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ABSTRACT 
In the present paper magneto hydrodynamic flow of an MHD power law fluid over a porous stretching sheet is studied 
by applying exact analytical similarity transformation technique. The flow is caused by linear stretching of a sheet from 
a permeable wall. The momentum equation is simplified by converting the governing momentum boundary layer partial 
differential equation into ordinary differential equation by using classical similarity transformation technique with 
appropriate boundary conditions.  
 
The effect of porosity and magnetic field on the flow profile is analyzed analytically and it is found that permeability 
and magnetic field tend to make the boundary layer thinner and thereby enhancing the skin wall friction.  
 
Key words: Stretching sheet, boundary layer thickness, power law fluid, displacement thickness, permeability.  
 
 
1. INTRODUCTION  
 
The interest of studying momentum boundary layer flow of non – Newtonian fluids has been increased in the last four 
decades for their important usage in various manufacturing and processing industries and wide range of applications 
such as hot rolling, extrusion, glass fiber production, paper production, continuous casting and in wire drawing. Apart 
from these many metallurgical processes including chemical engineering processes involve cooling of continuous strips 
or filaments by drawing them into a cooling system. The fluid mechanical properties desired for the outcome of such a 
process would mainly depend on the rate of stretching and cooling.  
 
Hence because of the growing use of these fluids considerable efforts have been directed towards the study of 
momentum transfer to control the quality of the final product of these processes. [1–4]. 
 
In view of many such applications Crane [5] initiated the analytical study of boundary layer flow due to a stretching 
sheet. The velocity of the sheet was assumed to vary linearly with the distance from the slit. The motion of a plane 
sheet in its own plane due to boundary layer flow was investigated by Sakiadis [6]. Erickson [7] extended this problem 
to study the temperature distribution in the boundary layer when the sheet is maintained at a constant temperature with 
suction/blowing. These investigations have many significant applications in the polymer industry when a polymer sheet 
is extruded continuously from a die, with an inextensible stretching sheet. However, in real situations one has to 
encounter the boundary layer flow over a stretching sheet. Following two different approaches of [5] and [6] the 
uniqueness of the exact analytical solutions was proved simultaneously by Maclead and Rajgopal [8] and Troy et al [9]. 
Rajgopal et al [10] made a study on boundary layer flow over a stretching sheet for a special class of non – Newtonian 
fluids, known as second order fluids and obtained similarity solutions.  
 
Anderson and Dandapat [11] extended the Newtonian boundary layer flow problem considered by crane [5] to an 
important class of non- Newtonian fluids obeying the power – law model.  
 
Motion of visco – elastic fluids in the presence of transverse uniform magnetic field was studied earlier by several 
authors Sarpakaya [12] and Djukic [13] etc in different situations. Pavlov [14] studied the boundary layer flow of an 
MHD fluid due to stretching of a plane elastic surface and obtained an exact similarity solution of the problem. 
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Schowalter [15] applied boundary layer theory to study the flow of power law pseudo plastic fluids and obtained 
similarity solutions. Hassanien et al [16] made an investigation on the flow and heat transfer in a power law fluid over a 
non-isothermal stretching sheet. Naikoti and Borra [17] made an analysis of the influence of transverse magnetic field 
on the flow transfer of an MHD conducting power – law fluid over a stretching sheet with thermal dispersion. Liao [18] 
made an excellent work on magneto hydrodynamic stretching sheet problem involving power law fluid model using 
homotopy based analytical method. Fox et al [19] made a study on the flow of a power law fluid over a moving 
surface. Wang [20] analysed the heat transfer charectristics of the steady laminar mixed convection of non-Newtonian 
fluids over a vertical plate using the boundary layer equations for the power – law viscosity index. Gorla et al [21] 
presented the study of mixed convection in non – Newtonian fluids along a vertical plate in a porous medium.  
 
Guedda [22] made a theoretical analysis to derive a range of exponents and amplitudes for the boundary layer region 
for which similarity solutions exists. Howell et al [23] investigated the flow and heat transfer in a power – law fluid on 
a continuous moving sheet.  
 
Recently the problem of laminar natural convection heat transfer from a vertical flat plate at constant temperature to a 
non – Newtonian pseudo – plastic liquid was studied by Dale and Emery [25] with uniform heat flux. Som and Chen 
[26] analyzed the natural convection heat transfer in power law fluid from a two – dimensional body of which the 
surface is subject to power – law variations in temperature and heat flux. Caponkov [27] discussed the free convection 
flow in power – law fluids past two – dimensional bodies for large Prandtl number for arbitrary variations in body 
temperature. Recently the effects of magnetic field on a power – law fluid past a vertical plate embedded in a porous 
medium were studied by Et – Amin and Mohammdein [28].  
 
Thus in the current investigation it is considered extension of ref[30] ie the free convection boundary layer steady two – 
dimensional flow of a non – Newtonian power – law fluid model. [Ref Vujannovic et al [29]. It is the simplest and 
most common type called the Ostwald – de Wale model] i.e., power – law fluid in the presence of uniform transverse 
magnetic field and porous medium. 
 
2. FLOW ANALYSIS  
 
Consider the two – dimensional steady, laminar flow of an incompressible and electrically conducting power – law 
fluid in the presence of transverse magnetic field and porous medium past a flat sheet coinciding with the plane Y = 0, 
the flow being confined to Y > 0. Two equal and opposite forces are applied along X – axis. The basic boundary layer 
equations for continuity and momentum Anderson et al. [30] take the following form.  

𝜕𝑢
𝜕𝑥

  + 𝜕𝑣
𝜕𝑦

= 0                                                                                                                                                          (1) 

u 𝜕𝑢
𝜕𝑥

  + 𝑣 𝜕𝑣
𝜕𝑦

=  1
𝜌

 �𝜕𝜏𝑥𝑦
𝜕𝑦

� −  𝜎𝐵0
2

𝜌
𝑢 −  𝑣

𝑘′
𝑢                                                                                                            (2) 

Where u and 𝑣 are the velocity components along x – and y – directions respectively. 𝜌, 𝜎, 𝐵0 , 𝑣 𝑎𝑛𝑑 𝑘 ′ are the 
density, electrical conductivity, magnetic field strength, Kinematic viscosity and permeability of the medium 
respectively.   𝜏𝑥𝑦 is the shear stress and the stress tensor is defined rheologically as    

𝜏𝑖𝑗 = 2𝐾 (2𝐷𝑘𝑖  𝐷𝑘𝑗)
𝑛−1
2   𝐷𝑖𝑗                                                                                                                                 (3) 

Where   𝐷𝑖𝑗 =  1
2

 �𝜕𝑢𝑖
𝜕𝑥𝑗

 +   
𝜕𝑢𝑗
𝜕𝑥𝑖
� denotes the stretching tensor, K is called the consistency co – efficient and n is the 

power – law index. The two parameter rheological equation (3) represents a Newtonian fluid with dynamic co – 
efficient of viscosity K for n = 1. With n≠ 1, the constitutive equation (3) represents shear – thinning i.e., for (n < 1) and 
shear thickening (n>1) fluids. However, the in elastic power – law model (3) does not exhibit normal – stress 
differences.  
 
Thus the shear stress in the present study is given by  

𝜏𝑥𝑦 =  −𝑘 �−  𝜕𝑢
𝜕𝑦
�
𝑛

           for   𝜕𝑢
𝜕𝑦

 < 0                                                                                                               (4) 
 
Then equation of motion (2) reduces to the following form.  

u 𝜕𝑢
𝜕𝑥

  + 𝑣 𝜕𝑣
𝜕𝑦

=  −  𝐾
𝜌

 𝜕
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𝜕𝑦
�
𝑛
−  𝜎𝐵0

2𝑢
𝜌

−  𝑣
𝑘′
𝑢                                                                                                 (5) 

 
With the following boundary conditions  

𝑢 = 𝐵𝑥, 𝑣 = 0  𝑎𝑡 𝑦 = 𝑜                                                                                                                     (6) 
𝑢 → 0    𝑎𝑠 𝑦 →  ∞                                                                                                                               (7) 

 
Following Shercliff [31], we have neglected the induced magnetic field and porous media under justification for flow at 
small magnetic Reynolds number and porositic Darcy number.  
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Further this flow is caused solely by the stretching of the sheet wall and hence there is no free – stream velocity outside 
the boundary layer.  
 
It can be automatically shown that the system of equations (1) to (5) admits self similarity solutions with respect to the 
boundary conditions (6) & (7) in terms of the similarity function variable G( ɳ ) defined by  

Ѱ = �𝐵
1−2𝑛

𝑘
𝜌

�
− 1
𝑛+1

  𝑥
2𝑛
𝑛+1   𝐺( ɳ )                                                                                                                         (8) 

and 

ɳ = 𝑦 �𝐵
2−𝑛

𝑘
𝜌
�

 1
𝑛+1

  𝑥
(1−𝑛)
(1+𝑛)                                                                                                                                     (9) 

Where u and v are the stream functions which are taken as  
𝑢 =  − 𝜕Ѱ

𝜕𝑦 
       𝑎𝑛𝑑    𝑣 = 𝜕Ѱ

𝜕𝑥 
                                                                                                                              (10) 

 
Now using the transformations defined in (8) and (9), equation (5) becomes  

n(−Gn)(n−1)Gɳɳɳ −  �Gɳ �
2 +  � 2n

n+1
�  GGɳɳ−(M+k2)  Gɳ = 0                                                                            (11) 

 
Where M =  𝜎𝐵0

2𝑢
𝜌𝐵

   = the magnetic parameter  

            k2 =  𝑣
𝑘′

 = the permeability parameter  
 
Boundary conditions (6) and (7) convert to  

Gɳ  (0) =  1 ,        G(0) =  0                                                                                                                             (12a) 
Gɳ  (∞) =  0 ,                                                                                                                                                    (12b) 

 
For the value n=1 in equation (11) we obtain the equation of momentum for a Newtonian fluid as follows. 

𝐺ɳɳɳ − (𝐺ɳ )2 + G 𝐺ɳɳ − (M + k2) 𝐺ɳ = 0                                                                                                           (13) 
 
With  above  boundary  conditions (12a) and (12b). Equation (13) has an exact analytical solution of the form  

𝐺ɳ ( ɳ ) =  𝑒−𝐸ɳ,      𝐸 > 0                                                                                                                                 (14) 
and 

𝐺( ɳ ) = 1
𝐸

 (1 − 𝑒−𝐸ɳ)                                                                                                                                      (15) 
 
Satisfying the boundary conditions 𝐺ɳ(0) = 1 and 𝐺ɳ(∞) = 0 and G(0) = 0. 
Where  E = �1 + 𝑀 +  𝑘2 (see Pavlov [14] ) and Andersson and Dandpat [30] for non – porous medium.  
 
3. ANALYTICAL SOLUTION METHOD 
 
Anderson et al [30] solved the present problem by standard fourth order Runge - Kutta integration technique for non – 
porous case and they solved the same by Keller Box method and also Anderson et al. [10] applied the same numerical 
method recently to the non magnetic case also.  
 
In the present paper the non – linear momentum equation [13] for power – law fluid with magnetic and porositic case is 
solved by special perturbation method with exact analytical solution with respect to the boundary conditions [12] for 
the case n = 1 is obtained.  
 
Putting 𝐺ɳ = 𝑦    ⇒     𝐺(ɳ)=  𝑦

2

2
                                                                                                                                     (16) 

 
Then Equation [13] reduces to  

𝑌′′ − 𝑌2𝑌′

2
−  𝑎𝑌 =  𝑌2                                                                                                                                         (17) 

Whose solution is assumed in the following form  
𝑌 =  𝑦0+ ∈  𝑦1 + ∈2 𝑦2 +  … … … … ..                                                                                                              (18) 

 
Now substituting for Y, 𝑌′,𝑌′′ in (17) and equating the like co – efficient of ϵ, we obtain the following set of equations 
in 𝑦0 ,  𝑦1 and 𝑦2 as  

𝑑2𝑦0
𝑑ɳ2

−  𝑦02  𝑑𝑦0
𝑑ɳ

 − 𝑎𝑦0 =  𝑦02                                                                                                                          (19) 
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With Boundary conditions 𝑦0  (0) = 1 and 𝑦0 (∞) = 0                                                                                                   (19 a)  

𝑑2𝑦1
𝑑ɳ2

−  𝑦02  𝑑𝑦1
𝑑ɳ

+ 2 𝑦0𝑦1  𝑑𝑦0
𝑑ɳ

 − 𝑎𝑦1 −  2 𝑦0𝑦1 = 0                                                                                        (20) 
With  𝑦1 (0) = 1    and 𝑦2 (∞) = 0                                                                                                                                (20a) 

𝑑2𝑦2
𝑑ɳ2

−  𝑦02  𝑑𝑦2
𝑑ɳ

− 𝑦12  𝑑𝑦0
𝑑ɳ

 − 2 𝑦0𝑦1  𝑑𝑦1
𝑑ɳ

 −  2𝑦0𝑦2  𝑑𝑦0
𝑑ɳ

−  𝑎𝑦1 −  2𝑦1𝑦2 −  2𝑦2𝑦0 =  𝑦12                            (21) 
With     𝑦2 (0) =1 and 𝑦2 (∞) = 0                                                                                                                                   (21a)   
 
Solving equations (19), (20) and (21) subjected to the boundary conditions (19a), (20a) and (21a), the final solution of 
equation (17) is obtained as  

𝑌(ɳ) =  1
𝑎

 (𝑒𝛼ɳ −  1) + 𝑒−𝛽ɳ                                                                                                                              (22) 

𝑤ℎ𝑒𝑟𝑒    𝛼 =  −1 √1+4𝑎
2

  𝛽 =  −1− √1+4𝑎
2

   where  a =  (𝑀 +  𝑘2) 
 
since Y = 𝐺ɳ(ɳ)𝑓𝑟𝑜𝑚 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛  (16)  

⇒ 𝐺ɳ(ɳ) =  1
𝑎

(𝑒𝛼ɳ −  1) + 𝑒−𝛽ɳ                                                                                                                                                                                       (23) 
and the solution for  

𝐺(ɳ) =  1
𝑀+ 𝑘2

�1
𝛼

(𝑒𝛼ɳ −  1)� + 1
𝛽

(1 − 𝑒−𝛽ɳ)                                                                                                    (24) 
 
4. SKIN FRICTION 
 
The important boundary layer characteristic is the skin friction co-efficient 𝜏xy at the sheet y = 0 is defined and derived 
as  

[𝜏xy]y=0  = 2 � −𝐺ɳɳ(0)�n(Re)−
1

n+1 
Where Re is the local Reynolds no. and Re = (𝑐𝑥)2−𝑛 . 𝑥

ɳ

�𝑘𝜌�
   based on sheet velocity.  

 
5. RESULTS AND DISCUSSION 
 
The present non-Newtonian MHD power – law fluid flow problem with porosity is solved analytically by the special 
method of perturbation technique for five different values of the magnetic parameter (M ≤ 2 .0 ) and five different 
values of permeability parameter (k2 ≤ 10) and for different values of the power – law index in the range 0.6 ≤ n ≤ 2.0. 
computed values of velocity field are presented through the following graphs.  
 
Fig (1a) and (1b) represents the similarity velocity profiles for shear thinning fluid with power law index n=0.6 for 
different values of magnetic parameter fig (1) and permeability parameter fig (2) respectively. From both the figures it 
is observed that 𝐺ɳ decreases with increasing values of Mn and k2. For a given fluid the effect of magnetic field and 
porous media is therefore to reduce the velocity distribution u = Bx 𝐺ɳ across the boundary layer and parallel to the 
stretching sheet.  
 
Fig (2a) and (2b) are drawn to represent the velocity profiles 𝐺ɳ vs ɳ for Newtonian fluid (n=1) and for different values 
of magnetic and permeability parameters m and k2 respectively. A common feature of both the velocity profiles 
irrespective of power law index n, is that horizontal velocity distribution 𝐺ɳ lowers with enhancing values of m and k2 
which indicates that the exact analytical solution [14] is accurately reproduced by computations for n = 2 in fig  (2a) 
and (2b).  
 
Similarly Figures (3a) and (3b) depict the flow velocity profiles for shear thickening fluids with power – law index n=2 
and it is observed from the figures that velocity distribution is lowered for increasing values of Mn and k2 which 
indicates that for shear – thickening fluid, the effect of magnetic field and porous field is to reduce the velocity 
component u=Bx𝐺ɳ parallel to the stretching surface.  
 
In fig (4) the important aspect of boundary layer characteristic property known as dimensionless. Skin – friction co-
efficient Ʈxy – shear stress at the sheet for y=0 is presented.  
 
Since 𝐺ɳɳ (0) values are negative and computed values of -𝐺ɳɳ (0) with m and n are displayed graphically in fig (4a) and 
(4b). For Different values of M and k2 respectively. It is observed from the figures that -𝐺ɳɳ (0) increases monotonically 
with M (fig 4a) and k2 (fig 4b) for power law fluid. More over fig (4a) and (4b) demonstrate the facts that the 
magnitude of the wall velocity gradient decreases gradually with increasing values of n and fixed values of M and k2. 
This observation is well in agreement with the findings of Anderson et al. [11]. However the presence of magnetic and 
porous media make the difference in 𝐺′ɳɳ (0) between shear thickening (n>1) and shear-thinning (n<1) fluids 
significantly more pronounced.  
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The graph of boundary layer thickness ɳδ for various values of permeability parameter k2 is presented in fig 5. It is 
observed from the figure that the thickness of the boundary layer thickness decreases with permeability for the power 
law fluid considered.  
  
Fig (6) is the representation of dimensionless displacement thickness for various values of permeability parameter and 
it is found from the figure that the imposition of porous media reduces the sensitiveness of boundary layer thickness.  
 
6. CONCLUSIONS 
 
The magnetic field and porous media tends to make the boundary layer thinner duely increasing the skin wall friction. 
This combined effect of porosity and magnetism is pronounced more for shear thinning fluids than shear thickening 
fluids. The imposition of magnetic field and porosity makes the difference between the various fluids more distinct in 
the near wall-region but less influencial on the global thickness of the boundary layer behaviors.  
 

 
Figure-1a: Similarity velocity profiles for a shear thining fluid (power law index n=0.6) fixed k2 and for different 
values of magnetic parameter M = 0.0, 0.5, 1.0, 1.5, 2.0     
 

 
Figure-1b: Similarity velocity profiles for a shear thinning fluid (power law index n=0.6) M = 1 and for different 
values of permeability parameter k2 = 2, 4, 6, 8, 10     
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Figure-1c: Similarity horizontal velocity profiles G η (η) for power law fluid with n < 1, n = 1 and n > 1for fixed value 
of M=1, k2 = 2. 

 

 
Figure-2a: Similarity velocity profiles for power law fluid with (n = 1-Newtonian)for different values magnetic 
parameter  M= 0.0, 0.5, 1.0, 1.5, 2.01, k2 = 2. 

 
Figure-2b: Similarity velocity profiles for power law fluid with (n = 1-Newtonian) and M=1 for different values of 
permeability parameter k2= 2, 4, 6, 8, 10. 
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Figure-3a: Similarity velocity profiles for a shear thickening (n = 2) and k2 = 2 for different values M = 0.0, 0.5, 1.0, 
1.5, 2.0 

 
Figure-3b: Similarity velocity profiles for a shear thickening (n = 2) and M = 1 and for different values k2 = 2, 4, 6, 8, 10 

 
Figure-4a: Shearing skin friction co-efficient with verification of n different values of M at the wall with fixed k2 = 2 
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Figure-4b: Graph of Dimensionless velocity gradient at the wall with power law index n for different values of k2 with 
M = 1 

 
Figure-5: Graph of Dimensionless boundary layer thickness ηδ  Vs. power law index  n with different values of k2 and 
fixed value of M = 1 
 

 
Figure-6: Graph of displacement thickness δ1 Vs. power law index number n with different values of magnetic 
parameter M  
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