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ABSTRACT 

In this paper, depth of B and height of B are introduced. We observe some of their properties. 
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INTRODUCTION 
 
In 1965, Zadeh [10] introduced the notion of fuzzy set as a method of presenting uncertainty. Since complete 
information in science and technology is not always available. Thus we need mathematical models to handle various 
types of systems containing elements of uncertainty. After that Rosenfeld [8] introduced fuzzy graphs. Yeh and Bang 
[9] also introduced fuzzy graphs independently. Fuzzy graphs are useful to represent relationships which deal with 
uncertainty and it differs greatly from classical graph. It has numerous applications to problems in computer science, 
electrical engineering system analysis, operations research, economics, networking routing, transportation, etc. Nagoor 
Gani . A and Ratha . K [5] introduced fuzzy regular graphs, total degree and totally regular fuzzy graphs. Ramakrishnan 
P.V and Lakshmi. T [6, 7] introduced depth of 𝜇, height of 𝜇.  In this paper, some results on depth of B and height of B 
are studied.  
 
1. PRELIMINARIES       
                                                                                                                       
1.1 Definition: Let X be any nonempty set. A mapping M: X→ [0,1] is called a fuzzy subset of X.                                                                                                                                 
 
1.2 Example: A fuzzy subset A = {(a, 0.3), (b, 0.4), (c, 0.6)} of a set X = {a, b, c}.                         

 
1.3 Definition: Let A and B be any two fuzzy subset of X. We define the following relations and operations:                                                                                                                  
(i)   A ⊆ B if and only if A(x) ≤ B(x) for all x in X.                                                                           
(ii)  A = B if and only if A(x) = B(x) for all x in X.                                                                     
(iii) A ∩ B if and only if (A∩B)(x) = min {A(x), B(x)} for all x in X.                                                  
(iv)  A ∪ B if and only if (A∪B)(x) = max {A(x), B(x)} for all x in X.                                            
(v)   AC = 1− A = {(x, 1− A(x) )  / x∈X}.                                                                                            
 
1.4 Definition: Let M be a fuzzy subset in a set S, the strongest fuzzy relation on S, that is a fuzzy relation V with 
respect to M given by V(x,y) = min { M(x), M(y) } for all x and y in S.                                                                                                                                       
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1.5 Definition: Let V be any nonempty set, E be any set and f: E→V×V be any function. Then A is a fuzzy subset of 
V, S is a fuzzy relation on V with respect to A and B is a fuzzy subset of E such that B(e)≤

1e f (x,y)
S(x, y)

−∈
. Then the ordered 

triple F = (A, B, f) is called a fuzzy graph, where the elements of A are called fuzzy points or fuzzy vertices and the 
elements of B are called fuzzy lines or fuzzy edges of the fuzzy graph F. If f(e) = (x, y), then the fuzzy points (x, A(x)), 
(y, A(y)) are called fuzzy adjacent points and fuzzy points (x, A(x) ), fuzzy line (e, B(e) ) are called incident with 
each other. If two district fuzzy lines (e1, B(e1)) and (e2, B(e2)) are incident with a common fuzzy point, then they are 
called fuzzy adjacent lines.  
 
1.6 Definition: A fuzzy line joining a fuzzy point to itself is called a fuzzy loop.  
 
1.7 Definition: Let F = (A, B, f) be a fuzzy graph. If more than one fuzzy line joining two fuzzy vertices is allowed, 
then the fuzzy graph F is called a fuzzy pseudo graph.  
 
1.8 Definition: F = (A, B, f) is called a fuzzy simple graph if it has neither fuzzy multiple lines nor fuzzy loops.  
 
1.9 Example: F = (A, B, f), where V = {v1, v2, v3, v4, v5 }, E = (a, b, c, d, e, h, g} and f : E→V×V is defined by         
f(a) = (v1, v2), f(b) = (v2, v2), f(c) = (v2, v3), f(d) = (v3, v4), f(e) = (v3, v4), f(h) = (v4, v5), f(g) = (v1, v5). A fuzzy subset                           
A = {(v1, 0.3), (v2, 0.5), (v3, 0.6), (v4, 0.7), (v5, 0.9)} of V. A fuzzy relation S =  ((v1, v1), 0.3), ((v1, v2), 0.3), ((v1, v3), 
0.3), ((v1, v4), 0.3), ((v1, v5), 0.3),  ((v2, v1), 0.3), ((v2, v2), 0.5), ((v2, v3), 0.5), ((v2, v4), 0.5), ((v2, v5), 0.5), ((v3, v1), 0.3),  
((v3, v2), 0.5), ((v3, v3), 0.6), ((v3, v4), 0.6), ((v3, v5), 0.6), ((v4, v1), 0.3),  ((v4, v2), 0.5), ((v4, v3), 0.6), ((v4, v4), 0.7),          
((v4, v5), 0.7), ((v5, v1), 0.3), ((v5, v2), 0.5), ( (v5, v3), 0.6), ((v5, v4), 0.7), ((v5, v5), 0.9)} on V with respect to A and a 
fuzzy subset B = {(a, 0.2), (b, 0.4), (c, 0.4), (d, 0.4), (e, 0.5), (h, 0.6),  (g, 0.2)} of E. 
 

 
Figure-1.1 

 
In figure 1.1, (i) (v1, 0.3) is a fuzzy point. (ii) (a, 0.2) is a fuzzy edge. (iii) (v1, 0.3) and (v2, 0.5) are fuzzy adjacent 
points. (iv) (a, 0.2) join with (v1, 0.3) and (v2, 0.5) and therefore it is incident with (v1, 0.3) and (v2, 0.5). (v) (a, 0.2) and 
(g, 0.2) are fuzzy adjacent lines. (vi) (b, 0.4) is a fuzzy loop. (vii) (d, 0.4) and (e, 0.5) are fuzzy multiple edges. (viii) It 
is not a fuzzy simple graph. (ix) It is a fuzzy pseudo graph.  
 
1.10 Definition: The fuzzy graph H = (C, D, f) is called a fuzzy subgraph of F = (A, B, f) if C ⊆ A and D ⊆ B. 
 
1.11 Definition: Let F = (A, B, f) be a fuzzy graph. Then the degree of a fuzzy vertex is defined by  
d(v) =  ∑ 𝐵(𝑒)𝑒∈𝑓−1(𝑢,𝑣) +2 ∑ 𝐵(𝑒)𝑒∈𝑓−1(𝑣,𝑣) . 
 
1.12 Definition: Let F = (A, B, f) be a fuzzy graph. The total degree of fuzzy vertex v is defined by  
dT(v) = = d(v) + A(v) for all v in V. 
 
1.13 Definition: The minimum degree of the fuzzy graph F = (A, B, f) is δ(F) = ∧ {d(v) / v∈V} and the maximum 
degree of F is ∆(F) = ∨{d(v) / v∈V}. 
 
1.14 Definition: Let F = (A, B, f) be a fuzzy graph. Then the order of fuzzy graph F is defined to be o(F) =∑

∈Vv
vA )( .                                                                 
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1.15 Definition: Let F = (A, B, f) be a fuzzy graph. Then the size of the fuzzy graph F is defined to be  
S(F) =∑

∈Ee
eB )( .                                                                   

 
1.16 Definition: A fuzzy graph F = (A, B, f) is called fuzzy k- regular graph if d(v) = k for all v in V. 
 
1.17 Definition: A fuzzy graph F is fuzzy k-totally regular graph if each vertex of F has the same total degree k. 
 
1.18 Theorem [1]: The sum of the degree of all fuzzy vertices in a fuzzy graph is equal to twice the sum of the 
membership value of all fuzzy edges. i.e.,

v V
d(v) 2S(F)

∈
=∑ . 

 
2. DEPTH OF B AND HEIGHT OF B 
 
2.1 Definition: Let 𝐹 = (𝐴,𝐵, 𝑓) be a fuzzy graph. Then the depth of 𝐵 is defined by 𝐷(𝐵) = min {𝐵(𝑒)/ 𝑒 ∈ 𝐸}.                                                                                                        
 
2.2 Definition: Let 𝐹 = (𝐴,𝐵, 𝑓) be a fuzzy graph. Then the height of 𝐵 is defined by 𝐻(𝐵) = max {𝐵(𝑒)/ 𝑒 ∈ 𝐸}.    
 
2.3 Example:  

 
Figure-2.1: Fuzzy graph F 

 
Here D(B) = 0.3, H(B) = 0.6,                                                                                                         
 
 𝐷(𝐵) ≤ 𝐻(𝐵) and 𝐷(𝐵) ≤ 𝐵(𝑒) ≤ 𝐻(𝐵) 
 
2.5 Theorem: Let 𝐹 = (𝐴,𝐵, 𝑓) be any fuzzy graph with respect to set 𝑉 and 𝐸 where |𝑉| = 𝑝 and |𝐸| = 𝑞. Then 
𝐷(𝐵) ≤ 𝑆(𝐹)

𝑞
≤ 𝐻(𝐵). 

 
Proof: Suppose 𝐹 = (𝐴,𝐵, 𝑓) is any fuzzy graph with p-fuzzy vertices. 
Obviously, 𝐷(𝐵) ≤ 𝐵(𝑒) ≤ 𝐻(𝐵) ⇒ ∑∑∑

∈∈∈

≤≤
EeEeEe

BHeBBD )()()(  

⇒ 𝑞𝐷(𝐵) ≤ 𝑆(𝐹) ≤ 𝑞𝐻(𝐵) ⇒ 𝐷(𝐵) ≤ 𝑆(𝐹)
𝑞
≤ 𝐻(𝐵). 

 
2.6 Theorem: Let𝐹 = (𝐴,𝐵, 𝑓) be any fuzzy simple graph with 𝑝-fuzzy vertices. Then  2𝑆(𝐹)

𝑝(𝑝−1)
≤ 𝐻(𝐵). 

 
Proof: By 2.5 Theorem,𝑆(𝐹)

𝑞
≤ 𝐻(𝐵) ⇒ 𝑆(𝐹) ≤ 𝑞𝐻(𝐵) ⇒ 2𝑆(𝐹)

𝑝(𝑝−1)
≤ 𝐻(𝐵).  

 
2.7 Theorem: Let 𝐹 = (𝐴,𝐵, 𝑓) be a fuzzy complete graph with 𝑝-fuzzy vertices. Then  𝐷(𝐵) ≤ 2𝑆(𝐹)

𝑝(𝑝−1)
≤ 𝐻(𝐵). 

 
Proof: By 2.5 Theorem, 𝐷(𝐵) ≤  𝑆(𝐹)

𝑞
≤ 𝐻(𝐵) ⇒ 𝑞𝐷(𝐵) ≤ 𝑆(𝐹) ≤ 𝑞𝐻(𝐵) 

Since𝐹 is fuzzy complete graph, 𝑝(𝑝−1)
2

𝐷(𝐵) ≤ 𝑆(𝐹) ≤ 𝑝(𝑝−1)
2

𝐻(𝐵) 

Which implies that 𝐷(𝐵) ≤ 2𝑆(𝐹)
𝑝(𝑝−1)

≤ 𝐻(𝐵). 
 
2.8 Theorem: Let 𝐹 = (𝐴,𝐵, 𝑓) be a fuzzy complete graph with 𝑝-fuzzy vertices and 𝐴 be 𝑘-constant function. Then  
𝐷(𝐵) = 2𝑆(𝐹)

𝑝(𝑝−1)
= 𝐻(𝐵). 
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Proof: Assume that  𝐹 is a fuzzy complete graph with 𝑝-fuzzy vertices and 𝐴(𝑣) = 𝑘 for all  𝑣 in 𝑉.That is              
𝐵(𝑒) =  

),(
1

),(
yxe f

yxS
−

∈

for all 𝑥 and 𝑦 in 𝑉. Then 𝐵(𝑒) = 𝐴(𝑥) ∩ 𝐴(𝑦)=k for all 𝑥 and 𝑦 in 𝑉, so  𝐷(𝐵) = 𝐵(𝑒) = 𝐻(𝐵) 

⇒ ∑∑∑
∈∈∈

==
EeEeEe

BHeBBD )()()( ⇒ 𝑞𝐷(𝐵) = 𝑆(𝐹) = 𝑞𝐻(𝐵) 

which implies  𝑝(𝑝−1)
2

𝐷(𝐵) = 𝑆(𝐹) = 𝑝(𝑝−1)
2

𝐻(𝐵). Hence 𝐷(𝐵) = 2𝑆(𝐹)
𝑝(𝑝−1)

= 𝐻(𝐵). 
 
2.9 Corollary: Let 𝐹 = (𝐴,𝐵, 𝑓) be a fuzzy complete graph with 𝑝-fuzzy vertices   and 𝐴 be a 𝑘-constant function. 
Then  )()1()( BHppvd

Vv
−=∑

∈

)()1( BDpp −=  

 
2.10 Theorem: If  𝐹 is a fuzzy 𝑘- regular graph with 𝑝-fuzzy vertices. Then 𝐻(𝐵) ≥ 𝑘

𝑝−1
. 

 
Proof: suppose 𝐹 is a fuzzy 𝑘- regular graph with 𝑝-fuzzy vertices. Here 𝑑(𝑣) = 𝑘 for all 𝑣 in 𝑉, 

∑∑
∈∈

==
VvVv

pkkvd )( .We get  2𝑆(𝐹) = 𝑝𝑘 implies that 𝑆(𝐹) =  
2
pk

. By 2.6 Theorem, 𝑝𝑘
2
≤  𝑝(𝑝−1)

2
𝐻(𝐵) ⇒ 𝑘

𝑝−1
≤

𝐻(𝐵) which implies that 𝐻(𝐵) ≥ 𝑘
𝑝−1

. 
 
2.11 Theorem: Let 𝐹 = (𝐴,𝐵, 𝑓) be a fuzzy complete graph with 𝑝-fuzzy vertices and 𝐴 be 𝑘-constant function. Then 
𝐻(𝐵) = 𝑘 = 𝐷(𝐵). 
 
Proof: Assume that  𝐹 is a fuzzy complete graph with 𝑝-fuzzy vertices and 𝐴(𝑣) = 𝑘 for all  𝑣 in 𝑉.That is               

𝐵(𝑒) =  
),(

1
),(
yxe f

yxS
−

∈

for all 𝑥 and 𝑦 in 𝑉. Then 𝐵(𝑒) = 𝐴(𝑥) ∩ 𝐴(𝑦)= k for all 𝑥 and 𝑦 in 𝑉.Therefore 𝑑(𝑣) = (𝑝 − 1)𝑘  

for all  𝑣 in 𝑉.Which implies that ∑∑
∈∈

−=−=
VvVv

kppkpvd )1()1()( . 

By 2.9 Corollary, )()1()( BHppvd
Vv

−=∑
∈

= 𝑝(𝑝 − 1)𝐷(𝐵).Hence 𝐻(𝐵) = 𝑘 = 𝐷(𝐵). 

 
2.12 Theorem: Let 𝐹 = (𝐴,𝐵, 𝑓) be any fuzzy simple graph with 𝑝-fuzzy vertices . Then 𝛿(𝐹) ≤ (𝑝 − 1)𝐻(𝐵). 
 
Proof: For any fuzzy graph, 𝛿(𝐹) ≤ 2𝑆(𝐹)

𝑝
. By 1.21 Theorem,2𝑆(𝐹)

𝑝
≤ (𝑝 − 1)𝐻(𝐵) which implies that 

𝛿(𝐹) ≤ (𝑝 − 1)𝐻(𝐵) 
 
2.13 Theorem: Let 𝐹 = (𝐴,𝐵, 𝑓) be a fuzzy complete graph with 𝑝-fuzzy vertices and 𝐴 be 𝑘-constant function. Then 
𝛿(𝐹) =  ∆(𝐹) = (𝑝 − 1)𝐻(𝐵) = (𝑝 − 1)𝐷(𝐵). 
 
Proof: By 2.11 Theorem, 𝑑(𝑣) = (𝑝 − 1)𝑘  for all  𝑣 in 𝑉 and  𝐻(𝐵) = 𝐷(𝐵) = 𝑘 
also 𝛿(𝐹) =  ∆(𝐹) = (𝑝 − 1)𝑘  implies that 𝛿(𝐹)

𝑝−1
=  ∆(𝐹)

𝑝−1
= 𝑘 ⇒ 𝐻(𝐵) = 𝐷(𝐵) = 𝛿(𝐹)

𝑝−1
=  ∆(𝐹)

𝑝−1
 implies that 𝛿(𝐹) =

 ∆(𝐹) = (𝑝 − 1)𝐻(𝐵) = (𝑝 − 1)𝐷(𝐵). 
 
2.14 Theorem: If 𝐹 = (𝐴,𝐵, 𝑓) is a fuzzy 𝑐-totally regular graph with 𝑝-fuzzy vertices. Then 𝑂(𝐹) ≥ 𝑝[𝑐 −
(𝑝 − 1)𝐻(𝐵)]. 
 
Proof: For any fuzzy graph ,𝑆(𝐹) =  𝑝𝑐−𝑂(𝐹)

2
 . By 2.6 Theorem, 𝑆(𝐹) ≤ 𝑝(𝑝−1)

2
𝐻(𝐵)    ⇒ 𝑝𝑐−𝑂(𝐹)

2
≤ 𝑝(𝑝−1)

2
𝐻(𝐵) ⇒

𝑝𝑐 − 𝑝(𝑝 − 1)𝐻(𝐵) ≤ 𝑂(𝐹). 
 
Hence 𝑂(𝐹) ≥ 𝑝[𝑐 − (𝑝 − 1)𝐻(𝐵)] 
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2.15 Theorem: If 𝐹 = (𝐴,𝐵, 𝑓) is both fuzzy 𝑘-regular graph and fuzzy 𝑐-totally regular graph with 𝑝-fuzzy vertices. 
Then 𝐻(𝐵) ≥ 𝑘

𝑝−1
. 

 
Proof: By 2.14 Theorem, 𝑂(𝐹) ≥ 𝑝[𝑐 − (𝑝 − 1)𝐻(𝐵)]  
 
For any fuzzy graph, 𝑂(𝐹) = 𝑝(𝑐 − 𝑘) ⇒ 𝑝[𝑐 − (𝑝 − 1)𝐻(𝐵)] ≤ 𝑝(𝑐 − 𝑘) 
⇒ 𝑐 − (𝑐 − 𝑘) ≤ (𝑝 − 1)𝐻(𝐵) ⇒ 𝑘 ≤ (𝑝 − 1)𝐻(𝐵) ⇒ 𝐻(𝐵) ≥ 𝑘

𝑝−1
.   

 
2.16 Theorem: If 𝐹 = (𝐴,𝐵, 𝑓) is a fuzzy complete graph with 𝑝-fuzzy vertices and 𝐴 is a 𝑘-constant function. 
Then 𝑂(𝐹) = 𝑝𝐻(𝐵) =  𝑝𝐷(𝐵).    
 
2.17 Theorem: Let 𝐹 = (𝐴,𝐵, 𝑓) be any fuzzy graph with respect to set 𝑉 and 𝐸 where |𝑉| = 𝑝 and |𝐸| = 𝑞. Then 

𝑞 𝐷(𝐵) ≤
2

)(∑
∈Vv

vd
≤ 𝑞𝐻(𝐵). 

 
2.18 Theorem: Let𝐹 = (𝐴,𝐵, 𝑓) be any fuzzy simple graph with 𝑝-fuzzy vertices. Then ∑

∈Vv
vd )( ≤ 𝑝(𝑝 − 1)𝐻(𝐵). 

 
2.19 Theorem: Let 𝐹 = (𝐴,𝐵, 𝑓) be a fuzzy complete graph with 𝑝-fuzzy vertices. Then   

𝑝(𝑝 − 1)𝐷(𝐵) ≤ ∑
∈Vv

vd )( ≤ 𝑝(𝑝 − 1)𝐻(𝐵). 

 
2.20 Theorem: Let 𝐹 = (𝐴,𝐵, 𝑓) be a fuzzy complete graph with 𝑝-fuzzy vertices and 𝐴 be 𝑘-constant function. Then  

𝑝(𝑝 − 1)𝐷(𝐵) = ∑
∈Vv

vd )( = 𝑝(𝑝 − 1)𝐻(𝐵). 

 
Proof: By 2.8 Theorem, 𝐷(𝐵) = 2𝑆(𝐹)

𝑝(𝑝−1)
= 𝐻(𝐵). Since F is a fuzzy complete graph with 𝑝-fuzzy vertices and by 1.18 

Theorem, so 𝑝(𝑝 − 1) 𝐷(𝐵) = ∑
∈Vv

vd )( = 𝑝(𝑝 − 1)𝐻(𝐵). 

 
2.21 Theorem: Let 𝐹 = (𝐴,𝐵, 𝑓) be a fuzzy complete graph with 𝑝-fuzzy vertices and 𝐴 be 𝑘-constant function. Then 

)(vd
Vv

T∑
∈

= p2 H(B) = p2 D(B). 

Proof: By 2.20 Theorem, ∑
∈Vv

vd )( =  𝑝(𝑝 − 1) 𝐻(𝐵)= 𝑝(𝑝 − 1) 𝐷(𝐵). 

⇒ )(vd
Vv

T∑
∈

= ∑
∈Vv

vd )( + ∑
∈Vv

vA )( , since 𝐴 is 𝑘-constant function, 

                     =  𝑝(𝑝 − 1) 𝐻(𝐵)  +  𝑝𝐻(𝐵) =   p2 H(B)   
 
Similarly    )(vd

Vv
T∑

∈

  = p2 D(B).                                             
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