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ABSTRACT 
In this present research article, we prove the existence of a common fixed point for three self mappings defined on a 
complete 2- metric space through weak **commutativity and Rotativity of maps. The result is an extension from metric 
space to 2-metric space settings. 
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INTRODUCTION 
 
The notion of 2-metric space was introduced by Gahler [1] in 1963 as a generalization of area function for Euclidean 
triangles. Many fixed point theorems were established by various authors like Brouwer, Banach, Schauder etc. A point 
x X∈ is said to be a fixed point of a self-map :f X X→ if ( )f x x= , where X is a non- empty set. Theorems 
concerning fixed points of self-maps are known as fixed point theorems. Most of the fixed point theorems were proved 
for contraction mappings. It is well known that every contraction on a metric space is continuous.  The converse is not 
necessarily true. The identity mapping on [0, 1] simply serves the counter example. 
 
In this present work we consider Weak ** Commuting and Rotative self maps on a 2-metric space. Let T1 and T2 be 
two mappings from a metric space ( ),X d  into itself. T1 and T2 are said to commute if 1 2 2 1TT x T T x= , for all x in X. 
Sessa [5] introduced the concept of weak commutativity in metric spaces. In subsequent years the condition of weak 
commutativity was again made weaker. Weak* commutativity was introduced in metric space. In recent years weak** 
commutativity has been introduced and some theorems have been established. The existence of fixed point for 
weak**commutative self maps in 2-metric space are studied. 
 
In this research article we present the concepts of weak** commutativity and Rotativity maps in 2-metric space.   
 
1. PRELIMINARIES 
 
In this section we define weak** commutativity, Idempotent maps and Rotative.  
 
Definition-1.1: Two self maps A and S of a 2-metric space (X, d) are called weak** commutative if  
( ) ( ) ( )1 A x S x⊂  and 

( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2 2 2 2 22 , , , , , , , , , ,d A S x S A x a d A S xS Ax a d AS x S Ax a d AS xS Ax a d A x S x a≤ ≤ ≤ ≤
                

For all x ,a in X
  

Definition-1.2: A map :T X X→  is called   idempotent, if 2T T= .  We note that if the mappings are idempotent 
i.e. 2A A= , 2S S=  then our definition of weak** commutating reduces to weak commutating pair of mappings

{ },S A . 
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Definition-1.3:  Let X be a 2-metric space and let T  and I  be mapping of X into itself.  
The map T is called rotative with respect to I  if  ( ) ( )2 2, , , ,d Tx I x a d Ix T x a≤  for all x in X and every a in X. 

Clearly if  T  and I  are Idempotent maps, then definition is obvious. 
 
2. COMMON FIXED POINT THEOREMS FOR A WEEK ** COMMUTING PAIR OF MAPPINGS 
 
In this section, we have some results on common fixed points for Three self maps of a 2- complete metric space using 
the concept of week **commuting maps and Rotativity of maps.          
 
Theorem 2.1: Let ,TS and I  be three Self mapping of complete 2-metric space ( ),X d  with d  continuous such 
that for all x, y, a in X either 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

2 2 2 2 2 2 2 2
2 2

2 2 2 2

, , , , , , , ,
1 , ,

, , , ,

d I x S x a d I y T y a d I x T y a d I y S x a
d S x T y a

d I x S x a d I y T y a

β+
≤

+
 

      if  ( ) ( )2 2 2 2, , , , 0d I x S x a d I y T y a+ ≠  

    Where  1 2α    and 0β ≥   or   

( )2 2(2) , , 0d S x T y a =  if  ( ) ( )2 2 2 2, , , , 0d I x S x a d I y T y a+ =   

 
Suppose that the range of 2I contains the range of  2S  and 2T . If either 
(A1) 

2I   is continuous, I is weak**commutating with S and T is rotative with respect to I or, 
(A2) 

2I  is continuous, I is weak**commutating with T and S is rotative with respect to I or, 
(A3) 

2S  is continuous, S is weak**commutating with I and T is rotative with respect to S or, 
(A4) 

2T   is continuous, T is weak**commutating with I and S is rotative with respect to T. 
      Then S, T and I have a unique common fixed point z. further z is the unique common point of S and  I and T and  I. 
 
Proof:  Let  0x   be an arbitrary point in X. 

Since the range of 2I   contains the range of 2S . 
 
Let  1x  be a point in X Such that 2 2

0 1S x I x=  .  
 
Since the range of  2I  contains the range of  2T    

 
We can choose a point 2x  in X such that 2 2

1 2T x I x= . 
 
In general, having chosen the point 2nx  such that  

2 2
2 1 2 2n nT x I x+ +=    

2 2
2 2 1n nS x I x +=  

 
For   0,1, 2,3........n =  
 
Put ( )2 2

2 1 2 1 2, ,n n nd d T x S x a− −=  and ( )2 2
2 2 2 1, ,n n nd d S x T x a+=    

 
For n= 1, 2, ..... 
 
Now we distinguish the three cases: 
 
Case-I:

 
 Let  2 1 0nd − ≠  and 2 0nd ≠  for n =1, 2 …then we have, 

( ) ( )2 2 2 2
2 1 2 2 1 2 2 2 1, , , , 0n n n n n nd d d T x S x a d S x T x a− − ++ = + ≠  for n=1, 2,……….. 
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Using inequality (1) we then have 
       ( )2 2

2 2 2 1, ,n n nd d S x T x a+=  

( ) ( ) ( ) ( )
( ) ( )

2 2 2 2 2 2 2 2
2 1 2 2 2 1 2 1 2 1 2 2

2 2 2 2
2 1 2 2 2 1

, , , , , , , ,

, , , ,
n n n n n n n n

n n n n

d T x S x a d S x T x a d T x T x a d S x S x a

d T x S x a d S x T x a

α β− + − +

− +

+
≤

+
 

2 1 2
2

2 1 2

.n n
n

n n

d dd
d d
α −

−

=
+

 

Then      2 2 1

2 2 1 2

n n

n n n

d d
d d d

α −

−

≤
+

  

2 2 1 2 1n n nd d dα − −⇒ −  

             ( ) 2 11 ndα −= −   

             = 2 1ncd −  

2 2 1n nd cd −⇒ ≤  
 
So, ( )2 2

2 2 1, ,n nd S x T x a+  ={ }2 2 2 2 2 2
0 1 2 2 1 2 2 1, , .......... , , ........n n nS x T x S x T x S x T x− +                                            (3) 

 
For n = 1, 2…where ( )1c α= −  
 
Similarly it can be proved that  

( ) ( )2 2 2 2
2 1 2 2 1 2 2 2 1 2 1, , , ,n n n n n nd T x S x a d cd cd S x T x a− − − − −= ≤ =   for n = 1, 2… 

and since 0 1c  . it follows that the sequence 

{ }2 2 2 2 2 2
0 1 2 2 1 2 2 1, , .......... , , ........n n nS x T x S x T x S x T x− +                                                                             (4) 

is a Cauchy sequence in the complete 2-metric space and so has a limit u in X.  
 
Hence the sequence 
   { } { } { } { }2 2 2 2

2 2 1 2 1 2n n n nS x I x and T x I x+ −= =  Converge to the point u because they are subsequence of the 

sequence (4) 
 
Suppose first of all that 2I  is continuous, then the sequence { } { }4 2 2

2n nI x and I S x   

Converge to point 2I u . 
if  I  weak**commutes with S , we have  

( ) ( ) ( ) ( )2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2, , , , , , , ,n n n n n nd S I x I u a d S I x I u I S x d S I x I S x a d I S x I u a≤ + +  

         ( ) ( ) ( )2 2 2 2 2 2 2 2 2
2 2, , , , , ,n nd S I x I u I u d S I x I u a d I u I u a≤ + +  

Which implies on letting n tends to infinity that the sequence { 𝑆2I2x2n} also converges to 𝐼2u.  
 
Now we claim that 2 2T u I u= . Supposed not, then we have ( )2 2, , 0d I u T u a   and using inequality (1), we obtain 

( ) ( ) ( ) ( ) ( )
( ) ( )

4 2 2 2 2 4 2 2 2 2
2 2 2 22 2 2

2 4 2 2 2 2
2 2

, , , , , , , ,
, ,

, , , ,
n n n n

n
n n

d I x S I x a d I u T u a d I x T u a d T u S I x a
d S I x T u a

d I x S I x a d I u T u a

α β+
≤

+
 

Letting n →∞we deduce that ( )2 2, , 0d I u T u a ≤ , a contradiction,  

Now suppose that  2 2S u T u≠ , then 

( ) ( ) ( ) ( )
( ) ( )

2 2 2 2
2 2

2 2 2 2

, , . , ,
, , 0

, , , ,

d I u S u a d I u T u a
d S u T u a

d I u S u a d I u T u a
α β≤ + =

+
 

A contradiction.  
Thus 2 2 2I u S u T u= = . 
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A similar conclusion is obtained if I is weak**commute withT .  
 
Let us suppose that 2S  is continuous instead of 2I .  Then the sequence { }4

2nS x  and { }2 2
2nS I x converge to a point 

2S u .  
 
Since S weak**commute with I. we have that the sequence {I2 𝑆2x2n} also converges to  𝑆2𝑢.  
 
Since the range of  2I  contains the range of 2S , there exists a point  1u  such that 2 2

1I u S u= . Then If  
2 2 2

1T u S u I u≠ = , we have 

( ) ( ) ( ) ( ) ( )
( ) ( )

2 2 2 2 2 2 2 2 2 2 2 2
2 2 1 2 1 1 24 2

2 1 2 2 2 2 2 2
2 2 1 1

, , , , , , , ,
, ,

, , , ,
n n n n

n
n n

d I S x S S x a d I u T u a d I S x T u a d I u S S x a
d S x T u a

d I S x S S x a d I u T u a

α β+
≤

+
 

When n →∞  we have 

( ) ( ) ( )
( )

2 2 2 2
1 12 2

1 2 2
1 1

, , , ,
, ,

, ,

d I u T u a d I u S u a
d S u T u a

d I u T u a

β
≤  

Which implies that ( )2 2
1, , 0d S u T u a ≤ , a contradiction.  

Thus 2 2 2
1 1S u T u I u= = . 

 
Now suppose that  

2 2 2
1 1 1S u T u I u≠ = , then  

We have 

( ) ( ) ( ) ( )
( ) ( )

2 2 2 2
1 1 1 12 2

1 1 2 2 2 2
1 1 1 1

, , , ,
, , 0

, , , ,

d I u S u a d I u T u a
d S u T u a

d I u S u a d I u T u a

α β+
≤ =

+
, 

A contradiction and so 2 2 2
1 1 1S u T u I u= = . 

 
A similar conclusion is achieved if one assumes that 2T  is continuous and T  is weak**commutating with I .  
 
Case-II: Let  2 1 0nd − =  for some n.  

Then  2 2 2
2 2 1 2n n nI x T x S x−= = . 

We claim that  2 2
2 2n nI x T x= .  

Since otherwise if  ( )2 2
2 2, , 0n nd I x T x a   

Inequality ( )1  implies  

( ) ( )2 2 2 2
2 2 2 20 , , , ,n n n nd I x T x a d S x T x a=  

    

( ) ( ) ( ) ( )
( ) ( )

2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2

2 2 2 2
2 2 2 2

, , , , , , , ,
0

, , , ,
n n n n n n n n

n n n n

d I x S x a d I x T x a d I x T x a d I x S x a

d I x S x a d I x T x a

α β+
≤ =

+
 

A contradiction.  
Thus   2 2 2

2 2 2n n nI x S x T x= = . 
 
Case-III: Let 2 0nd =  for some n. then   2 2 2

2 1 2 2 1n n nI x S x T x+ += = . 

And reasoning as in case (II), 2 2 2
2 1 2 1 2 1n n nI x S x T x+ + += =  

Therefore in all cases it follows, there exists a point u  such that 2 2 2I u S u T u= = .  
 
If   I week**commutes with S , we have  

( ) ( ) ( ) ( )2 2 2 2 2 2, , , , , , , , 0d S Iu IS u a d SI u I Su a d SIu ISu a d S u I u a≤ ≤ ≤ = , 
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which implies that  

2 2 2 2, ,S Iu IS u SI u I Su SIu ISu= = =  and so 2 3I Su S u=                                                                     (5). 

Thus ( ) ( )2 2 2 2, , , , 0d I Su S Su a d I u T u a+ =  

 
And using Condition (II), we deduce that  

2 2 2 2 .I u S Su SI u T u= = =  
 
It follows 2I u z=  is a fixed point of S . 
 
Further ( ) ( )2 2 2 2, , , , 0d I Iu S Iu a d I u T u a+ =  

And using (II), we deduce that  2 2 2Iz S Iu IS u T u z= = = =  
 
Using inequality (I), on the assumption that 

2T z z≠  
 
We have ( ) ( )2 2 2, , , ,d z T z a d S z T z a=  

                                       
( ) ( ) ( )

( ) ( )
2 2 2 2

2 2 2 2

, , , ,
0

, , , ,

d I z S z a d I z T z a

d I z S z a d I z T z a

α β+
≤ =

+
  

A contradiction,  
 
So, 2T z z=  .  
 
Now using the rotativity of T  with respect to I (or with respect to S ) 
 
We have ( ) ( ) ( ) ( )2 2, , , , , , , , 0d Tz z a d Tz I z a d Iz T z a d z z a= ≤ = =   

And so z is a common fixed point of  I , S  and T . 
 
Similarly it can be proved if we assumed that I week**commutes with T  and rotativity of S  with respect to I  (or 
with respect to T ).  
 
Now suppose that 1z  is another common fixed point of I  and  S . then 

( ) ( )2 2 2 2
1, , , , 0d I z S z a d I z T z a+ =  and condition (2) implies that  

2 2
1 1 1 .z S zS z T z z= = = =  

 
We can similarly prove that z  is the unique common fixed point of I and T .   
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