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ABSTRACT 
In this paper we investigate the radiation effect on the mixed convective heat transfer of viscous fluid through a porous 
medium confined in horizontal wavy channels which are maintained at non-uniform temperature in the presence of 
heat sources. The equations governing the flow, heat and mass transfer are solved using the perturbation technique 
with  δ the slope of boundary as perturbation parameter. The velocity, temperature and concentration are analyzed for 
different variations of the governed parameters G, D-1, N and Sc. The shear stress and the rate of heat and mass 
transfer have been evaluated for different variations. 
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1. INTRODUCTION 
 
Thermal and solutal transport by fluid flowing through a porous matrix is a phenomenon of great interest from both the 
theory and application point of view. Heat transfer studies with internal heat sources have been proposed for earth’s 
mantle [6, 18] and for the outer region of star interiors [1]. The volumetric rate of heat generation has been assumed to 
be either constant [2, 11, 15] or a function of space variable [3,9]. Some authors have consider directly the viscous 
dissipation and the expansion effect [8, 14]. The analysis of temperature field as modified by the generation of heat in 
moving fluids is important in engineering processes pertaining to flows in which a fluid supports an exothermic 
chemical or nuclear reaction and in problems connected with dissociating fluids [10]. For class of problems related to 
geothermal energy systems there is a need for including constant heat sources or at times heat generating in porous 
media. Such studies have been made by several authors suitably Gabsser and Kazmi [7], Dhir and Catton [4] and 
Hardee and Nelson [10]. 
 
Flow through a channel or pipe with either non-uniform boundaries or boundaries maintained at non-uniform 
temperature have drawn the attention due to their practical applications in different technological problems [14, 15]. 
Likewise flow through ducts of non-uniform cross sections has applications in the study of membrane oxygenerators 
and heat exchange in biomedical apparatus. From the observations made experimentally by Gagen et al. [5] regarding 
the augmentation of heat transfer in fluid and heat transfer through non-uniform pipes/channels, the theoretical analysis 
of this aspect has been attempted by a few authors [11,12,15]. Rao et al., [16] have investigated free convection in a 
vertical wavy channel in the presence of a constant heat source/sink. Using a mathematical method similar to that of 
Vajravelu and Sastri [19] the zeroth order, the first order and the total solution of the problem are evaluated numerically 
for different values of heat source, wall wavy ness parameter and the free convection parameter, Krishna et al., [11] 
have analyzed the effect of temperature dependent heat generating sources on the free and forced convective flow of a 
viscous incompressible fluid in a vertical wavy channel. Some of these papers [14, 20] dealt with perturbation methods 
in which the perturbation is over the slope of the non-uniform wall which is assumed to be small. Analytical solutions 
were obtained for arbitrary shapes of the boundary walls as well as arbitrarily chosen non-uniform wall temperatures. 
The theoretical analysis confirms the augmentation of the heat transfer as observed experimentally. 
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In the context of space technology and in processes involving high temperatures the effects of radiation are of vital 
importance. Recent developments in hypersonic flights, missile recentry, rocket combustion chambers, power plants for 
inter planetary flight and gas cooled nuclear reactors, have focused attention on thermal radiation as a mode of energy 
transfer, and emphasize the need for improved understanding of radiative transfer in these processes. Mansour [23] 
studied the radiative and free convective effects on the oscillatory flow past a vertical plate. Prasad et al., [30] 
considered the radiation and mass transfer effects on two-dimensional flow past an impulsively started isothermal 
vertical plate.  
 
2. FORMULATION OF THE PROBLEM 
 
We analyze the steady flow of a viscous, incompressible fluid through a porous medium confined in a horizontal 
channel bounded by two wavy walls which are maintained at non-uniform temperature. The concentration is 
maintained uniform on the boundaries. The Boussinesq approximation is used so that the density variations will be 
considered only in the buoyancy force. The viscous dissipation is neglected in comparison to the transport of heat by 
conduction and convection. The flow occurs at low concentration difference so that the thermo-diffusion effects and the 
inertial effects and the inertial velocity due to the mass diffusion can be neglected. Also the kinematic viscosity and the 
thermal conductivity are treated as constants. We choose the Cartesian coordinate system 0(x, y) with x-axis in the 
horizontal direction and y-axis normal to the walls. The walls of the channel are at y = ±  Lf.  The governing equations 
of the steady flow of heat and mass transfer are  
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Equation Continuity 
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Energy equation 
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Diffusion equation 

2 2 2 2

1 112 2 2 2

C C C C T Tu v D k
x y x y x y

    ∂ ∂ ∂ ∂ ∂ ∂
+ = + + +    ∂ ∂ ∂ ∂ ∂ ∂     

                                                                      (2.4) 

 
Equation of State 

)]()(1[ *
0 eee CCTT −−−−= ββρρ                                                                                                  (2.5) 

Where eρ , eT , eC  are the density, temperature and the concentration in the equilibrium state, (u, v) are velocity 
components along 0(x, y) directions, P is the pressure, T is  the temperature, C is the concentration in the flow region, 
ρ  is the density of the fluid, µ  is the coefficient of viscosity, pC is the Specific heat at constant pressure, k1 is the 

coefficient of permeability, β0 is the coefficient of thermal expansion, *β  is the volume coefficient of expansion with 

mass fraction and 1D is the molecular diffusivity.  
 
In the equilibrium state  
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Where  ed PPP += , dP  is the hydromagnetic pressure                                                                                            (2.7) 
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The boundary conditions are  
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Where f is chosen twice differential function,  δ  is small parameter characterizing the slope of the boundary. The flow 
is maintained by a constant imposed flux for which a characteristic velocity q is defined as  
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Invoking Rosseland approximation the radiative flux rq  is 

rq  =
y

T
Ke

s

∂
∂−

41

3
4σ

, and lineralized by expanding 
41T about Te by Taylor series, which after neglecting higher order 

terms and takes the form  
434 1111 34 ee TTTT −≅  

 
The corresponding non-dimensional variables are 
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Substitute the above non-dimensional variables in the equations (2.1 to 2.5) and (2.8) and eliminate the pressure term 
from the momentum equations in terms of dimensionless stream function ψ  reduces to (on dropping the stars)  
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The energy and the Diffusion equations in the non-dimensional from are  
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The boundary conditions in non-dimensional form are 

1)1()1( −=−−+ ψψ , 0=
∂
∂

y
ψ  0=

∂
∂

x
ψ , )(),( xyx δγθ = on y = ± f xδ( ) 

mC =       on y = -f xδ( 1=C    on y = +f xδ( )                                                                   (2.14) 

where     
e

e

CC
CCm

−
−

=
1

2     is the wall concentration ratio. 

The value of  ψ  on the boundary assumes the constant volumetric flow in consistent with the hypothesis. Also the 
temperature varies in the axial direction in accordance with the prescribed arbitrary functionγ . 
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3. ANALYSIS OF THE FLOW 
 
The main aim of the analysis is to discuss the perturbations created over a combined free and forced convection flow 
due to non-uniform slowly varying temperature imposed on the boundaries. We introduce the following transformation  
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The flow develops slowly with axial gradient of order δ  and hence we take 1( )O
x
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∂
. We may note that the 

maintenance of slowly varying axial boundary temperature gives rise to the convection currents and in view of the 
compatibility at the zeroth order level the analysis is valid provided the thermal buoyancy parameter 1( )G O δ −≈  
implying (1)G O≈  
 
By using the perturbation technique, we write the solution  as  
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Substitute equations (2.18) in equations (2.15) – (2.17) and separating the like powers of  δ . 
 
The zero order equations with boundary conditions 
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First order equations with boundary conditions 
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4. SOLUTION OF THE PROBLEM 
 
Solving equations (3.1) – (3.4) subjected to the conditions (3.5.a.b.c), we get, 
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Similarly the solutions of the first order differential equations are  
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The rate of heat transfer (Nusselt number) on the plates have been calculated using the formula. 
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5. DISCUSSION 
 
In this paper we discussed the combined effect of radiation and convection on the flow of a viscous incompressible 
fluid through a porous medium in a horizontal wavy channel whose walls are maintained at non-uniform temperature. 

We take the Prandtl number P = 0.71. The walls are taken at 
2

1 xe−+= βη , where β >o represents the dilation and 
β <0 represents the constriction of the channel walls. In this analysis we confine to the case of β >0. The velocity, 
temperature and concentration distributions are presented in the figures 1-16 for different sets of governing parameters 
G, D-1, N and Sc.    
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Fig.1: Variation of axial velocity (u) with G                             Fig.2: Variation of axial velocity ( u) with D-1        
D-1=5x102,N=1,Sc=1.3,S0=0.5,α=0.5                                                   G=103,N=1,Sc=1.3,S0=0.5,N1=4.0                
        I        II           III         IV        V        VI                                 I         II        III        IV       V 
G    103   3x103   5x103   -103   -3x103   -5x103                    D-1     102   2x102   3x102   5x102   103   
 

            
Fig.3:  u with N,    G=103,α=0.5,S0=0.5,Sc=1.3                        Fig.4: u with  Sc ,G=103,N=1,α=2,S0=0.5 
                     I       II       III      IV           I       II      III      IV 
            N      1      2      -0.5    -0.8                                                      Sc    0.24   0.6   1.3   2.01 
 
The axial velocity u is shown in fig.1 for different G. 𝒖 > 0 is the actual flow and 𝒖 < 0 represents the reversal flow. It 
is found that the reversal flow appears in the lower half of the channel for G ≥ 2×10 3. No such reversal flow appears for 
G < 0. The reversal flow enlarges with increase in G. Also the magnitude of u experiences an enhancement with 
increase in |𝑮| (>< 0). The variation of u with D-1 reveals that the reversal flow which appears in the lower half for      
D-1= 103 disappears for higher values of D-1. Also lesser the permeability of the porous medium larger |𝒖|  in the entire 
flow region (fig.2).  The variation of u with buoyancy ratio N shows that when the molecular buoyancy force dominates 
over the thermal buoyancy force |𝒖| enhances when the buoyancy force act in the same direction and for the forces 
acting in the opposite directions it depreciates in the entire flow region (fig.3). The effect of Schmidt number Sc on u is 
shown in fig. 4. It is found that lesser the molecular diffusivity smaller |𝒖| in the lower half and larger |𝒖| in the upper 
half of the channel.    
 
The secondary velocity v which arises due to the non-uniformity of the boundary and boundary temperature is shown in 
figures 5 - 8 for different values of G, D-1, N and Sc. It is found that for all variations of the parameters the secondary 
velocity 𝒗 is directed towards the boundary except for G<0, S0=-1,𝒙 > 𝝅

𝟐� , it is towards the mid region. An increase in 
|𝑮| ≤ 𝟐 × 𝟏𝟎𝟑 enhances 𝒗 and for higher|𝑮| ≥ 𝟑 × 𝟏𝟎𝟑, depreciates 𝒗 in the entire flow region (fig.5). From fig. 6 we 
notice that lesser the permeability of the porous medium smaller the secondary velocity in the flow region. When the 
molecular buoyancy force dominates over the thermal buoyancy force 𝒗 depreciates when the buoyancy forces act in 
the same direction and for the forces acting the opposite directions 𝒗 enhance in the flow region (fig.7). An increase in 
Sc enhances 𝒗 in the entire region (fig8).  
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Fig.5: Variation Second Velocity V with G             Fig.6: Variation Second Velocity V with D-1     
        D-1=5x102,N=1,Sc=1.3,S0=0.5                                                    G=103,N=1,Sc=1.3,S0=0.5              
          I       II        III          IV      V         VI                                I         II        III        IV      V 
 G    103   3x103  5x103  -103  -3x103  -5x103                     D-1     102   2x102   3x102   5x102  103   
 

          
  Fig.7: V with N   G=103,α=0.5,S0=0.5              Fig.8: V with  Sc   G=103,N=1,α=2,S0=0.5 
               I     II    III     IV        I      II     III     IV 
         N   1    2   -0.5  -0.8                            Sc   0.24   0.6  1.3   2.01 
 
The non-dimensional temperature 𝜽 distribution is presented in figures 9- 12 for different variations. We follow the 
concentration that the non-dimensional temperature is positive or negative according as the actual temperature is 
greater or lesser than the equilibrium temperature. An increase in the Grashof number G > 0 enhances 𝜽  and 
depreciates with G < 0 (figure 9). The variation of 𝜽 with D-1 shows that lesser the permeability of the porous medium 
larger the actual temperature in the entire flow region (figure 10). The variation of 𝜽 with buoyancy ratio N shows that 
the actual temperature enhances with N >0 and depreciates with increase in N < 0 (fig.11). An increase in Sc 
depreciates temperature  𝜽(fig.12). 
 

             
Fig.9:  Variation of temperature ( θ ) with G                                 Fig.10: Variation of temperature ( θ ) with D-1  
          D-1=5x102,N=1,Sc=1.3,S0=0.5,α1=0.5                                             G=103,N=1,Sc=1.3,S0=0.5,N1=4  
    I      II        III       IV      V         VI                                              I         II        III        IV      V  
        G    103  3x103 5x103  -103  -3x103  -5x103                                                  D-1   102    2x102   3x102   5x102  103  
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  Fig.11:  θ  with N  G=103,α=0.5, S0=0.5,Sc=1.3                        Fig.12: θ  with  Sc  G=103,N=1,α=2, S0=0.5 
                      I     II    III     IV                                                                        I       II    III     IV 
              N     1     2   -0.5  -0.8                                                              Sc   0.24   0.6  1.3    2.01 
 
The non-dimensional concentration (C) distribution is shown in figures 13-16 for different parameters G, D-1, N and Sc. 
We follow the concentration that the non-dimensional concentration is positive or negative according as the actual 
concentration is higher or lesser than the equilibrium concentration. From figure 13 it is found that an increase in G > 0 
reduces the actual concentration while it enhances with increase in G < 0. The profile of the concentration rises 
gradually from prescribed value 0 on 𝜼 =  −𝟏, attains a maximum at 𝜼 =  −𝟎.𝟒 and then falls to its minimum at 
𝜼 =  𝟎.𝟒 and again rises to attain its value 1 on 𝜼 =  𝟏. It is found that an increase in G > 0 reduces the actual 
concentration in the lower half and enhances it in the upper half while an increase in G < 0 reduces the actual 
concentration in the upper half and enhances it in the lower half of the channel. 
 

                
Fig.13Variation of Concentration(C) with G                                 Fig. 14 Variation of Concentration(C) with D-1  
       D-1=5x102,N=1,Sc=1.3, S0=0.5,α=0.5                                                   G=103,N=1,Sc=1.3, S0=0.5,N1=4.0 
               I       II        III        IV      V         VI                                                      I         II        III        IV      V  
       G    103  3x103  5x103  -103  -3x103 -5x103                                                             D-1     102   2x102   3x102   5x102  103    
 

              
Fig.15: C  with N, G=103,α=0.5, S0=0.5,Sc=1.3                          Fig.16: C  with  Sc,  G=103,N=1,α=2, S0=0.5 
                   I     II    III     IV                                                                          I       II    III    IV  
          N     1    2   -0.5   -0.8                                                                Sc   0.24   0.6  1.3   2.01  
 
The variation of C with D-1 reveals that lesser the permeability of the porous medium smaller the actual concentration 
in the lower half and higher the actual concentration in the upper half of the channel (fig.14). The behavior of C with 
buoyancy ratio N reveals that when the molecular buoyancy force dominates over the thermal buoyancy force the 
actual concentration enhances in the fluid region when the buoyancy forces act in the same direction and for forces 
acting in the opposite directions the actual concentration reduces in the entire fluid region (fig15).  The variation of C 
with Sc exhibits that lesser the molecular diffusivity smaller the actual concentration in the lower half and larger the 
concentration in the upper half of the channel. For still lowering of the molecular diffusivity we notice depreciation in 
the actual concentration everywhere in the fluid region (fig.16).  
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The average Nusselt number (Nu) which measures the rate of heat transfer at 𝜼 =  ±𝟏 is shown in the tables 1– 4 for 
different values of the parameters. It is found that the rate of heat transfer enhances with increase in G > 0 and reduces 
with G < 0. Also lesser the permeability of the porous medium smaller |𝑵𝒖| at 𝜼 =  𝟏 and larger |𝑵𝒖| at 𝜼 =  −𝟏.  
The variation of Nu with non-uniform boundary temperature shows that an increase in the amplitude α1 ≤ 0.5 and for 
higher α1 ≥ 0.7, |𝑵𝒖| experiences an enhancement at both the walls.An increase in the Reynolds number R reduces 
|𝑵𝒖| for G > 0 and enhances for G < 0. When the molecular buoyancy force dominates over the thermal buoyancy 
force the rate of heat transfer at 𝜼 =  𝟏 depreciates in the heating case and enhances in the cooling case, and enhances 
at 𝜼 =  −𝟏 when the buoyancy forces act in the same direction, while for the forces acting in the opposite directions 
|𝑵𝒖| at 𝜼 =  𝟏 enhances for G > 0 and reduces for G < 0 and at 𝜼 =  −𝟏 enhances for all G. The variation of Nu with 
Sc shoes that lesser the molecular diffusivity smaller |𝑵𝒖| at 𝜼 =  ±𝟏 (Tables 3 and 4). 

 
Table-1:  Nu at η=1      𝛼1=0.5, 𝛽=0.5, N=1.0,   Sc=1.3, S0=0.5, R=35,  𝑥=𝜋 4�  

G I II III IV V 
103 -1.45736 -0.65623 0.46386 -0.09475 1.27780 

2 × 103 -1.60983 -0.80643 0.21548 -0.28367 0.91739 
3 × 103 -1.76476 -0.94860 0.00030 -0.45450 0.62239 

-103 -1.15955 -0.32880 0.09655 0.35024 2.30686 
-2 × 103 -1.01411 -0.14991 0.10815 0.61476 3.07798 
-3 × 103 -0.87090 -0.04039 0.01161 0.91482 4.15655 

D-1 10 20 30 20 20 
M 2 2 2 3 5 

            
Table-2: Nu at η= -1   𝛼1=0.5, 𝛽=0.5, N=1.0, Sc=1.3, S0=0.5, R=35,  𝑥=𝜋 4�  

 
 

 
 
 
 
 
 
 
 

 
Table-3:  Nu at η= 1    D-1=20, M=2,  𝛼1=0.5, 𝛽=0.5, S0=0.5,   𝑥=𝜋 4�  

 
        

 
 
 
 
 
 
 
 
 
 

Table-4: Nu at η= -1      D-1=20, M=2, 𝛼=2,  𝛼1=0.5, 𝛽=0.5, S0=0.5,   𝑥=𝜋 4�  
 
 
 
 
 
 
 
 
 
 
 
 
 

G I II III IV V 
103 2.40403 3.55809 5.16686 4.36915 6.31606 

2 × 103 2.82054 4.07607 5.56967 4.86408 6.43971 
3 × 103 3.24377 4.56633 5.91864 5.31161 6.54091 

-103 1.59050 2.42897 4.14077 3.20340 5.96303 
-2 × 103 1.19319 1.81208 3.47324 2.51043 5.69849 
-3 × 103 0.80199 1.15585 2.65674 1.72435 5.32847 

D-1 10 20 30 20 20 
M 2 2 2 3 5 

G I II III IV V VI VII VIII 
103 -1.4574 -0.5488 -0.8898 -0.9525 -1.2101 -1.0180 -0.3042 -0.5778 

2 × 103 -1.6098 -0.5871 -1.5229 -1.8077 -1.9275 -1.5307 -0.1290 -0.6562 
3 × 103 -1.7648 -0.6165 -2.7153 -4.0019 -2.6495 -2.0357 0.0307 -0.7323 

-103 -1.1596 -0.4237 -0.2300 -0.2145 0.2110 0.0316 -0.7109 -0.4142 
-2 × 103 -1.0141 -0.3106 -0.0364 -0.0218 0.9147 0.5688 -0.6486 -0.3288 
-3 × 103 -0.8709 -0.1139 0.1103 0.1178 1.6140 1.1146 -0.5148 -0.2407 

N 1.0 2.0 -0.5 -0.8 1.0 1.0 1.0 1.0 
Sc 1.3 1.3 1.3 1.3 0.24 0.6 2.01 1.3 
R 35 35 35 35 35 35 35 70 

G I II III IV V VI VII VIII 
103 2.4040 3.5887 3.4912 3.5733 4.4804 4.1605 2.9719 3.2879 

2 × 103 2.8205 4.0174 4.2675 4.3436 5.9604 5.2936 2.9374 3.5580 
3 × 103 3.2437 4.3476 5.7296 6.5767 7.4500 6.4094 2.9060 3.8206 

-103 1.5905 2.1853 2.6823 2.7222 1.5488 1.8413 3.0520 2.7239 
-2 × 103 1.1931 1.4160 2.4449 2.5261 0.9969 1.6542 3.0988 2.4289 
-3 × 103 0.8019 1.2902 2.2649 2.3839 0.6456 0.8517 3.1512 2.1252 

N 1.0 2.0 -0.5 -0.8 1.0 1.0 1.0 1.0 
Sc 1.3 1.3 1.3 1.3 0.24 0.6 2.01 1.3 
R 35 35 35 35 35 35 35 70 
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