Volume 9, No. 5, May - 2018 (Special Issue) International Journal of Mathematical Archive-9(5), 2018, 63-68 MAAvailable online through www.ijma.info ISSN 2229 - 5046

SOME SUPRA MAPS VIA SUPRA \widetilde{g} - CLOSED SETS

¹G. RAMKUMAR, ²M. GILBERT RANIAND ³A. GNANA AROCKIAM

^{1,2&3}Department of Mathematics, Arul Anandar College, Karumathur, Madurai District, Tamil Nadu, India.

E-mail:1ramanujam_1729@yahoo.com.2gil.anto@yahoo.co.in, 3aga.arul@gmail.com.

ABSTRACT

In this paper, We introduce new class of maps called supra \tilde{g} -continuous maps, supra \tilde{g} - closed maps and supra \tilde{g} - irresolute maps. Subsequently, we investigate several properties of these classes of maps.

2010 Mathematics Subject Classifications: 54A10, 54A20.

Keywords and phrases: Supra \tilde{g} -closed set, supra \tilde{g} -continuous map, supra \tilde{g} - irresolute map, supra topological space.

1. INTRODUCTION

In 2008, Devi *et al.* [1] introduced and studied a class of sets called supra α -open and a class of maps called so-continuous maps between topological spaces, respectively. In 2010,Ravi et al. [10] have introduced and studied a class of sets called supra g-closed and a class of maps called supra g-continuous and supra g-closed respectively. Quite Recently G. Ramkumar *et al.* [8]have introduced and studied a class of sets called supra \tilde{g} -closed. In line with the research, In this paper, We introduce new class of maps called supra \tilde{g} -continuous maps, supra \tilde{g} - closed maps and supra \tilde{g} - irresolute maps. Subsequently, we investigate several properties of these classes of maps.

2. PRELIMINARIES

Throughout this paper (X,τ) , (Y,σ) and (Z,ν) (or simply, X,Y and Z) denote topological spaces on which no separation axioms are assumed unless explicitly stated.

Definition 2.1 [5, 11]: Let X be a non-empty set. The subfamily $\mu \subseteq P(X)$ where P(X) is the power set of X is said to be a supra topology on X if $X \in \mu$ and μ is closed under arbitrary unions.

The pair (X, μ) is called a supra topological space.

The elements of μ are said to be supra open in (X, μ) .

Complements of supra open sets are called supra closed sets.

Definition 2.2 [4]: A map $f: X \rightarrow Y$ is said to be

- (i) continuous if the inverse image of each open set of Y is an open set in X.
- (ii) closed if the image of each closed set of X is a closed set in Y.
- (iii) g-closed if the image of each closed set of X is a g-closed set in Y.

Definition 2.3 [1]: Let A be a subset of (X, μ) . Then

- (i) The supra closure of a set A is, denoted by $cl^{\mu}(A)$, defined as $cl^{\mu}(A) = \bigcap \{B : B \text{ is a supra closed and } A \subseteq B\}$;
- (ii) The supra interior of a set A is, denoted by $\operatorname{int}^{\mu}(A)$, defined as $\operatorname{int}^{\mu}(A) = \bigcup \{G : G \text{ is a supra open and } A \supseteq G\}$.

Definition 2.4 [5]: Let (X, τ) be a topological space and μ be a supra topology on X. We call μ is a supra topology associated with τ if $\tau \subseteq \mu$.

Definition 2.5: Let (X, μ) be a supra topological space. A subset A of X is called

- (i) supra semi-open set [1] if $A \subseteq cl^{\mu}(int^{\mu}(A))$;
- (ii) supra α -open set [1, 12] if $A \subseteq int^{\mu}(cl^{\mu}(int^{\mu}(A)))$;
- (iii) supra β -open set [9] if $A \subseteq cl^{\mu}(int^{\mu}(cl^{\mu}(A)))$;
- (iv) supra pre-open set [12] if $A \subseteq int^{\mu}(cl^{\mu}(A))$.

The complements of the above mentioned open sets are called their respective closed sets.

Definition 2.6: Let (X, μ) be a supra topological space. A subset A of X is called

- i) supra g-closed [10]if $cl^{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and U is supra open in X
- ii) supra ω -closed (= supra \hat{g} -closed) [7]if $cl^{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and U is supra semi-open in X.
- iii) supra *g closed[6] if $cl^{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and U is supra ω –open in X.
- iv) $supra^{\#}gs \ closed[7] \ if \ scl^{\mu}(A) \subseteq U \ whenever \ A \subseteq U \ and \ U \ is \ supra \ *g-open \ in \ X.$
- v) supra \tilde{g} closed[8] if $cl^{\mu}(A) \subseteq U$ whenever $A \subseteq U$ and U is supra $^{\#}gs$ -open in X.

The complements of the above mentioned open sets are called their respective closed sets.

Definition 2.7: Let (X, τ) and (Y, σ) be two topological spaces with $\tau \subseteq \mu$. A map $f: (X, \mu) \to (Y, \sigma)$ is called

- a) supra continuous [1] if the inverse image of each open set of Y is a supra open set in X.
- b) g-continuous [10] if the inverse image of each closed set of Y is a supra g-closed set in X.
- c) supra ω -continuous [7] if the inverse image of each closed set of Y is a supra ω -closed set in X.
- d) supra *gs-continuous [7] if the inverse image of each closed set of Y is a supra *gs-closed set in X.

3. SUPRA \tilde{g} - MAPS

Definition 3.1: Let (X,μ) be a supra topological space. $A \subseteq X$ then

- i) Supra \widetilde{g} -closure of A is denoted by $\operatorname{cl}_{\widetilde{g}}^{\mu}(A)$, defined by the intersection of all supra \widetilde{g} -closed sets containing A
- (i.e) $\operatorname{cl}^{\mu}_{\mathfrak{F}}(A) = \bigcap \{F, A \subseteq F \text{ and } F \text{ is supra } \widetilde{g} \text{ -closed} \}$
- ii) Supra \tilde{g} interior of A is denoted by $\operatorname{int}_{\tilde{g}}^{\mu}(A)$, defined by the union of all supra \tilde{g} -open sets contained in A.
- (i.e) int $_{\widetilde{g}}^{\mu}(A) = \bigcup \{ F, A \subseteq F \text{ and } F \text{ is supra } \widetilde{g} \text{ -open} \}$

Remark 3.2: For the subsets A, B of a supra topological space (X,μ) , the following statements hold.

- i) $cl^{\mu}_{\widetilde{g}}(A)$ is the smallest supra \widetilde{g} -closed set containing A.
- ii) A is supra $\,\widetilde{g}\,$ -closed if and only if $\,cl_{\widetilde{g}}^{\mu}(A)$ =A.
- iii) If $A\!\subseteq\!B$ then $cl^\mu_{\tilde g}(A)\subseteq cl^\mu_{\tilde g}(B)$.
- $iv) \ cl^{\mu}_{\tilde{g}}(A) \ \bigcup \ cl^{\mu}_{\tilde{g}}(B) \subseteq cl^{\mu}_{\tilde{g}}(A \bigcup B) \, .$
- v) $X \setminus \operatorname{int}_{\widetilde{g}}^{\mu}(A) = \operatorname{cl}_{\widetilde{g}}^{\mu}(A^{c}).$
- vi) $\operatorname{int}_{\widetilde{\varphi}}^{\mu}(\operatorname{int}_{\widetilde{\varphi}}^{\mu}(A)) = \operatorname{int}_{\widetilde{\varphi}}^{\mu}(A)$.
- vii) $X \setminus cl^{\mu}_{\tilde{g}}(A) = int^{\mu}_{\tilde{g}}(A^{c})$.
- viii) If $A \subseteq B$ then $\inf_{\widetilde{g}}^{\mu}(A) \subseteq \inf_{\widetilde{g}}^{\mu}(B)$
- ix) $\operatorname{int}_{\widetilde{g}}^{\mu}(A) \bigcup \operatorname{int}_{\widetilde{g}}^{\mu}(B) \subseteq \operatorname{int}_{\widetilde{g}}^{\mu}(A \bigcup B)$
- x) $\operatorname{int}_{\widetilde{g}}^{\mu}(A) \cap \operatorname{int}_{\widetilde{g}}^{\mu}(B) \supseteq \operatorname{int}_{\widetilde{g}}^{\mu}(A \cap B)$

Lemma 3.3: Let (X, τ) be topological space $\tau \subseteq \mu$. For any $A \subseteq X$, $\operatorname{int}^{\mu}(A) \subseteq \operatorname{int}^{\mu}_{\widetilde{g}}(A) \subseteq A$.

Proof: Since every supra open set is supra \tilde{g} -open.

Definition 3.4: Let (X, τ) and (Y, σ) be two topological space with $\tau \subseteq \mu$ and $\sigma \subseteq \lambda$. A map $f: (X, \mu) \rightarrow (Y, \lambda)$ is said to be

- i) Supra \tilde{g} -continuous if $f^{-1}(V)$ is supra \tilde{g} -closed in X for every closed set V of Y.
- ii) Supra \tilde{g} -irresolute if $f^{-1}(V)$ is supra \tilde{g} -closed in X for every supra \tilde{g} -closed set V of Y.
- iii) Supra \widetilde{g} -closed [resp. supra \widetilde{g} -open] if f(V) is supra \widetilde{g} -closed [resp. supra \widetilde{g} -open] in Y for every closed set [resp. open] V of X.
- iv) Supra \tilde{g}^* -continuous if $f^1(V)$ is supra \tilde{g} -closed in X for every supra closed set V of Y.
- v) Supra \tilde{g}^* -closed if f(V) is supra \tilde{g} -closed in Y for every supra closed set V of X.

Theorem 3.5: Let (X, τ) and (Y, σ) be two topological space with $\tau \subseteq \mu$ and $\sigma \subseteq \lambda$. A map $f:(X,\mu) \to (Y,\lambda)$ is supra \widetilde{g}^* -closed if and only if $\operatorname{cl}^{\mu}_{\widetilde{g}}(f(A)) \subseteq \operatorname{f}(\operatorname{cl}^{\mu}(A))$ for every subset A of X.

Proof: Suppose that f is supra \widetilde{g} *-closed and $A \subseteq X$. Then $f(cl^{\mu}(A))$ is supra \widetilde{g} -closed in Y. We have $f(A) \subseteq f(cl^{\mu}(A))$ and by Remark 3.2 $cl^{\mu}_{\widetilde{g}}(f(A)) \subseteq cl^{\mu}_{\widetilde{g}}(f(cl^{\mu}(A))) = f(cl^{\mu}(A))$.

Conversely, Let A be any supra closed in X. By hypothesis and Remark 3.2 we have $A=cl^{\mu}(A)$ and so $f(A)=f(cl^{\mu}(A)) \supseteq cl^{\mu}_{\widetilde{g}}(f(A))$. Therefore, $f(A)=cl^{\mu}_{\widetilde{g}}(f(A))$. Hence f(A) is supra \widetilde{g} -closed in Y and hence f is supra \widetilde{g} -closed.

Theorem 3.6: Let (X, τ) and (Y, σ) be two topological space with $\tau \subseteq \mu$ and $\sigma \subseteq \lambda$. A map $f:(X, \mu) \to (Y, \lambda)$ is a supra \widetilde{g}^* -closed mapping, then for each subset A of X, $cl^{\lambda}(int^{\lambda}f(A)) \subseteq f(cl^{\mu}(A))$.

Proof: Let f be a supra \widetilde{g}^* -closed map and $A \subseteq X$. Since $cl^{\mu}(A)$ is a supra closed set in X. We have $f(cl^{\mu}(A))$ is supra \widetilde{g} -closed and hence supra pre-closed. Therefore $cl^{\lambda}(int^{\lambda}(f(cl^{\mu}(A))) \subseteq f(cl^{\mu}(A)))$ (i.e) $cl^{\lambda}(int^{\lambda}f(A)) \subseteq f(cl^{\mu}(A))$.

Theorem 3.7: Let (X, τ) and (Y, σ) be two topological space with $\tau \subseteq \mu$ and $\sigma \subseteq \lambda$. A map $f:(X, \tau) \to (Y, \lambda)$ is a supra \widetilde{g} -closed if and only if for each subset S of Y for each open set U containing $f^{-1}(S)$ there is supra \widetilde{g} -open set V of Y such that $S \subseteq V$ and $f^{-1}(V) \subseteq U$.

Proof: Suppose that f is a supra \tilde{g} -closed map. Let $S \subseteq Y$ and U be an open set of X such that $f^1(S) \subseteq U$. Thus $V=Y\setminus f(X\setminus U)$ is a supra \tilde{g} -open set containing S such that $f^1(V)\subseteq U$.

Conversely, suppose that F is a closed set of X. Then $f^1(Y \setminus f(F)) \subseteq X \setminus F$ and $X \setminus F$ is open. By hypothesis, there exist a supra \widetilde{g} -open set V of Y such that $Y \setminus (f(F)) \subseteq V$ and $f^1(V) \subseteq X \setminus F$. Therefore $F \subseteq X \setminus f^1(V)$,

Hence $Y \setminus V \subseteq f(F) \subseteq f(X \setminus f^1(V)) \subseteq Y \setminus V$ which implies $f(F) = Y \setminus V$. Since $Y \setminus V$ is supra \widetilde{g} -closed, f(F) is supra \widetilde{g} -closed set in Y and thus f is supra \widetilde{g} -closed map.

Theorem 3.8: Let (X, τ) and (Y, σ) be two topological space with $\tau \subseteq \mu$ and $\sigma \subseteq \lambda$. A map $f:(X, \mu) \to (Y, \lambda)$ is a supra \widetilde{g} s-irresolute and supra \widetilde{g} *-closed and A is a supra \widetilde{g} -closed subset of X, Then f(A) is supra \widetilde{g} -closed.

Proof: Let U be a supra "gs-open in Y such that $f(A) \subseteq U$. Since f is supra "gs-irresolute. $f^1(U)$ is a supra "gs-open set containing A. Hence $cl^{\mu}(A) \subseteq f^1(U)$ as A is supra \tilde{g} -closed in X. Since f is supra \tilde{g} *-closed. $f(cl^{\mu}(A))$ is a supra \tilde{g} -closed set containing in the supra "gs-open set U, which implies that $cl^{\mu}(f(cl^{\mu}(A))) \subseteq U$ and hence $cl^{\mu}(f(A)) \subseteq U$. Therefore f(A) supra \tilde{g} -closed set.

© 2018, IJMA. All Rights Reserved

Remark 3.9: The composition of two supra \widetilde{g} -closed maps need not be supra \widetilde{g} -closed.

Corollary 3.10: Let (X, τ) , (Y, σ) and (Z, η) be three topological space with $\tau \subseteq \mu$, $\sigma \subseteq \lambda$ and $\upsilon \subseteq \eta$. A map $f:(X, \mu) \to (Y, \lambda)$ be a supra \widetilde{g} -closed map and $g:(Y, \lambda) \to (Z, \eta)$ be a supra \widetilde{g} *-closed and supra *gs-irresolute map then their composition gof: $(X, \tau) \to (Z, \eta)$ is supra \widetilde{g} -closed.

Proof: Let A be a closed set of X. Since f is supra \widetilde{g} -closed, f(A) is supra \widetilde{g} -closed set in Y. Since g is both supra \widetilde{g} -closed and supra \widetilde{g} -closed by Theorem 3.8, g(f(A))=(gof)(A) is supra \widetilde{g} -closed in Z and therefore gof is supra \widetilde{g} -closed.

Definition 3.11: A Supra topological (X, μ) is said to be

- 1) Supra $T_{\mathfrak{F}}$ -space if every supra \widetilde{g} -closed subset of X is supra closed in X.
- 2) Supra $T_{\frac{1}{2}}$ -space if every supra g-closed subset of X is supra closed in X.
- 3) Supra semi* $T_{1/2}$ -space if every supra \hat{g} -closed subset of X is supra closed in X.
- 4) Supra ${T_{1/2}}^*$ -space if every supra g-closed subset of X is closed in X.
- 5) Supra semi $T_{\nu_2}^{**}$ -space if every supra \hat{g} -closed subset of X is closed in X.

Preposition 3.12: Let (X, τ) , (Y, σ) and (Z, υ) be three topological space with $\tau \subseteq \mu$, $\sigma \subseteq \lambda$ and $\upsilon \subseteq \eta$. If $f:(X,\mu) \to (Y,\lambda)$ and $g:(Y,\lambda) \to (Z,\eta)$ are supra \widetilde{g} *-closed and Y is a supra $T_{\widetilde{g}}$ -space, then their composition gof: $(X,\mu) \to (Z,\eta)$ is supra \widetilde{g} *-closed map.

Proof: Let A be supra closed set of X. Then f(A) is supra \widetilde{g} -closed in Y. Since Y is $T_{\widetilde{g}}$ -space f(A) is supra closed in Y and g is supra \widetilde{g} *-closed then g(f(A)) is supra \widetilde{g} *-closed set in Z that is (gof)(A) is supra \widetilde{g} -closed in Z and so gof is supra \widetilde{g} -closed.

Definition 3.13: Let (X, τ) and (Y, σ) be two topological space with $\tau \subseteq \mu$ and $\sigma \subseteq \lambda$. A map $f: (X, \mu) \rightarrow (Y, \lambda)$ is called supra g^* -closed if f(V) is supra g-closed in X for every supra closed V in Y.

Preposition 3.14: Let (X, τ) , (Y, σ) and (Z, υ) be three topological space with $\tau \subseteq \mu$, $\sigma \subseteq \lambda$ and $\upsilon \subseteq \eta$. A map $f:(X, \mu) \to (Y, \lambda)$ be a supra \widetilde{g}^* -closed map and $g:(Y,\lambda) \to (Z,\eta)$ be a supra g^* -closed and Y is supra $T_{\widetilde{g}}$ -space then their composition gof: $(X, \mu) \to (Z, \eta)$ is supra g^* -closed.

Proof: Similar to Proposition 3.12.

Preposition 3.15: Let (X, τ) , (Y, σ) and (Z, υ) be three topological space with $\tau \subseteq \mu$, $\sigma \subseteq \lambda$ and $\upsilon \subseteq \eta$. A map $f:(X, \mu) \to (Y, \lambda)$ be a closed map and $g:(Y,\lambda) \to (Z,\eta)$ be a supra \widetilde{g} -closed map then their composition gof: $(X, \mu) \to (Z,\eta)$ is supra \widetilde{g} -closed.

Proof: Similar to Proposition 3.12.

Theorem 3.16: Let (X, τ) , (Y, σ) and (Z, υ) be three topological space with $\tau \subseteq \mu$, $\sigma \subseteq \lambda$ and $\upsilon \subseteq \eta$. Let $f:(X, \mu) \to (Y, \lambda)$ and $g:(Y, \lambda) \to (Z, \eta)$ be two mappings such that gof: $(X, \mu) \to (Z, \eta)$ is supra \widetilde{g} -closed mapping then the following statements are true if

- i) f is a supra continuous and surjective, then g is supra \tilde{g}^* -closed.
- ii) g is a supra \tilde{g} -irresollute and injective, then f is supra \tilde{g} -closed.
- iii) f is supra g-continuous, surjective and X is supra ${T_{\nu_2}}^*$ -space, then g is supra \widetilde{g} -closed.
- iv) f is supra \tilde{g} -continuous, surjective and X is supra semi $T_{1/2}^{**}$ -space, then g is supra \tilde{g} -closed.

© 2018, IJMA. All Rights Reserved

Proof:

- (i) Let A be a closed set of Y. Since f is continuous $f^1(A)$ is closed in X and since gof is supra \tilde{g} -closed, (gof)(f $^1(A)$) is supra \tilde{g} -closed in Z. Therefore g(A) is supra \tilde{g} -closed in Z, since f is surjective. Therefore, g is supra \tilde{g} -closed map.
- (ii) Let B be closed in X. Since gof is supra \tilde{g} -closed, (gof)(B) is supra \tilde{g} -closed in Z. $g^{-1}((gof)(B))$ is supra \tilde{g} -closed in Y. i.e, f(B) is supra \tilde{g} -closed in Y, since g is injective. Thus, f is supra \tilde{g} -closed map.
- (iii) Let A be a closed set of Y. Since f is supra \tilde{g} -continuous, $f^1(A)$ is supra \tilde{g} -closed in X. Since X is a supra $T_{\frac{1}{2}}^*$ -space $f^1(A)$ is closed in X and so as in (i) g is supra \tilde{g} -closed map.
- (iv) Let A be a closed set of Y. Since f is supra \widetilde{g} -continuous, $f^1(A)$ is is supra \widetilde{g} -closed set in X. Since every supra \widetilde{g} -closed set is supra \widehat{g} -closed and X is supra semi $T_{\frac{1}{2}}^{**}$ -space. $f^1(A)$ is closed in X and so as in (i) g is a supra \widetilde{g} -closed map.

Definition 3.17: Let (X, τ) and (Y, σ) be two topological space with $\tau \subseteq \mu$, $\sigma \subseteq \lambda$. A map $f:(X,\mu) \to (Y,\lambda)$ is said to be

- i) Supra strongly \tilde{g} -continuous if $f^{-1}(V)$ is open in X for every supra \tilde{g} -open V in Y.
- ii) Supra strongly \tilde{g}^* -continuous if $f^1(V)$ is supra open in X for every supra \tilde{g} -open V in Y.

Theorem 3.18: Let (X, τ) , (Y, σ) and (Z, υ) be three topological space with $\tau \subseteq \mu$, $\sigma \subseteq \lambda$ and $\upsilon \subseteq \eta$. Let $f:(X, \mu) \to (Y, \lambda)$ and $g:(Y, \lambda) \to (Z, \eta)$ be two mappings such that their composition gof: $(X, \mu) \to (Z, \eta)$ be a supra \widetilde{g} -closed mapping. If g is strongly \widetilde{g} -continuous and injective, then f is closed.

Proof: Let D be a closed set of X. Since gof is supra \tilde{g} -closed, (gof)(D) is supra \tilde{g} -closed in Z. Since g is supra strongly \tilde{g} -continuous $g^{-1}((gof)(D))$ is closed in Y, f(D) is closed in Y, since g is injective. Therefore f is closed map.

Theorem 3.19: Let (X, τ) and (Y, σ) be two topological space with $\tau \subseteq \mu$, $\sigma \subseteq \lambda$. Any bijection map $f:(X, \mu) \to (Y, \lambda)$ the following statements are equivalent

- (i) f^{-1} : $(Y, \lambda) \rightarrow (X, \mu)$ is supra \widetilde{g} -continuous
- (ii) f is supra $\,\widetilde{g}\,$ -open map and
- (iii) f is supra \widetilde{g} -closed map

Proof:

i) \Rightarrow ii): Let U be open set of X. Then by assumption $(f^{-1})^{-1}(U) = f(U)$ is supra \tilde{g} -open in Y and so f is supra \tilde{g} -open.

ii) \Rightarrow iii): Let F be a closed set of X. The F^c is open in X. By assumption $f(F^c)$ is supra \tilde{g} -open in Y. i.e, $f(F^c) = (f(F))^c$ is supra \tilde{g} -open in Y and therefore f(F) is supra \tilde{g} -closed in Y. Hence f is supra \tilde{g} -closed.

iii) \Rightarrow i): Let F be closed set in X. By assumption f(F) is supra \tilde{g} -closed in Y.

But $f(F) = (f^{-1})^{-1}(F)$ and therefore f^{-1} is supra \tilde{g} -continuous.

Theorem 3.20: Let (X,τ) and (Y,σ) be two topological space with $\tau \subseteq \mu$ and $\sigma \subseteq \lambda$. A map $f:(X,\mu) \to (Y,\lambda)$ is Supra \widetilde{g} open if and only if for any subset B of Y and for any closed set S containing $f^1(B)$, there exist Supra \widetilde{g} -closed set A of Y containing B such that $f^1(A) \subseteq S$.

Proof: Similar to Theorem 3.7

Definition 3.21: Let (X,τ) and (Y,σ) be two topological space with $\tau \subseteq \mu$ and $\sigma \subseteq \lambda$. A map $f:(X,\mu) \to (Y,\lambda)$ is said to be supra \widetilde{g}^{**} -closed map if f(V) is Supra \widetilde{g} -closed in Y for every supra \widetilde{g} -closed set V in X.

© 2018, IJMA. All Rights Reserved

67

CONFERENCE PAPER

Preposition 3.22: Let (X, τ) and (Y, σ) be two topological space with $\tau \subseteq \mu$ and $\sigma \subseteq \lambda$. A map $f:(X, \mu) \to (Y, \lambda)$ is said to be Supra \widetilde{g}^{**} -closed if and only if $\operatorname{cl}^{\mu}_{\widetilde{g}}(f(A)) \subseteq \operatorname{f}(\operatorname{cl}^{\mu}_{\widetilde{g}}(A))$ for every subset A of X.

Proof: Similar to Theorem 3.5.

Theorem 3.23: Let (X,τ) and (Y,σ) be two topological space with $\tau \subseteq \mu$, $\sigma \subseteq \lambda$. For any bijection map $f:(X,\mu) \to (Y,\lambda)$ the following statements are equivalent

- i) f^{-1} : $(Y,\lambda) \rightarrow (X,\mu)$ is supra \tilde{g} -irresolute
- ii) f is supra \tilde{g}^{**} -open map and
- iii) f is supra \tilde{g}^{**} -closed map

Proof: Similar to Theorem 3.19

REFERENCES

- 1. R. Devi, S. Sampathkumar and M. Caldas, On supra α -open sets and s α -continuous maps, General Mathematics, 16(2) (2008), 77-84.
- 2. M. Kamaraj, G. Ramkumar and O. Ravi, Suprasg-closed sets and supra gs-closed sets, International Journal of Mathematical Archive, 2(11)(2011), 2413-2419.
- 3. M. Kamaraj, G. Ramkumar, O. Ravi and M. L. Thivagar, Supra sg-closedsetsand related maps, Global Journal of Advances in Pure and Applied Mathematics., Vol (1) (2012), 9-23
- 4. Malghan, S. R.: Generalized closed maps, J. Karnatak Univ. Sci., 27 (1982), 82-88.
- 5. A. S. Mashhour, A.A. Allam, F.S. Mahmoud and F.H. Khedr, On supra topological spaces, Indian J.Pure and Appl.Math., 14(4) (1983), 502-510.
- 6. G.Ramkumar, O.Ravi, M.Joseph Israel supra g#-closed set and its related maps Mathematical sciences International research journal vol 5 (2016), 71-75.
- 7. G.Ramkumar, O.Ravi, Decomposition of supra continuity, Proceed. National Seminar held at Kovilpatti India, (2015), 32-39.
- 8. G.Ramkumar, S.Suriaprakash, S.Tharmar, on supra \tilde{g} -closed sets, Middle-East Journal of Scientific Research, 25(2) (2017), 348-351.
- 9. O. Ravi, G. Ramkumar and M. Kamaraj, On supra β-open sets and supra β-continuity on topological spaces, Proceed. National Seminar held at Sivakasi, India, (2011), 22-31.
- 10. O. Ravi, G. Ramkumar and M. Kamaraj, Onsupra g-closed sets International Journal of Advances in Pure and Applied Mathematics, 1(2)(2011), 52-66.
- 11. O. R. Sayed and T. Noiri, On supra b-open sets and supra b-continuity on topological spaces, European J. Pure and Applied Math., (3) (2) (2010), 295-302.
- 12. O. R. Sayed, Supra pre-open sets and supra pre-continuity on topological spaces, Vasile Alecsandri, University of Bacau, Faculty of Sciences, Scientific Studies and Research Series Mathematics and Informatics., 20(2)(2010), 79-88.

Source of support: Proceedings of National Conference March 1st - 2018, On "Recent Advances in Pure and Applied Mathematics (RAPAM - 2018)", Organized by Department of Mathematics, Arul Anandar College (Autonomous), Madurai. Tamilnadu, India.