# Volume 9, No. 5, May - 2018 (Special Issue) International Journal of Mathematical Archive-9(5), 2018, 23-29 MAAvailable online through www.ijma.info ISSN 2229 - 5046

# THE UPPER CONNECTED EDGE DETOUR NUMBER OF AN EDGE DETOUR GRAPH

# J. M. PRABAKAR<sup>1</sup> AND S. ATHISAYANATHAN<sup>2</sup>

St. Xavier's College (Autonomous), Palayamkottai - 627 002, India.

E-mail: jmpsxc@gmail.com1 and athisxc@gmail.com2

#### **ABSTRACT**

For any two vertices u and v in a connected graph G, the detour distance D(u,v) is the length of a longest u-v path in G. A u-v path of length D(u,v) is called a u-v detour. A set  $S \subseteq V$  is called an edge detour set of G if every edge in G lies on a detour joining a pair of vertices of S. A connected edge detour set of a graph G is a edge detour set S such that the sub graph G is induced by G is connected. The minimum cardinality of a connected edge detour set of G is a connected edge detour number, denoted by  $cdn_1(G)$  of G and any connected edge detour set of order  $cdn_1(G)$  is called a connected edge detour basis of G. A connected edge detour set G in a connected graph G is called a minimal connected edge detour set of G if no proper subset of G is a connected edge detour set of G. The upper connected edge detour number  $cdn_1^+(G)$  of G is the maximum cardinality of a minimal connected edge detour set of G. In this paper the upper connected edge detour number of certain classes of graphs is determined. It is proved that for each pair G of integers with G in G inte

Keywords: detour, edge detour number, connected edge detour number, upper connected edge detour number.

AMS Subject Classification: 05C12.

#### INTRODUCTION

By a graph G = (V, E), we mean a finite undirected connected simple graph. The order and size of G are denoted by n and m respectively. For basic definitions and terminologies, we refer to [1, 4].

For vertices u and v in a connected graph G, the distance d(u,v) is the length of a shortest u-v path in G. A u-v path of length d(u,v) is called a u-v geodesic. For a vertex v of G, the eccentricity e(v) is the distance between v and a vertex farthest from v.

The minimum eccentricity among the vertices of G is the radius, rad(G) of G and the maximum eccentricity is its diameter, diam(G) of G.

A vertex x is said to lie on a u-v detour P if x is a vertex of P including the vertices u and v. A set  $S \subseteq V$  is called a detour set if every vertex v in G lies on a detour joining a pair of vertices of S. The detour number dn(G) of G is the minimum cardinality of a detour set and any detour set of order dn(G) is called a detour basis of G. A detour set S in a connected graph G is called a minimal detour set if no proper subset of S is a detour set. The upper International Journal of Mathematical Archive-9(5), May - 2018

# CONFERENCE PAPER

National Conference March 1<sup>st</sup> - 2018, On "Recent Advances in Pure and Applied Mathematics", Organized by Department of Mathematics, Arul Anandar College (Autonomous), Madurai. Tamilnadu, India.

#### The Upper Connected Edge Detour Number Of an Edge Detour Graph / IJMA- 9(5), May-2018, (Special Issue)

detour number  $dn^+(G)$  is the maximum cardinality of a minimal detour set of G. The upper detour number of a graph was introduced and studied by Chartrand et.al [3].

A set  $S \subseteq V$  is called a *connected detour set* of G if S is a detour set of G and the subgraph G < S > induced by S is connected. The connected *detour number cdn*G of G is the minimum cardinality of its connected detour set and any connected detour set of order cdn(G) is called a *connected detour basis* of G. A connected detour set S in a connected graph G is called a *minimal connected detour set* of G if no proper subset of S is a connected detour set of G. The *upper connected detour number cdn*G0 of G1 is the maximum cardinality of a minimal connected detour set of G3. In 2009, the upper connected detour number of a graph was introduced and studied by Santhakumaran and Athisayanathan [5].

A set  $S \subseteq V$  is called an *edge detour set* of G if every edge in G lies on detour joining a pair of vertices of S. The *edge detour number*  $dn_1(G)$  of G is the minimum cardinality of its edge detour sets and any edge set of order  $dn_1(G)$  is an *edge detour basis* of G. An edge detour set S in a connected graph G is called a *minimal edge detour set* of G if no proper subset of S is an edge detour set of G. The *upper edge detour number*  $dn^+(G)$  of G as the maximum cardinality of a minimal edge detour set of G. In 2011, the upper edge detour number of a graph was introduced and studied by Santhakumaran and Athisayanathan G.

A set  $S \subseteq V$  is called a *connected edge detour set* of G if S is an edge detour set G and the subgraph < S > induced by S is connected. The *connected edge detour number*  $cdn_1(G)$ , of G is the minimum order of its connected edge detour sets and any connected edge detour set of order  $cdn_1(G)$  is called a *connected edge detour basis* of G. These concepts were studied by Prabakar and Athisayanathan [8].

The following theorems are used in sequel.

**Theorem 1.1[7]:** All the end-vertices and the cut-vertices of an edge detour graph G belong to every connected edge detour set of G.

**Theorem 1.2[7]:** Let G be the complete graph  $K_n$   $(n \ge 3)$  or cycle  $C_n$   $(n \ge 3)$ . Then a set  $S \subseteq V$  is a connected edge detour basis of G if and only if S consists of any three adjacent vertices of G.

**Theorem 1.3[7]:** Let G be the complete bipartite graph  $K_{m,n} (2 \le m \le n)$ . Then a set  $S \subseteq V$  is a connected edge detour basis of G if and only if S consists of any three vertices of G such that two vertices from one partition and one from other partition of G.

**Theorem 1.4[7]:** If T is a tree of order  $n \ge 2$ , then  $cdn_1(T) = n$ .

#### **Theorem 1.5[7]:**

- (a) If G is the complete graph  $K_n$ , then  $cdn_1(G) = 3$ .
- (b) If G is the complete bipartite graph  $K_{m,n}(2 \le m \le n)$ , then G  $cdn_1(G) = 3$ .
- (c) If G is the cycle  $C_n$ , then  $cdn_1(G) = 3$ . Throughout this paper G denotes an edge detour graph with at least two vertices.

#### 2. UPPER CONNECTED EDGE DETOUR NUMBER

**Definition 2.1:** A connected edge detour set S in an edge detour graph G is called a *minimal connected edge detour* set of G if no proper subset of S is a connected edge detour set of G. The upper connected edge detour number  $cdn_1(G)$  of G is the maximum cardinality of a minimal connected edge detour set of G.

## © 2018, IJMA. All Rights Reserved

**Example 2.2:** For the edge detour graph G given in Figure 2.1,  $S_1 = \{v_1, v_2, v_3, v_4, v_5, v_6\}$   $S_2 = \{v_1, v_2, v_3, v_9, v_{10}, v_5, v_6\}$ ,  $S_3 = \{v_1, v_2, v_3, v_7, v_8, v_4, v_5, v_6\}$  are the minimal connected edge detour sets of G so that  $cdn_1(G) = 7$ . Moreover, the sets  $S_1, S_2$  and  $S_3$  contain the cut-vertices  $v_3$  and  $v_5$  of G and end-vertices  $v_1$  and  $v_2$  of G. Thus, every minimal connected edge detour sets of an edge detour graph must contain cut-vertex and end-vertex of an edge detour graph G.



Figure-2.1

**Example 2.3:** For the edge detour graph G given in Figure 2.1, it is clear that the set  $S_1 = \{v_1, v_2, v_7, v_4, v_9\}$  is a minimal connected detour set of G so that  $dn_1(G) = 5$ . Also the set  $S_1 = \{v_1, v_2, v_3, v_4, v_5, v_6\}$  is the minimal connected edge detour set of G so that  $cdn_1(G) = 7$ . Hence the minimal edge detour set and minimal connected edge detour set of an edge detour graph G are different.

**Example 2.3:** For the edge detour graph G given in Figure 2.2,  $S_1 = \{u, s, x, y, t, v\}$  and  $S_1 = \{u, s, w, t, v\}$  are the minimal connected edge detour sets of G so that  $cdn_1(G) = 5$  and  $cdn_1^+(G) = 6$ .



Figure-2.2

**Remark 2.4:** Every minimum connected edge detour set is a minimal connected edge detour set, but the converse is not true. For the edge detour graph G given in Figure 2.2,  $S_1 = \{u, v, s, t, x, y\}$  is a minimal connected edge detour set of G but not a minimum connected edge detour set of G.

**Theorem 2.5:** For any edge detour graph G of order  $n \ge 2$ ,  $2 \le cdn_1(G) \le cdn_1^+(G) \le n$ .

**Proof:** A connected edge detour set needs at least two vertices so that  $cdn_1(G) \ge 2$ . Let S be any connected edge detour basis of G. Then S is also a minimal connected edge detour set of G and hence the result follows.

**Corollary 2.6:** Let G be an edge detour graph G of order n. If  $cdn_1(G) = n$ , then  $cdn_1^+(G) = n$ .

**Remark 2.7:** The bounds in Theorem 2.5 are sharp. For the complete graph  $K_n(n \ge 2)$  and the cycle  $C_n(n \ge 3)$ ,  $cdn_1(G) = cdn_1^+(G) = 3$ . Also for the edge detour graph G given in the Figure 2.2,  $cdn_1(G) < cdn_1^+(G)$ .

Now, we proceed to determine  $cdn_1^+(G)$  for some classes of an edge detour graphs.

#### © 2018, IJMA. All Rights Reserved

## The Upper Connected Edge Detour Number Of an Edge Detour Graph / IJMA- 9(5), May-2018, (Special Issue)

**Theorem 2.8:** Let G be the complete graph  $K_n(n \ge 2)$  or cycle  $C_n(n \ge 3)$ . Then a set  $S \subseteq V$  is a minimal connected edge detour set of G if and only if S consists of any three adjacent vertices of G.

**Proof:** If S consists of any three adjacent vertices of G, then by Theorem 1.2, S is a connected edge detour basis of G so that S is minimal. Conversely, assume that  $S \subseteq V$  be a minimal connected edge detour set of G. If |S| = 2, then S is not a connected edge detour set of G. Let  $|S| \ge 4$ . Let  $S_1$  be any subset of S with  $|S_1| = 3$ . Then by Theorem 1.2,  $|S_1|$  is a connected edge detour set of G so that S is not a minimal connected edge detour set of G, which is contradiction. Thus S consists of any three adjacent vertices of G.

**Theorem 2.9:** Let G be the complete bipartite graph  $K_{n,m}(2 \le n \le m)$ . Then a set  $S \subseteq V$  is a minimal connected weak edge detour set of G if and only if S consists of any three vertices of G such that two vertices from one partition and one from other partition of G.

**Proof:** If S consists of any three vertices of G such that two vertices from one partition and one from other partition of G, then by Theorem 1.3, S is a connected edge detour basis of G so that S is minimal. Conversely, assume that  $S \subseteq V$  be a minimal connected edge detour set of G such that |S| = 4. Then there exists a subset  $S_1 = \{u, v, w\}$  of S such that two vertices from one partition and one from other partition of G. Then by Theorem 1.3,  $S_1$  is a connected edge detour set of G, which is a contradiction.

**Theorem 2.10:** Let G be an edge detour graph of order n.

- (a) If G is the complete graph  $K_n(n \ge 2)$  then  $cdn_1(G) = cdn_1^+(G) = 3$ .
- (b) If G is the complete bipartite graph  $K_{n,m}(2 \le n \le m)$ , then  $cdn_1(G) = cdn_1^+(G) = 3$ .
- (c) If G is the cycle  $C_n(n \ge 3)$  then  $cdn_1(G) = cdn_1^+(G) = 3$ .
- (d) If G is any tree of order  $n \ge 2$ , then  $cdn_1(G) = cdn_1^+(G) = n$ .

#### **Proof:**

- (a) This follows from Theorem 1.5(a) and Theorem 2.8.
- (b) This follows from Theorem 1.5(b) and Theorem 2.9.
- (c) This follows from Theorem 1.5(c) and Theorem 2.8.
- (d) This follows from Theorem 1.4 and Corollary 2.6. The following theorem gives a realization result.

**Theorem 2.1:** For every pair a, b of integers with 5 < a < b, there exists an edge detour graph G with  $cdn_1(G) = a$  and  $cdn_1^+(G) = b$ .

**Proof:** Let 5 < a < b. Let G be an edge detour graph obtained from the cycle  $C: v_1, v_2, \dots, v_{b-a+4}, v_1$  of order b-a+4 by adding a-3 new vertices  $u_1, u_2, \dots, u_{a-3}$  and joining  $u_1$  to  $v_1$  and each  $u_i \left(2 < i < (a-3)\right)$  to  $v_{b-a+3}$  of C. The edge detour graph G is connected of order b+1 and is shown in Figure 2.4. Let  $X = \{v_2, v_3, \dots, v_{b-a+2}\}$ ,  $Y = \{u_2, u_3, \dots, u_{a-3}, v_1, v_2, \dots, v_{b-a+3}\}$  and  $Z = \{v_{b-a+4}\}$ .

#### The Upper Connected Edge Detour Number Of an Edge Detour Graph / IJMA- 9(5), May-2018, (Special Issue)



Figure-2.4

First, we show that  $cdn_1(G)=a$ . By Corollary 1.1, every connected edge detour set of G contains Y. Clearly Y is not a connected edge detour set of G and so  $cdn_1(G) \geq |Y|+1=a$ . On the other hand, let  $S=Y \cup Z$ . Then every edge of G lies on detour joining a pair of vertices S. Also, G < S > is connected. Hence S is a connected edge detour set of G and so  $cdn_1(G) \leq |S| = a$ . Therefore  $cdn_1(G) = a$ .

Now, we show that  $cdn_1^+(G) = b$ . Let  $S' = X \cup Y$ . Then it is clear that S' is a connected edge detour set of G. We show that S' is a minimal connected edge detour set of G. Assume, to the contrary, that S' is not a minimal connected edge detour set of G. Then there is a proper subset T of such that T is a connected edge detour set of G. Since T is a proper subset of S', there exists a vertex  $v \in S'$  and  $v \notin T$ . By Theorem 1.1, every connected edge detour set contains Y and so we must have  $v = v_i \in X$  for some i(2 < i < (b - a + 2)). Then it is clear that G < T > is not connected and so T is not a connected edge detour set of G, which is a contradiction. Thus S' is a minimal connected edge detour set of G and so  $cdn^+(G) > |S'| = b$ . Now, if  $cdn^+(G) > b$ , then let M be a minimal connected edge detour set of G, it follows that M is not a minimal connected edge detour set of G, which is a contradiction. Therefore  $cdn^+(G) = b$ .

**Theorem 2.12:** For every pair a,b of integers with 3 < a < b, there exists an edge detour graph G with  $dn_1(G) = a$  and  $cdn^+(G) = b$ .

**Proof:** For any tree of order b with a end-vertices is the desired graph.

**Theorem 2.13:** For every pair a,b \$a\$, \$b\$ of integers with 2 < a < b, there exists an edge detour graph G \$G\$ with  $dn^+(G) = a$  and  $cdn^+(G) = b$ .

**Proof:** Let G be an edge detour graph obtained from the path  $P: v_1, v_2, \ldots, v_a$  of order a by adding  $w_1, w_2, \ldots, w_{b-a}$  of order b-a new vertices joining  $v_1$  and  $v_2$ . Let  $u_1, u_2, \ldots, u_{b-a}$  of order b-a \$ new vertices joining  $v_1$  and  $w_{b-a}$ . The edge detour graph G is connected of order 2b-a and shown in the Figure 2.5. Let  $X = \{v_1, v_2, \ldots, v_a\}$ ,  $Y = \{w_1, w_2, \ldots, w_{b-a}\}$ ,  $Z = \{u_1, u_2, \ldots, u_{b-a}\}$ . For we show that  $cdn^+(G) = a$ . By Corollary 1.8, S = X is connected detour set of G. Clearly S is also a minimal connected detour number of G.

## © 2018, IJMA. All Rights Reserved

Now, we show that  $cdn^+(G) = b$ . Let  $S' = \{X \cup Y\}$ . Then it is clear that S' is a connected edge detour set of G. We show that S' is a minimal connected edge detour set of G. Assume, to the contrary, that S' is not a minimal connected edge detour set of G. Then there is a proper subset T of S' such that T is a connected edge detour set of G. Since G is a proper subset of G, there exists a vertex G is an exist G is a proper subset of G. By Theorem 1.1, every connected edge detour set contains G and so we must have G is not some G in some G is not a connected edge detour set of G, which is a contradiction. Thus G is a minimal connected edge detour set of G and so G is a minimal connected edge detour set of G with G is a minimal connected edge detour set of G with G is a minimal connected edge detour set of G with G is a minimal connected edge detour set of G with G is a minimal connected edge detour set of G with G is a minimal connected edge detour set of G with G is a minimal connected edge detour set of G with G is a minimal connected edge detour set of G with G is a minimal connected edge detour set of G with G is a minimal connected edge detour set of G is a minimal connected edge detour set of G is a minimal connected edge detour set of G is a minimal connected edge detour set of G is a minimal connected edge detour set of G is a minimal connected edge detour set of G is a minimal connected edge detour set of G is a minimal connected edge detour set of G is a minimal connected edge detour set of G is a minimal connected edge detour set of G is a minimal connected edge detour set of G is a minimal connected edge detour set of G is a contradiction. Therefore, G is a minimal connected edge detour set of G is a contradiction. Therefore, G is a minimal connected edge detour set of G is a contradiction. Therefore, G is a connected edge detour set of G is a connected edge detour set of G is a



**Remark 2.14:** The edge detour graph G in Figure 2.6 contains exactly 2 minimal connected edge detour sets namely  $X \cup Y$  and  $Y \cup Z$ . Hence this example shows that there is no "Intermediate Value Theorem" for minimal connected edge detour sets, that is, if k is an integer such that  $cdn_1(G) < k < cdn_1^+(G)$ , then there need not exist a minimal connected edge detour set of cardinality k in G.

Using the structure of the graph G constructed in the proof of Theorem 2.12, we can obtain a graph  $H_n$  of order n with  $cdn_1(G)=5$  and  $cdn^+(G)=n-1$  for all n>6. Thus we have the following. There is an infinite sequence  $H_n$  of edge detour graphs  $H_nG$  of order n>6 such that  $cdn_1(H_n)=5$ ,  $cdn^+(H_n)=n-1$ ,  $\lim_{n\to\infty}\frac{cdn_1(H_n)}{n}=0$  and  $\lim_{n\to\infty}\frac{cdn_1^+(H_n)}{n}=1$ .

Let  $H_n$  be the graph obtained from the cycle  $C: v_1, v_2, \ldots, v_{n-1}, v_1$  of order n-2 by adding two new vertices  $u_1, u_2$  and joining  $u_1$  to  $v_1$  and each  $u_2$  to  $v_{n-3}$  of C. The graph  $H_n$  is connected and is shown in Figure 2.6. Let  $X = \{v_2, v_3, \ldots, v_{n-4}\}$ ,  $Y = \{u_2, v_1, \ldots, v_{n-3}\}$  and  $Z = \{v_{n-2}\}$ . It is clear from the proof of Theorem 2.12 that the graph  $H_n$  contains exactly 2 minimal connected edge detour sets namely  $X \cup Y$  and  $Y \cup Z$  so that  $cdn^+(H_n) = n-1$  and  $cdn_1(G) = 5$ . Hence the theorem follows.



Figure-2.6

#### **REFERENCES**

- 1. F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley, Reading M.A. (1990).
- 2. G. Chartrand and H. Escuadro, and P. Zhang, Detour Distance in Graphs, J.Combin. Math.Combin. Comput. {53}(2005), 75--94.
- 3. G. Chartrand L. John and P. Zhang, The Detour Number of a Graph, Util. Math. 64(2003), 97-113.
- 4. G.Chartrand and P.Zhang, Introduction to Graph Theory, Tata McGraw-Hill, 2006.
- 5. A.P.Santhakumaran and S.Athisayanathan, The Connected Detour Number of a Graph, J.combin. Math. Combin. Comput, 69, (2009), 205-218.
- 6. A.P.Santhakumaran and S.Athisayanathan, Edge Detour Number of a Graph, Ars combin., 98(2011), 33-61.
- 7. A.P.Santhakumaran and S.Athisayanathan, The Upper Edge Detour Number of a Graph, Ars combin., 98(2011), 33-61.
- 8. J.M.Prabakar and S.Athisayanathan, Connected Edge Detour Number of a Graph, Roots International journal of multidisciplinary researches, vol.4 (2017), (442-456).

Source of support: Proceedings of National Conference March 1<sup>st</sup> - 2018, On "Recent Advances in Pure and Applied Mathematics (RAPAM - 2018)", Organized by Department of Mathematics, Arul Anandar College (Autonomous), Madurai. Tamilnadu, India.