# Applications of b\#-Open set 

R. USHA PARAMESWARI*1 AND P. AZHAGUESWARI ${ }^{\mathbf{2}}$<br>1,2Department of Mathematics, Govindammal Aditanar College for Women, Tiruchendur-628215, India.

(Received On: 13-04-18; Revised \& Accepted On: 01-06-18)


#### Abstract

$\boldsymbol{U}_{\text {sing }}$ the concept of $b^{\#}$-open sets we introduce and study topological properties of $b^{\#}$-limit points, $b^{\#}$-derived sets, $b^{*}$-closure, $b^{*}$-border, $b^{*}$-Frontier and $D b^{\#}$ - exterior and discuss their relations with one another.


Keywords: $b^{\#}$-limit points, $b^{\#}$-derived sets, $b^{\#}$-closure, $b^{\#}$-border, $b^{\#}$-Frontier and $D b^{\#}$ - exterior.
AMS Subject Classification Nos. 2000: 54A05, 54A10.

## 1. INTRODUCTION

In the year 1996, Andrijivic introduced [1] and studied b-open sets. Following this Usha Paraeswari et.al [2] introduced the concept of $\mathrm{b}^{\#}$ - open sets. In this paper we introduce the notions of $\mathrm{b}^{\#}$-limit points, $\mathrm{b}^{\#}$-derived sets, $\mathrm{b}^{\#}$-closure, $\mathrm{b}^{\#}$-border, $\mathrm{b}^{\#}$-Frontier and $\mathrm{b}^{\#}$ - exterior by using the concept of $\mathrm{b}^{\#}$-open set.

## 2. PRELIMINARIES

Throughout this paper X denotes a topological space on which no separation axiom is assumed. For any subset A of X , $c l(\mathrm{~A})$ denotes the closure of A and $\operatorname{int}(\mathrm{A})$ denotes the interior of A in the topological space X . Further $\mathrm{X} \backslash \mathrm{A}$ denotes the complement of A in X . The following definitions and results are very useful in the subsequent sections.

Definition 2.1 [2]: A subset $A$ of a space $X$ is called $b^{\#}$ - open if $A=\operatorname{cl}(\operatorname{int}(A)) \cup \operatorname{int}(c l(A))$ and their complement is called $\mathrm{b}^{\#}$ - closed. That is A is $\mathrm{b}^{\#}$-closed if $\mathrm{A}=\operatorname{cl}(\operatorname{int}(\mathrm{A})) \cap \operatorname{int}(\mathrm{cl}(\mathrm{A}))$.

Definition 2.2[3]: The $\mathrm{b}^{\#}$-interior of A , denoted by $\mathrm{b}^{\#}$ - -int(A), is defined to be the union of all $\mathrm{b}^{\#}$-open sets contained in A. That is $\mathrm{b}^{\#}-\operatorname{int}(\mathrm{A})=\bigcup\left\{\mathrm{B}: \mathrm{B} \subseteq \mathrm{A}\right.$ and B is $\mathrm{b}^{\#}$-open $\}$.

The next Lemma gives the properties of $\mathrm{b}^{\#}$-interior.
Lemma 2.3[3]:
(i) $\mathrm{b}^{\#}-$ int $(\phi)=\phi$.
(ii) $\mathrm{b}^{\#}-$ int $(\mathrm{X})=\mathrm{X}$.
(iii) $\mathrm{b}^{\#}-$ int $(\mathrm{A}) \subseteq \mathrm{A}$.
(iv) $\mathrm{b}^{\#}$-interior of a set A is not always $\mathrm{b}^{\#}$-open.
(v) If A is $\mathrm{b}^{\#}$-open then $\mathrm{b}^{\#}$-int $(\mathrm{A})=\mathrm{A}$.

Lemma 2.4[3]: Let $X$ be a space. Then for any two sub sets $A$ and $B$ of $X$ we have
(i) If $\mathrm{A} \subseteq \mathrm{B}$ then $\mathrm{b}^{\#}-\operatorname{int}(\mathrm{A}) \subseteq \mathrm{b}^{\#}-\operatorname{int}(\mathrm{B})$.
(ii) $\mathrm{b}^{\#}-\operatorname{int}\left(\mathrm{b}^{\#}-\operatorname{int}(\mathrm{A})\right)=\mathrm{b}^{\#}-\operatorname{int}(\mathrm{A})$.
(iii) $b^{\#} \operatorname{int}(A \cap B) \subseteq b^{\#} \operatorname{int}(A) \cap b^{\#} \operatorname{int}(B)$.
(iv) $\mathrm{b}^{\#}-\operatorname{int}(\mathrm{A} \bigcup \mathrm{B}) \supseteq \mathrm{b}^{\#}-\operatorname{int}(\mathrm{A}) \bigcup \mathrm{b}^{\#}-\operatorname{int}(\mathrm{B})$.

> Corresponding Author: R. Usha Parameswari ${ }^{* 1,1} 1$ Department of Mathematics, Govindammal Aditanar College for Women, Tiruchendur-628215, India.

## R. Usha Parameswari* ${ }^{1}$ and P. Azhagueswari ${ }^{2}$ / Applications of b*-Open set / IJMA-9(6), June-2018.

Definition 2.5[3]: The $\mathrm{b}^{\#}$-closure of A , denoted by $\mathrm{b}^{\#}$-cl(A), is defined to be the intersection of all $\mathrm{b}^{\#}$-closed sets containing $A$. That is $b^{\#}-c l(A)=\bigcap\left\{B: A \subseteq B\right.$ and $B$ is $b^{\#}$-closed $\}$.

Lemma 2.6[3]: Let X be a space. Then for any sub set A of X we have
(i) $\mathrm{X} \backslash \mathrm{b}^{\#}-\operatorname{int}(\mathrm{A})=\mathrm{b}^{\#}-c l(\mathrm{X} \backslash \mathrm{A})$.
(ii) $\mathrm{X} \backslash \mathrm{b}^{\#}-c l(\mathrm{~A})=\mathrm{b}^{\#}-\operatorname{int}(\mathrm{X} \backslash \mathrm{A})$.

## Remarks 2.7[3]:

(i) $\mathrm{b}^{\#}-c l(\phi)=\phi$,
(ii) $\mathrm{b}^{\#}-c l(\mathrm{X})=\mathrm{X}$.
(iii) $\mathrm{A} \subseteq \mathrm{b}^{\#}-c l(\mathrm{~A})$.
(iv) $\mathrm{b}^{\# \text {-closure }}$ of a set A is not always $\mathrm{b}^{\# \text {-closed. }}$
(v) If A is $\mathrm{b}^{\#}$-closed then $\mathrm{b}^{\#}$-cl( A$)=\mathrm{A}$.

Lemma 2.8[3]: Let $X$ be a space. Then for any two sub sets $A$ and $B$ of $X$ we have
(i) If $\mathrm{A} \subseteq \mathrm{B}$ then $\mathrm{b}^{\#}-\mathrm{cl}(\mathrm{A}) \subseteq \mathrm{b}^{\#}-c l(\mathrm{~B})$.
(ii) $\mathrm{b}^{\#}-c l\left(\mathrm{~b}^{\#}-c l(\mathrm{~A})\right)=\mathrm{b}^{\#}-c l(\mathrm{~A})$.
(iii) $\mathrm{b}^{\#}-c l(\mathrm{~A} \cup \mathrm{~B}) \supseteq \mathrm{b}^{\#}-c l(\mathrm{~A}) \cup \mathrm{b}^{\#}-c l(\mathrm{~B})$.
(iv) $\mathrm{b}^{\#}-c l(\mathrm{~A} \cap \mathrm{~B}) \subseteq \mathrm{b}^{\#}-c l(\mathrm{~A}) \cap \mathrm{b}^{\#}-c l(\mathrm{~B})$.

## 3. $\mathbf{b}^{\#}$ - limit points

Definition 3.1: Let A be a subset of a topological space ( $\mathrm{X}, \tau$ ) and x be a point of X . A point $\mathrm{x} \in \mathrm{X}$ is said to be a $\mathrm{b}^{\#}$-limit point of A if every $\mathrm{b}^{\#}$-neighborhood of x intersects A in some point other than x itself. That is $\mathrm{U} \bigcap(\mathrm{A} /\{\mathrm{x}\}) \neq \phi$ for all $\mathrm{U} \in \mathrm{b}^{\#}-\mathrm{O}(\mathrm{X}, \tau)$.

The set of all $\mathrm{b}^{\#}$-limit points of A is called the $\mathrm{b}^{\#}$-derived set of A and is denoted by $\mathrm{Db}^{\#}$-(A).
Remark 3.2: $A$ subset $A$ of $X$, a point $x \in X$ is not a $b^{\#}$-limit point of $A$ if and only if there exists a $b^{\#}$-open set $G$ in $X$ such that $x \in G$ and $G \bigcap(A /\{x\})=\phi$ that is $x \in G$ and $G \cap A=\phi$ or $G \bigcap A=\{x\}$ that is $x \in G$ and $G \bigcap A \subseteq\{x\}$.

Theorem 3.3: Let $\tau_{1}$ and $\tau_{2}$ be topologies on X such that $\tau_{1}^{b \#} \subseteq \tau_{2}^{b \#}$. For any subset A of X , every $\mathrm{b}^{\#}$-limit point of A with respect to $\tau_{2}$ is a $\mathrm{b}^{\#}$-limit point of A with respect to $\tau_{1}$.

Proof: Let x be a $\mathrm{b}^{\#}$-limit point of A with respect to $\tau_{2}$. Then $\mathrm{U} \cap(\mathrm{A} /\{\mathrm{x}\}) \neq \phi$ for every $\mathrm{U} \in \tau_{2}^{b \#}$ such that $\mathrm{x} \in \mathrm{U}$. But $\tau_{1}^{b \#} \subseteq \tau_{2}^{b \#}$, we have $\mathrm{U} \bigcap(\mathrm{A} /\{\mathrm{x}\}) \neq \phi$ for every $\mathrm{U} \in \tau_{1}^{b \#}$ such that $\mathrm{x} \in \mathrm{U}$. Hence x is a $\mathrm{b}^{\#}$-limit point of A with respect to $\tau_{1}$.

Theorem 3.4: For any sub sets A and B of $(\mathrm{X}, \tau)$ the following holds.
(i) If $\mathrm{A} \subseteq \mathrm{B}$ then $\mathrm{Db}^{\#}-(\mathrm{A}) \subseteq \mathrm{Db}^{\#}$ - (B).
(ii) $\mathrm{Db}^{\#}-(\mathrm{A}) \cup \mathrm{Db}^{\#}-(\mathrm{B}) \subseteq \mathrm{Db}^{\#}-(\mathrm{A} \cup \mathrm{B})$.
(iii) $\mathrm{Db}^{\#-}-(\mathrm{A} \cap \mathrm{B}) \subseteq \mathrm{Db}^{\#}-(\mathrm{A}) \cap \mathrm{Db}^{\#}-(\mathrm{B})$.
(iv) $\mathrm{Db}^{\#}-\left(\mathrm{Db}^{\#}-(\mathrm{A})\right) / \mathrm{A} \subseteq \mathrm{Db}^{\#}-(\mathrm{A})$.
(v) $\mathrm{Db}^{\#}-\left(\mathrm{A} \bigcup \mathrm{Db}^{\#}-(\mathrm{A})\right) \subseteq \mathrm{A} \bigcup \mathrm{Db}^{\#}-(\mathrm{A})$.

Proof: Let $x \in D^{\#}-(A)$ and let $U \in \tau^{b \#}$ with $x \in U$. Then $U \bigcap(A /\{x\}) \neq \phi$. Since $A \subseteq B$, we have $U \bigcap(B /\{x\}) \neq \phi$. This implies that $x \in \mathrm{Db}^{\#}-$ (B). This proves (i).

Now to prove (ii). Since $A \subseteq A \cup B$ and $B \subseteq A \bigcup B$. Using (i), $D b^{\#}-(A) \subseteq D b^{\#}-(A \bigcup B)$ and $D b^{\#}-(B) \subseteq D b^{\#}-(A \bigcup B)$ that is $\mathrm{Db}^{\#-}-(\mathrm{A}) \bigcup \mathrm{Db}^{\#}-(\mathrm{B}) \subseteq \mathrm{Db}^{\#}-(\mathrm{A} \bigcup \mathrm{B})$. This proves (ii).

Next we have to prove (iii). Since $A \bigcap B \subseteq A$ and $A \bigcap B \subseteq B$. Using (i), $D b^{\#}-(A \cap B) \subseteq D b^{\#}-(A)$ and $D^{\#}-(A \bigcap B)$ $\subseteq \mathrm{Db}^{\#-}-(\mathrm{B})$. Thus we get $\mathrm{Db}^{\#-}-(\mathrm{A} \bigcap \mathrm{B}) \subseteq \mathrm{Db}^{\#}-(\mathrm{A}) \cap \mathrm{Db}^{\#-}-(\mathrm{B})$. Hence (iii). Next to prove (iv). Let $\mathrm{x} \in \mathrm{Db}^{\#}-\left(\mathrm{Db}^{\#-}\right.$ (A))/A and let $U \in \tau^{b \#}$ with $x \in U$. Then $U \cap\left(D^{\#}-(A) /\{x\}\right) \neq \phi$. Let $y \in U \cap\left(D b^{\#}-(A) /\{x\}\right)$. Then $y \in U$ and $y \in D b^{\#}-(A)$ and $U \bigcap(A /\{y\}) \neq \phi$. If we take $z \in U \bigcap(A /\{y\})$, then $x \neq z$ because $x \notin A$.
Hence $U \bigcap(A /\{x\}) \neq \phi$. Therefore $\mathrm{x} \in \mathrm{D}^{\mathrm{B}}$ - $-(\mathrm{A})$. Hence (iv).

Next to prove (v). Let $x \in D b^{\#}-\left(A \bigcup D b^{\#}-(A)\right)$. If $x \in A$, the result is obvious. Assume that $x \notin A$. Then $U \bigcap\left(A \cup D b^{\#}-(A) /\{x\}\right) \neq \phi$ for all $U \in \tau^{\text {b }}$ with $x \in U$. Hence $U \cap(A /\{x\}) \neq \phi$ or $U \cap\left(D^{\#}-(A) /\{x\}\right) \neq \phi$. The first case implies $x \in D^{\#}-(A)$. Then the second case implies $x \in D b^{\#}-\left(D b^{\#}-(A)\right)$. Since $x \notin A$, by (iv) $x \in D b^{\#}-\left(\mathrm{Db}^{\#}-(\mathrm{A})\right) / \mathrm{A} \subseteq \mathrm{Db}^{\#}-(\mathrm{A})$. This proves (v).

The reverse inclusion of (i) and the converse of (ii), (iii) and (iv) are not true as shown by the following examples.
Example 3.5: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$. Consider the topology $\tau=\{\Phi, \mathrm{X},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\},\{\mathrm{a}\},\{\mathrm{b}, \mathrm{c}\}\}$. The $\mathrm{b}^{\#}$-open sets are $\Phi, \mathrm{X}$, $\{d, b, c\},\{a, d\}$ and $b^{\#}$-closed sets are $\Phi, X,\{a\},\{b, c\}$. Let $A=\{a, d\}$ and $B=\{b, c\}$. Then $D^{\#}-(A)=\{a, b, c\}$ and $D b^{\#}-(B)=\{b, c\}$. So $D b^{\#}-(B) \subseteq D b^{\#}-(A)$ but $B \not \subset A$.
 $\left(B_{1}\right)=\{b, d\}$. Therefore $\mathrm{Db}^{\#}-(\mathrm{A}) \cap \mathrm{Db}^{\#}-(\mathrm{B}) \not \subset \mathrm{Db}^{\#}-(\mathrm{A} \cap \mathrm{B})$.

Let $A_{2}=\{a, c\} . b^{\#}-\left(A_{2}\right)=\{b, d\}$ and $D^{\#}\left(D^{\#}-(A)\right)=\{a, b, c\}$. Thus $\mathrm{Db}^{\#}-(A) \not \subset \mathrm{Db}^{\#}\left(\mathrm{Db}^{\#}-(\mathrm{A})\right) \backslash \mathrm{A}$.
Theorem 3.6: Let A be a sub set of $(\mathrm{X}, \tau)$ and $\mathrm{x} \in \mathrm{X}$. Then the following are equivalent.
(i) If for all $U \in \tau^{b \#}, x \in U$ then $A \bigcap U \neq \phi$.
(ii) $\mathrm{x} \in \mathrm{b}^{\#}-\mathrm{cl}(\mathrm{A})$.

Proof: Suppose (i) holds. If $x \notin b^{\#}$-cl(A), then there exists a $b^{\#}$-closed set $F$ such that $A \subseteq F$ and $x \notin F$. Hence $X / F$ is a $\mathrm{b}^{\#}$-open set containing x and $\mathrm{A} \bigcap(\mathrm{X} / \mathrm{F}) \subseteq \mathrm{A} \bigcap(\mathrm{X} / \mathrm{A})=\phi$. This is a contradiction to our assumption. This proves (i) $\Rightarrow$ (ii). The proof of (ii) $\Rightarrow$ (i) is from the Definition 3.1.

Corollary 3.7: For any sub set $A$ of $X$ we have $\mathrm{Db}^{\#}-(\mathrm{A}) \subseteq \mathrm{b}^{\#}-\mathrm{cl}(\mathrm{A})$.
Proof: Let $x \in D^{\#}$ - (A). By Definition 3.1, there exists $x \in U$ such that $U \cap(A /\{x\}) \neq \phi$. That is $U \bigcap A \neq \phi$. So by Theorem 3.6, $x \in b^{\#}-\operatorname{cl}(A)$.

Theorem 3.8: For any sub set $A$ of $X, b^{\#}-c l(A)=A \bigcup D b^{\#}-(A)$.
Proof: Let $x \in b^{\#}-c l(A)$. Assume that $x \notin A$ and let $U \in \tau^{b \#}$ with $x \in U$. Then $U \bigcap(A /\{x\}) \neq \phi$ and so $x \in D^{\#}-(A)$. Hence $b^{\#}-c l(A) \subseteq A \bigcup D b^{\#}-(A)$. Conversely since $A \subseteq b^{\#}-c l(A)$ and $D^{\#}-(A) \subseteq b^{\#}-c l(A)$. This proves the theorem.

Definition 3.9[3]: A space X is said to be $\mathrm{b}^{\#}$-closed preserving if every $\mathrm{b}^{\#}$-closure of a subset is $\mathrm{b}^{\#}$-closed.
Theorem 3.10: Let $A$ and $B$ be a sub sets of $(X, \tau)$. If $A$ is $\mathrm{b}^{\#}$-closed preserving then $\mathrm{b}^{\#}$-cl( $\left.\mathrm{A} \bigcap \mathrm{B}\right) \subseteq \mathrm{A} \bigcap \mathrm{b}^{\#}$-cl( A$)$.

Proof: If A is $\mathrm{b}^{\#}$-closed preserving then $\mathrm{b}^{\#}-\mathrm{cl}(\mathrm{A})=\mathrm{A}$ and so $\mathrm{b}^{\#}-\mathrm{cl}(\mathrm{A} \cap \mathrm{B}) \subseteq \mathrm{b}^{\#}-\mathrm{cl}(\mathrm{A}) \bigcap \mathrm{b}^{\#}-\mathrm{cl}(\mathrm{B})=\mathrm{A} \bigcap \mathrm{b}^{\#}-\mathrm{cl}(\mathrm{B})$.
Theorem 3.11: For every sub set $A$ of $X$ we have $A$ is $b^{\#}$-closed then $D^{\#}$ - $(A) \subseteq A$.
Proof: Assume that $A$ is $b^{\#}$-closed. Let $x \in X / A$. Then $X / A$ is $b^{\#}$-open, $(X / A) \bigcap(A /\{x\})=\phi$. Therefore $x$ is not $a$ $b^{\#}$-limit point of $A$. That is $x \notin D b^{\#}-(A)$. Hence $D b^{\#}-(A) \subseteq A$.

Corollary 3.12: The converse of the above theorem is true if A is $\mathrm{b}^{\#}$-closed preserving.
Theorem 3.13: Let A be a sub set of $(\mathrm{X}, \tau)$. If a point $\mathrm{x} \in \mathrm{X}$ is $\mathrm{a}^{\#}{ }^{\#}$-limit point of $\mathrm{A} \mid \mathrm{x}$ then x is also $\mathrm{a}^{\#}{ }^{\#}$-limit point of A.

Proof: If $x$ is a $b^{\#}$-limit point of $A /\{x\}$ then by Definition 3.1, there exists a $b^{\#}$-open set $U$ such that $x \in U$ and $\mathrm{U} \bigcap[(\mathrm{A} /\{\mathrm{x}\}) /\{\mathrm{x}\}] \neq \phi$. That is x is $\mathrm{ab}^{\#}$-limit point of $\mathrm{A} /\{\mathrm{x}\}$.

## 4. $\mathbf{b}^{\#}$-interior, $\mathbf{b}^{\#}$-border and $\mathbf{b}^{\#}$-Frontier

Definition 4.1: Let A be a sub set of a topological space ( $\mathrm{X}, \tau$ ). A point $\mathrm{x} \in \mathrm{X}$ is called a $\mathrm{b}^{\#}$-interior point of A if there exists a $\mathrm{b}^{\#}$-open set U such that $\mathrm{x} \in \mathrm{U} \subseteq \mathrm{A}$. The set of all $\mathrm{b}^{\#}$-interior points of A is called $\mathrm{b}^{\#}$ - interior of A and is denoted by $\mathrm{b}^{\#}$-int(A).

## R. Usha Parameswari* ${ }^{1}$ and P. Azhagueswari ${ }^{2}$ / Applications of $b^{\#}$-Open set / IJMA- 9(6), June-2018.

Definition 4.2: For any sub set $A$ of $X$, the set $b^{\#}-b(A)=A / b^{\#}$ - $\operatorname{int}(A)$ is called the $b^{\#}$-border of $A$ and the set $b^{\#}-\operatorname{Fr}(A)=b^{\#}-c l(A) / b^{\#}-\operatorname{int}(A)$ is called the $b^{\#}$-Frontier of $A$.

Remark 4.3: If $A$ is $a b^{\#}$-closed preserving sub set of $X$ then $b^{\#}-b(A)=b^{\#}-\operatorname{Fr}(A)$.
Proposition 4.4: For a sub set $A$ of $X$ the following statements holds.
(i) $\mathrm{b}^{\#}-\operatorname{int}(\mathrm{A}) \cap \mathrm{b}^{\#}-\mathrm{b}(\mathrm{A})=\phi$.
(ii) $\mathrm{b}^{\#}-\mathrm{int}\left(\mathrm{b}^{\#}-\mathrm{b}(\mathrm{A})\right)=\phi$.
(iii) $b^{\#}-b\left(b^{\#}-b(A)\right)=b^{\#}-b(A)$.
(iv) $\mathrm{b}^{\#}-\mathrm{b}(\mathrm{A})=\mathrm{A} \bigcap \mathrm{b}^{\#}-\mathrm{cl}(\mathrm{X} / \mathrm{A})$.

Proof: By Definition of 4.2, (i) holds. Now to prove (ii).
If $\mathrm{x} \in \mathrm{b}^{\#}-\mathrm{int}\left(\mathrm{b}^{\#}-\mathrm{b}(\mathrm{A})\right)$ then $\mathrm{x} \in \mathrm{b}^{\#}-\mathrm{b}(\mathrm{A}) \subseteq \mathrm{A}$ and $\mathrm{x} \in \mathrm{b}^{\#}-\mathrm{int}(\mathrm{A})$. Thus $\mathrm{x} \in \mathrm{b}^{\#}-\mathrm{int}(\mathrm{A}) \bigcap \mathrm{b}^{\#}-\mathrm{b}(\mathrm{A})$ but by (i), $\mathrm{b}^{\#}-\operatorname{int}(\mathrm{A})$ $\bigcap \mathrm{b}^{\#}-\mathrm{b}(\mathrm{A})=\phi$ which is a contradiction. Hence $\mathrm{b}^{\#}-\operatorname{int}\left(\mathrm{b}^{\#}-\mathrm{b}(\mathrm{A})\right)=\phi$. This proves (ii).

Now to prove (iii). By Definition 4.2, $b^{\#}-b\left(b^{\#}-b(A)\right)=b^{\#}-b(A) / b^{\#}-i n t\left(b^{\#}-b(A)\right)$.
Using (ii), $\mathrm{b}^{\#}-\mathrm{b}\left(\mathrm{b}^{\#}-\mathrm{b}(\mathrm{A})\right)=\mathrm{b}^{\#}-\mathrm{b}(\mathrm{A})$. This proves (iii). Now to prove (iv). Using Definition 4.2,
$b^{\#}-b(A)=A / b^{\#}-\operatorname{int}(A)=A /\left[X / b^{\#}-c l(X / A)\right]=A \bigcap b^{\#}-c l(X / A)$. This proves (iv).
Theorem 4.5: For a sub set A of (X, $\tau$ ), the following conditions holds.
(i) $b^{\#}-\operatorname{int}(A) \cap b^{\#}-\operatorname{Fr}(A)=\phi$.
(ii) $b^{\#}-b(A) \subseteq b^{\#}-\operatorname{Fr}(A)$.
(iii) $b^{\#}-\operatorname{Fr}(A)=b^{\#}-b(A) \bigcup\left(\mathrm{Db} \#-(A) / b^{\#}-\operatorname{int}(A)\right)$.
(iv) $\mathrm{b}^{\#}-\mathrm{Fr}(\mathrm{A})=\mathrm{b}^{\#}-\mathrm{cl}(\mathrm{A}) \cap \mathrm{b}^{\#}-\mathrm{cl}(\mathrm{X} / \mathrm{A})$.
(v) $\mathrm{b}^{\#}-\operatorname{Fr}(\mathrm{A})=\mathrm{b}^{\#}-\operatorname{Fr}(\mathrm{X} / \mathrm{A})$.
(vi) $\mathrm{b}^{\#}-\operatorname{Fr}\left(\mathrm{b}^{\#}-\mathrm{int}(\mathrm{A})\right) \subseteq \mathrm{b}^{\#}-\operatorname{Fr}(\mathrm{A})$.
(vii) $b^{\#}-i n t(A)=A / b^{\#}-\operatorname{Fr}(A)$.

Proof: Using Definition 4.2, $\mathrm{b}^{\#}-\operatorname{int}(\mathrm{A}) \cap \mathrm{b}^{\#}-\operatorname{Fr}(\mathrm{A})=\mathrm{b}^{\#}-\operatorname{int}(\mathrm{A}) \cap\left[\mathrm{b}^{\#}-\mathrm{cl}(\mathrm{A}) / \mathrm{b}^{\#}-\operatorname{int}(\mathrm{A})\right]=\phi$. This proves (i). Now to prove (ii).

Since $A \subseteq b^{\#}-c l(A)$ we have $b^{\#}-b(A)=A / b^{\#}-\operatorname{int}(A) \subseteq b^{\#}-c l(A) / b^{\#}-\operatorname{int}(A)=b^{\#}-\operatorname{Fr}(A)$. This proves (ii). Now to prove (iii).

By Definition 4.2, $\mathrm{b}^{\#}-\operatorname{Fr}(\mathrm{A})=\mathrm{b}^{\#}-\mathrm{cl}(\mathrm{A}) / \mathrm{b}^{\#}-\operatorname{int}(\mathrm{A})=\left(\mathrm{A} \bigcup \mathrm{Db}^{\#}-(\mathrm{A})\right) / \mathrm{b}^{\#}-\operatorname{int}(\mathrm{A})=\left(\mathrm{A} / \mathrm{b}^{\#}-\operatorname{int}(\mathrm{A})\right) \bigcup\left(\mathrm{Db}^{\#}-(\mathrm{A}) / \mathrm{b}^{\#}-\mathrm{int}(\mathrm{A})\right)$ $=b^{\#}-b(A) \bigcup\left(D b^{\#}-(A) / b^{\#}-\operatorname{int}(A)\right)$. Hence (iii) is proved. Now to prove (iv).

Using Lemma 2.6, we have
$b^{\#}-c l(A) \cap b^{\#}-c l(X / A)=b^{\#}-c l(A) \bigcap\left(X / b^{\#}-\operatorname{int}(A)\right)=b^{\#}-c l(A) / b^{\#}-\operatorname{int}(A)=b^{\#}-\operatorname{Fr}(A)$. This proves (iv). Using (iv), $b^{\#}-\operatorname{Fr}(X / A)=b^{\#}-c l(X / A) \cap b^{\#}-c l(A)=b^{\#}-\operatorname{Fr}(A)$. Hence $(v)$ is proved.

Using Lemma 2.4, $\mathrm{b}^{\#}-\operatorname{Fr}\left(\mathrm{b}^{\#}-\operatorname{int}(\mathrm{A})\right)=\mathrm{b}^{\#}-\mathrm{cl}\left(\mathrm{b}^{\#}-\operatorname{int}(\mathrm{A})\right) / \mathrm{b}^{\#}-\operatorname{int}\left(\mathrm{b}^{\#}-\operatorname{int}(\mathrm{A})\right) \subseteq \mathrm{b}^{\#}-\mathrm{cl}(\mathrm{A}) / \mathrm{b}^{\#}-\operatorname{int}(\mathrm{A})=\mathrm{b}^{\#}-\operatorname{Fr}(\mathrm{A})$. This proves (vi). Now $\quad A / b^{\#}-\operatorname{Fr}(A)=A /\left(b^{\#}-c l(A) / b^{\#}-\operatorname{int}(A)\right)=A \bigcap\left(\left(X / b^{\#}-c l(A) \bigcup b^{\#}-\operatorname{int}(A)\right)=\phi \bigcup\left(A \bigcup b^{\#}-\operatorname{int}(A)\right)=b^{\#}-\operatorname{int}(A)\right.$. This completes the proof.

The converse of (ii) and (vi) of Theorem 4.5 is not true in general as seen in the following Example.
Example 4.6: Consider the same topological space in Example 3.5. Let $A=\{c\}$. Then $b^{\#}-\operatorname{Fr}(A)=\{b, c\}, b^{\#}-b(A)=\{c\}$, $b^{\#}-\operatorname{int}(A)=\Phi$ and $b^{\#}-\operatorname{Fr}\left(b^{\#}-\operatorname{int}(A)\right)=\Phi$. Thus $b^{\#}-\operatorname{Fr}(A) \not \subset b^{\#}-b(A)$ and $b^{\#}-\operatorname{Fr}(A) \not \subset b^{\#}-\operatorname{Fr}\left(b^{\#}-\operatorname{int}(A)\right)$.

## 5. $\mathbf{b}^{\#}$ - exterior

Definition 5.1: For a sub set $A$ of ( $X, \tau$ ), the $b^{\#}$-interior of $X / A$ is called $b^{\#}$ - exterior of $A$ and is denoted $b y b^{\#}$-ext(A), that is $b^{\#}-\operatorname{ext}(A)=b^{\#}-\operatorname{int}(X / A)$.

## R．Usha Parameswari＊⿰氵工${ }^{1}$ and P．Azhagueswari ${ }^{2}$／Applications of $b^{\#}$－Open set／IJMA－9（6），June－2018．

Theorem 5．2：For sub sets A and B of $X$ the following assertions are valid．
（i）$b^{\#}-\operatorname{ext}(A)=X / b^{\#}-c l(A)$ ．
（ii） $\mathrm{b}^{\#}-\operatorname{ext}\left(\mathrm{b}^{\#}-\operatorname{ext}(\mathrm{A})\right)=\mathrm{b}^{\#}-\mathrm{int}\left(\mathrm{b}^{\#}-\mathrm{cl}(\mathrm{A})\right) \supseteq \mathrm{b}^{\#}-\operatorname{int}(\mathrm{A})$ ．
（iii）$A \subseteq B$ implies $b^{\#}-\operatorname{ext}(A) \subseteq b^{\#}-\operatorname{ext}(B)$ ．
（iv）$b^{\#}-\operatorname{ext}(A \cup B) \subseteq b^{\#}-\operatorname{ext}(A) \cap b^{\#}-\operatorname{ext}(B)$ ．
（v）$b^{\#}-\operatorname{ext}(A \cap B) \supseteq b^{\#}-\operatorname{ext}(A) \cup b^{\#}-\operatorname{ext}(B)$ ．
（vi）$b^{\#}-\operatorname{ext}(X)=\phi, b^{\#}-\operatorname{ext}(\phi)=X$ ．
（vii）$X=b^{\#}-\operatorname{int}(A) \bigcup b^{\#}-\operatorname{ext}(A) \bigcup b^{\#}-\operatorname{Fr}(A)$ ．
Proof：By Definition 5.1 and Lemma 2．6，$b^{\#}-\operatorname{ext}(A)=b^{\#}-\operatorname{int}(X / A)=X / b^{\#}-c l(A)$ ．This proves（i）．Now to prove（ii）．Using Lemma 2．6，we get $b^{\#}-\operatorname{ext}\left(b^{\#}-\operatorname{ext}(A)\right)=b^{\#}-\operatorname{ext}\left(b^{\#}-\operatorname{int}(X / A)\right)=b^{\#}-\operatorname{int}\left(X / b^{\#}-\operatorname{int}(X / A)\right)=b^{\#}-\operatorname{int}\left(b^{\#}-c l(A)\right) \supseteq b^{\#}-\operatorname{int}(A)$ ．This proves（ii）．

Now to prove（iii）．Assume that $A \subseteq B$ ．Then $b^{\#}-e x t(B)=b^{\#}-\operatorname{int}(X / B) \subseteq b^{\#}-\operatorname{int}(X / A)=b^{\#}-\operatorname{ext}(A)$ ．Hence（iii）is proved．
Now to prove（iv）．$b^{\#}-\operatorname{ext}(A \bigcup B)=b^{\#}-\operatorname{int}(X /(A \bigcup B))=b^{\#}-\operatorname{int}((X / A) \bigcap(X / B)) \subseteq b^{\#}-\operatorname{int}(X / A) \bigcap b^{\#}-\operatorname{int}(X / B)=b^{\#}-\operatorname{ext}(A)$ $\bigcap b^{\#}-\operatorname{ext}(B)$ ．Hence（iv）is proved．

Now to prove（v）．$b^{\#}-\operatorname{ext}(A \cap B)=b^{\#}-\operatorname{int}(X /(A \cap B))=b^{\#}-\operatorname{int}((X / A) \bigcup(X / B)) \supseteq b^{\#}-\operatorname{int}(X / A) \bigcup b^{\#}-\operatorname{int}(X / B)=b^{\#}-\operatorname{ext}(A)$ $\bigcup b^{\#}-\operatorname{ext}(\mathrm{B})$ ．Thus（v）is proved．Using Definition 5．1，（vi）is proved．

Now to prove（vii）．$b^{\#}-\operatorname{int}(A) \bigcup b^{\#}-\operatorname{ext}(A) \bigcup b^{\#}-\operatorname{Fr}(A)=b^{\#}-\operatorname{int}(A) \bigcup\left(b^{\#}-c l(A) / b^{\#}-\operatorname{int}(A)\right) \bigcup b^{\#}-\operatorname{ext}(A)=\left(b^{\#}-\operatorname{int}(A) \bigcup\right.$ $\left.b^{\#}-c l(A)\right) \cup b^{\#}-e x t(A)=b^{\#}-c l(A) \cup b^{\#}-c l(X \backslash A)=X$ since by Definition 4.2 and Lemma 2．6．

Examples can be easily constructed for the reverse inclusion of Theorem 5．2（iii）and（iv）．

## REFERENCES

1．Andrijevic D．On b－open sets，Mat．Vesnik 1996；48：59－64．
2．Usha Parameswari R，Thangavelu P．On $b^{\#}$－open sets，International Journal of Mathematics Trends and Technology．2014；5（3）：202－218．
3．Usha Parameswari R，＂A Study on Generalization of b－open sets and related concepts in topology＂Ph．D Thesis，Manononmaniam Sundaranar University，Tirunelveli（2015）．

[^0]
[^0]:    Source of support：Nil，Conflict of interest：None Declared．
    ［Copy right © 2018．This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive（IJMA），which permits unrestricted use，distribution，and reproduction in any medium，provided the original work is properly cited．］

