with an appropriate fraction of factorials (say 12k ) for v factors, with levels ±1. 
After augmenting n0 central points, the resulting design has N = 12k v(b-r) + n0 design points. Then from the rotatable 

condition ∑
=

N

1u

4
uix  = 3.∑

=

N

1u

2
uj

2
ui xx , we can obtain   

    12k  ( rα4 + λ(v-1)β4 ) = 3. 12k (2λα2 β2 )                                                   (2.1) 

⇒ rα4  +  λ(v-1) β4  - 6 λ α2 β2  = 0                                                       (2.2) 

 
Let t = α2/β2, then (2.2) can be expressed in the quadratic form as    

r t2 – 3 λ t + λ(v-1) = 0                                                           (2.3) 
The roots are real if 9λ2 ≥ rλ(v-1). Choose any real value for ‘β’, then the real value for ‘α’ can be obtained as α2 = tβ2. 
The resulting design D provides a v-dimensional Second Order Rotatable Design in five levels. 
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Example 2.1: Let N1 be the incidence matrix of a Balanced Incomplete Block Design with parameters v = 4, b = 6,        
r = 3, k = 2 and λ = 1, and N2 = Iv. The resulting Balanced Ternary Design is with parameters V = 4, B = 12, R = 9,       
K = 3 and π = 4. The Second Order Rotatable Design with four factors is presented in Table 2.1. 
 

Table-2.1: Construction of Second Order Rotatable Design (SORD) 

N1 N2 N SORD 
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00
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The real solution for‘t’ is 1. Select value for β arbitrarily and accordingly α can be evaluated.  

 
Series 2.2: A series of Second Order Rotatable Designs can be constructed using Balanced Ternary Designs of Tyagi 
and Rizwi (1979) is like as follows. 
Step-1:  Let N1 be the incidence matrix of a Balanced Incomplete Block Design with parameters v, b, r, k, λ and let    

N2 = 2Iv, where Iv is the identity matrix of order ‘v’. The Balanced Ternary Designs are derived by adding the 
elements of jth row of N2 those rows of N1 which contain zero in the jth column, then v(b-r) blocks so formed 
constitute a Balanced Ternary Design with parameters V = v, B = v(b-r), R = (k+2) (b-r),  K = k+2 and            
π = (r-λ)(4+k-1). 

Step-2: Replace the elements 2 with α and 1 with β, then associate each block with an appropriate fraction of factorials 
(say 12k ) with levels ±1 such that no lower order interaction effects are confounded.  

Step-3:  Add n0 (n0 > 0) central design points (0, 0, … 0) to the resulting design, then total number design points in the 
design is   n = 12k v(b-r) + n0. 

Step-4: The levels ‘α’ and ‘β’ can be obtained such that t = α2 / β2. Real roots for t can be obtained as                             

t = 
r)-2(b

]k)-(v - )-1)(r-r)[(v4(b)2-9(b)2-3(b 2 λλλλ −−± . Choose the value for β then obtain the value of α as α2 = tβ2. The 

resulting design provides a v-dimensional Second Order Rotatable Design with five levels (± α, ± β, 0 ).  
 
Theorem 2.2: A Second Order Rotatable Design exists with five levels (±α, ±β, 0) using a Balanced Ternary Design 
with parameters V = v, B = v(b-r), R = (k+2) (b-r),  K = k+2 and  π = (r-λ)(4+k-1). 
 
Proof: Let NBXV be the incidence matrix of a balanced Ternary Design with parameters V = v, B = v(b-r), R = (k+2)  
(b-r),  K = k+2 and  π = (r-λ)(4+k-1). Each column of NBxV contains 2’s and 1’s ‘b-r-λ’ and ‘r-λ+λ(v-k)’ times. Every 
pair of columns contains the pairs (1,2) and (2,1) occurs ‘r-λ’ and ‘b-r-λ’ times. Replace the elements 1 with β and 2 
with α. Associate each block with an appropriate fraction of factorials ( say 12k ) for v factors, with levels ±1. After 
augmenting n0 central points, the resulting design has N= 12k v(b-r)+n0 design points. Then from the rotatable condition 

∑
=

N

1u

4
uix  = 3.∑

=

N

1u

2
uj

2
ui xx , we can obtain   

12k {(b-r) α4 + (r-λ)(v-1) β4 } = 3. 12k {λ(v-k) β4 + (b-2λ)α2 β2}               (2.4) 

 
From the rotatable condition, we obtain  

rα4 – 3 (b-2λ)β4 -3vα2 β2 =0                                                                  (2.5) 
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Let t = α2/β2, then (2.5) can be expressed in the quadratic form as  

(b-r) t2 – 3 (b-2λ) t + [(v-1) (r-λ) - λ(v-k)] = 0                (2.6)  
 

The roots of the quadratic equation are t = 
r)-2(b

k)]-(v - )-1)(r-r).[(v4(b)2-9(b)2-3(b 2 λλλλ −−± .  

 
The roots are real if the discriminant in nonnegative. Choose any real value for ‘β’ then the real value for ‘α’ can be 
obtained as α2  = tβ2. The resulting design ‘D’ provides a v-dimensional Second Order Rotatable Design in five levels. 
 
Example 2.2: Let N1 be the incidence matrix of a Balanced Incomplete Block Design with parameters v = 4, b = 6,       
r = 3, k = 2 and λ = 1, and N2 = 2Iv. The resulting Balanced Ternary Design is with parameters V = 4, B = 12, R = 12,   
K = 4 and π  = 10. The Second Order Rotatable Design with four factors is presented in. Table 2.2 
 

Table-2.2: Construction of Second Order Rotatable Design (SORD) 

N1 N2 N SORD 
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 The real solution for ‘t’ is 3.63. Select value for β arbitrarily and accordingly α can be evaluated.  
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