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ABSTRACT 
In this paper we discuss the notion of restrained ve- and ev- mixed domination on S-valued graphs. 
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1. INTRODUCTION 
 
The theory of domination in graphs was initiated by Berge [1]. In [7], Chandramouleeswaran et.al introduced the 
notion of Semiring valued graphs (simply S-valued graphs). Motivated by this, we discuss the notion of vertex-edge 
mixed domination [3] and edge-vertex mixed domination [4] on S-valued graphs. In our previous paper, we introduce 
and discuss the notion of global ve- m-domination on S-valued graphs. In this paper we discuss the notion of restrained 
ve- and ev- m-domination on S-valued graphs. 
 
2. PRELIMINARIES 
 
In this section, we recall some basic definitions that are needed for our work. 
 
Definition 2.1: [2] A semi ring (S, +,  .) is an algebraic system with a non-empty set S together with two binary 
operations + and . such that 
(1) (S, +,  0) is a monoid. 
(2) (S, . ) is a semigroup. 
(3) For all a, b, c ∈  S , a . (b + c) = a . b + a . c and (a + b) . c = a . c + b . c  
(4) 0 . x = x . 0 = 0 ,∀ x ∈  S. 
 
Definition 2.2:[2] Let (S, +,  .) be a semiring. A Canonical Pre-order   in S defined as follows: for a, b ∈  S, a b if 
and only if, there exists an element c ∈  S such that a + c = b. 
 
Definition 2.3: [9] Let ( )VVEVG ×⊂= ,  be a given graph with φ≠EV , . For any semiring (S, +, .), a semi ring-
valued graph (or a S-valued graph), GS, is defined to be the graph ),,,( ψσEVGS =  where SV →:σ  and SE →:ψ
is defined to be ( )
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For every unordered pair (x,y) of VVE ×⊂ . We call σ , a S- vertex set and ,ψ a S-edge set of GS. 
 
Definition 2.4: [3] A S− valued graph ),,,( ψσEVGS = is said to be a S-Star(S-Wheel) if its underlying graph G is a 
Star(Wheel) along with S-values.  
 
Definition 2.5: [8] Consider the S− valued graph ),,,( ψσEVGS = . The open neighbourhood of vi in GS is defined as 
the set }.),(,),(),(,{()( SvvEvvwherevvvN jijijjiS ∈∈= ψσ  
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Definition 2.6: [4] The closed neighbourhood of vi in ),,,( ψσEVGS =  is defined to be the set 

)}.(,{()(][ iiiSiS vvvNvN σ∪=    
 
Definition 2.7: [4] Let ),,,( ψσEVGS = be a S-valued graph. Let e∈E. The open neighbourhood of e, denoted by 
NS(e), is defined to be the set, NS(e) = {(ei , Ψ(ei)) / e and ei are adjacent}. 

The closed neighbourhood of e, denoted by NS[e] = NS(e) ᴜ (ei ,Ψ(ei)).  

 
Definition 2.8: [5] Consider the S-valued graph ),,,( ψσEVGS = . Let D ⊆  V. If every edge of GS is weight m- 
dominated by any vertex in D, then D is said to be a ve- weight m- dominating set.  
 
Definition 2.9: [5] Consider the S−valued graph ),,,( ψσEVGS = . Let T ⊆  E. If every vertex of GS is weight 
m−dominated by any edge in T, then T is said to be a ev−weight m−dominating set. 
 
3. RESTRAINED VE- M-DOMINATION ON S-VALUED GRAPHS 
 
In this section, we introduce the notion of restrained vertex – edge mixed domination on S valued graphs, analogous to 
the notion in crisp graph theory, and prove some simple results. 
 
Definition 3.1: Consider the S− valued graph ),,,( ψσEVGS = .  Let D ⊆  V. If every edge of GS is m-dominated by a 
vertex in D and also by a vertex in V – D, the D is said to be a restrained ve-weight m-dominating set of GS.  
 
Example 3.2: Let (S = {0, a, b, c}, +,  .) be a semiring with the following Cayley Tables: 
 

+ 0 a b c 
0 0 a b c 
a a a b c 
b b b b b 
c c c b c 

 
Let    be a canonical pre-order in S, given by 

0    0, 0   a, 0   b, 0   c, a   a, a   b, a   c, b   b, c   b, c   c 
 
Consider the S-valued graph ),,,( ψσEVGS =   

 
 

Define SV →:σ by σ(v1) = a, σ(v2) = σ(v3) = σ(v4) = σ(v5) = b 
and ψ : E → S by ψ(e1) = ψ(e5) = a, ψ(e2) = ψ(e3) = ψ(e4) = ψ(e6) = b. 
 
Clearly D ={ v2 , v4 } is a restrained ve-weight m-dominating set of GS.  
 
Definition 3.3: Consider the S− valued graph ),,,( ψσEVGS = .  A subset D ⊆  V is said to be a minimal restrained 
ve-weight m-dominating set, if 

(1) D is a restrained ve-weight m- dominating set. 
(2) No proper subset of D is a restrained ve- weight m- dominating set. 

 
Example 3.4: Let (S = {0, a, b, c}, +,  .) be a semiring with the canonical preorder given in example 3.2 Consider the 
S-valued graph ),,,( ψσEVGS =   

 

 

. 0 a b c 
0 0 0 0 0 
a 0 0 a 0 
b 0 a b c 
c 0 0 c c 
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Define SV →:σ by σ(v1) = σ(v2) = σ(v3) = σ(v4) = σ(v5) = σ(v6) = σ(v7) = b 
and ψ : E → S by ψ(e1) = ψ(e2) = ψ(e3) = ψ(e4) = ψ(e5) = ψ(e6) = ψ(e7) = ψ(e8) =b. 
 
Clearly D1 ={ v3 , v5 }, D2 ={ v1 , v3 ,v5}, D3 ={ v3 ,v5 , v7}, D4 ={ v1 ,v4 , v7 }, D5 ={ v2 ,v4 , v6},  
D6 ={v1 ,v4 , v6 }, D7 ={ v2 ,v4 , v7}, D8 ={v2, v3 ,v5 , v6 }, D9 ={v1, v3 ,v5 , v7},  D10 ={v1, v3 ,v5 , v6},  
D11 ={ v2, v3 ,v5 , v7 }are all restrained ve-weight m-dominating sets of GS.  
However D1 ={ v3 , v5 } is a minimal restrained ve-weight m-dominating sets of GS. 
 
Definition 3.5: Consider the S− valued graph ),,,( ψσEVGS = .  A subset D ⊆  V is said to be a maximal restrained 
ve-weight m-dominating set, if 

(1) D is a restrained ve-weight m- dominating set. 
(2) There is no restrained ve- weight m- dominating set D’ ⊆  V such that D ⊆  D’ ⊆  V. 

 
In example 3.4, D8 ={ v2, v3 ,v5 , v6 }, D9 ={v1, v3 ,v5 , v7 },  D10 ={ v1, v3 ,v5 , v6 }, D11 ={ v2, v3 ,v5 , v7 }are all maximal 
restrained ve-weight m-dominating sets of GS.  
 
Definition 3.6: Consider the S− valued graph ),,,( ψσEVGS = .  A subset D ⊆  V is said to be a restrained ve-weight 
m-dominating independent set, if 

(1) D is a restrained ve-weight m- dominating set. 
(2) If u, v ∈D then .))(,()( φσ =vvuNS 

     
 
In example 3.2, D = {v2 , v4 } is a restrained ve-weight m-dominating set of GS. 
 
Also { } φ=),()( 42 bvvNS 

and { } φ=),()( 24 bvvNS   
Hence D ={ v2 , v4 } is a restrained ve-weight m-dominating independent set of GS. 
 
Definition 3.7: Consider the S− valued graph ),,,( ψσEVGS = . The restrained vertex-edge mixed domination 
number of GS is defined by ( )DDG

S
SS

RVE ,)( =γ , where D is a minimal restrained ve-weight m-dominating set. 
 
In example 3.4, restrained vertex-edge mixed domination number of GS is ( ) ).2,(,)( 11 bDDG

S
SS

RVE ==γ  
 
Theorem 3.8: For a S-regular Star Sn

S,  )1),(()( vS S
n

S
RVE σγ =  where .)( Sv ∈σ  

 
Proof: Let  Sn

S be a S-regular Star and let v be the pole of Sn
S. 

Then all the edges of Sn
S are m-dominated by the pole v. Also all the edges of Sn

S are m-dominated by a vertex in     
V – {v}. Hence {v} is a restrained ve-weight m-dominating set. And no proper subset of {v} is a restrained ve-
weight m-dominating set. Therefore {v} is a minimal restrained ve-weight m-dominating set. Hence 

)1),(()( vS S
n

S
RVE σγ =  where .)( Sv ∈σ  

Analogously, we can prove the following results, 
 
Corollary 3.9: 

(1) For a S-regular Wheel Wn
S,  )1),(()( vW S

n
S

RVE σγ =  where .)( Sv ∈σ  
(2) For a S-regular Complete Graph Kn

S,  )1),(()( vK S
n

S
RVE σγ =  where .)( Sv ∈σ  

(3) For a S-regular Complete Bipartite Graph Km,n
S,  



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≤
≤

=
nmmv

mnnv
K S

nm
S

RVE ),),((
),),((

)( , σ
σ

γ  where .)( Sv ∈σ  

 
Theorem 3.10: A restrained ve-weight m-dominating set D of a S-valued graph GS is a minimal restrained ve-
weight m-dominating set of GS iff every vertex v ∈D satisfies at least one of the following properties; 

(1) There exists a vertex u ∈  V – D such that { } ( ){ })(,)( vvSDuNS σ=×

 
(2) v is adjacent to no vertex of D.  
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Proof: Let v ∈D. Assume that v ∈D satisfies at least one of the above two properties. Then D – {v} is not a 
restrained ve-weight m-dominating set. Therefore D is a minimal restrained ve-weight m-dominating set. 
 
Conversely, assume that D is a minimal restrained ve-weight m-dominating set. Then for each v ∈D, D – {v} is not 
a minimal restrained ve-weight m-dominating set of GS. Therefore there exist a vertex u ∈V - (D – {v}) that is 
adjacent to no vertex of (D – {v}). 
 
If u = v, then v is adjacent to no vertex of D. 
 
If u≠  v, then D is a restrained ve-weight m-dominating set and u ∉D ⇒ u is adjacent to at least one vertex of D. 
However u is not adjacent to any vertex of D – {v} { } ( ){ })(,)( vvSDuNS σ=×⇒ 

 
 
Theorem 3.11: A subset D ⊆  V of a S-valued graph GS is a restrained ve-weight m-dominating independent set iff 
D is a maximal independent vertex set in GS. 
 
Proof: Clearly every maximal independent vertex set D in GS is a restrained ve-weight m-dominating independent 
set. Conversely, assume that D is restrained ve-weight m-dominating independent set. Then D is independent and 
every vertex not in D is adjacent to a vertex of D and therefore D is a maximal independent vertex set in GS. 
 
Theorem 3.12: Every maximal independent vertex set D in GS is a minimal restrained ve-weight m-dominating set. 
 
Proof: Let D be a maximal independent vertex set in GS. Then by theorem 3.11, D is a restrained ve-weight m-
dominating independent set. Since D is independent, certainly every vertex of D is adjacent to no vertex of D. Thus, 
every vertex of D satisfies the second condition of theorem 3.10. Hence D is a minimal restrained ve-weight m-
dominating set. 
Combining the above two theorems, we obtain the following theorem, 
 
Theorem 3.13: A subset D ⊆  V of GS is a restrained ve-weight m-dominating independent set iff D is a minimal 
restrained ve-weight m-dominating set. 
 
4. RESTRAINED EV- M-DOMINATION ON S-VALUED GRAPHS 
 
In this section, we introduce the notion of restrained edge - vertex mixed domination on S valued graphs, analogous to 
the notion in crisp graph theory, and prove some simple results. 
 
Definition 4.1: Consider the S− valued graph ),,,( ψσEVGS = .  Let T ⊆  E. If every vertex of GS is m-dominated by 
an edge in T and also by an edge in E – T, the T is said to be a restrained ev-weight m-dominating set of GS.  
 
Example 4.2: Let (S = {0, a, b, c}, +,  .) be a semiring with the canonical preorder given in example 3.2 Consider the 
S-valued graph ),,,( ψσEVGS =   

 

 
 
Define SV →:σ by σ(v1) = σ(v2) = σ(v3) = σ(v5) = σ(v6) = b, σ(v4) = c. 
and ψ : E → S by ψ(e1) = ψ(e2) = ψ(e5) = ψ(e6) = ψ(e7) = b, ψ(e3) = ψ(e4) = c. 
 
Clearly T1 = { e2 }, T2 = { e6 }, T3 = { e1, e5 }, T4 = { e1, e2 }, T5 = { e1, e6 }, T6 = { e2, e5 }, T7 = { e2, e6 },  
T8 = { e2, e7 }, T9 = { e5, e6 }, T10 = { e5, e7 }, T11 = { e6, e7 }, T12 = { e1, e2, e5 }, T13 = { e1, e2, e6 },  
T14 = {e1, e2, e5 , e7 }, T15 = { e1, e5, e6, e7 } are all restrained ev-weight m-dominating sets of GS.  
 
Definition 4.3: Consider the S− valued graph ),,,( ψσEVGS = .  A subset T ⊆  E is said to be a minimal restrained 
ev-weight m-dominating set, if 

(1) T is a restrained ev-weight m- dominating set. 
(2) No proper subset of T is a restrained ev- weight m- dominating set. 
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In example 4.2, T1 = {e2 }, T2 = { e6 } are the minimal restrained ev-weight m-dominating sets of GS. 
 
Definition 4.4: Consider the S− valued graph ),,,( ψσEVGS = .  A subset T ⊆  E is said to be a maximal restrained 
ev-weight m-dominating set, if 

(1) T is a restrained ev-weight m- dominating set. 
(2) There is no restrained ev- weight m- dominating set T’ ⊆  E such that T ⊆  T’ ⊆  E. 

 
In example 4.2, T14 = {e1, e2, e5, e7 }, T15 = {e1, e5, e6, e7 } are the maximal restrained ev-weight m-dominating sets of 
GS. 
 
Definition 4.5: Consider the S− valued graph ),,,( ψσEVGS = .  A subset T ⊆  E is said to be a restrained ev-weight 
m-dominating independent set, if 

(1) D is a restrained ve-weight m- dominating set. 
(2) If e,f ∈T then .))(,()( φψ =ffeNS 

 
 
In example 4.2, T3 = { e1, e5 }is a  restrained ev-weight m-dominating independent set of GS. 
 
Definition 4.6: Consider the S− valued graph ),,,( ψσEVGS = . The restrained edge-vertex mixed domination 
number of GS is defined by ( )TTG

S
SS

REV ,)( =γ , where T is a minimal restrained ev-weight m-dominating set. 
 
In example 4.2, restrained edge-vertex mixed domination number of GS is  

( ) ( ) ).1,(,,)( 2211 bTTTTG
SS

SS
REV ===γ  

 
Theorem 4.7: For a S-regular Star Sn

S,  )1),(()( eS S
n

S
REV ψγ =  where .)( Se ∈ψ  

 
Proof: Let Sn

S be an S-regular Star and let e be any edge of Sn
S. 

Then all the vertices of Sn
S are m-dominated by the edge e. Also all the vertices of Sn

S are m-dominated by an edge 
in E – {e}. Hence {e} is a restrained ev-weight m-dominating set. And no proper subset of {e} is a restrained ev-
weight m-dominating set. Therefore {e} is a minimal restrained ev-weight m-dominating set. Hence 

)1),(()( eS S
n

S
REV ψγ =  where .)( Se ∈ψ  

Analogously, we can prove the following results, 
 
Corollary3.9: 

(1) For a S-regular Complete Graph Kn
S,  )1),(()( eK S

n
S

REV ψγ =  where .)( Se ∈ψ  
(2) For a S-regular Complete Bipartite Graph Km,n

S,    
,( ) ( ( ),1),S S

REV m nK eγ ψ=  
where .)( Se ∈ψ  

(3) For a S-regular Wheel Wn
S,  )1),(()( eW S

n
S

REV ψγ =  where ,)( Se ∈ψ if e is a spoke. 
 
Remark 4.9: For a S-regular Wheel Wn

S, with n >5, if e is not a spoke, then )1),(()( eW S
n

S
REV ψγ ≠  where

.)( Se ∈ψ  
 
In [3], itself we have proved with an example that, if e is not a spoke of a S-Wheel, then {e} will not be the minimal 
ev-weight m-dominating set. Hence {e} will not be a minimal restrained ev-weight m-dominating set. Therefore 

)1),(()( eW S
n

S
REV ψγ ≠ where .)( Se ∈ψ  

 
Theorem 4.10: A restrained ev-weight m-dominating set T of a S-valued graph GS is a minimal restrained ev-weight 
m-dominating set of GS iff every edge e ∈T satisfies at least one of the following properties; 

(1) There exists an edge f ∈E - T such that { } ( ){ })(,)( eeSTfNS ψ=×

 
(2) e is adjacent to no edge of T.  

 
Proof: Let e ∈T. Assume that e is adjacent to no edge of T. Then T – {e} cannot be a restrained ev-weight m-
dominating set. ⇒T is a minimal restrained ev-weight m-dominating set. On the other hand, if for any e ∈T there 
exist an f ∈E – T such that { } ( ){ })(,)( eeSTfNS ψ=×

. Then f is adjacent to e ∈T and no other edge of T. In 
this case also, T – {e} cannot be a restrained ev-weight m-dominating set of GS. 
 
Conversely, assume that D is a minimal restrained ev-weight m-dominating set of GS. Then for each e ∈T, T – {e} 
is not a minimal restrained ev-weight m-dominating set of GS. Therefore there exist an edge f ∈E - (T – {e}) that is 
adjacent to no edge of (T – {e}). 
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If f = e, then e is adjacent to no edge of T. 
 
If f ≠  e, then T is a restrained ev-weight m-dominating set and f ∉T ⇒ f is adjacent to at least one edge of T.  
 
However f is not adjacent to any edge of T – {e} ⇒ { } ( ){ })(,)( eeSTfNS ψ=×

 
 
Theorem 4.11: A subset T ⊆  E of GS is a restrained ev-weight m-dominating independent set iff T is a maximal 
independent edge set in GS. 
 
Proof: Clearly every maximal independent edge set T in GS is a restrained ev-weight m-dominating independent set.  
 
Conversely, assume that T is restrained ev-weight m-dominating independent set. Then T is independent and every 
edge not in T is adjacent to an edge of T and therefore T is a maximal independent edge set in GS. 
 
Theorem 4.12: Every maximal independent edge set of GS is a minimal restrained ev-weight m-dominating set. 
 
Proof: Let T be a maximal independent edge set of GS. Then by theorem 4.11, T is a restrained ev-weight m-
dominating independent set. Since T is independent, every edge of T is adjacent to no edge of T. Thus, every edge of 
T satisfies the second condition of theorem 4.10. Hence T is a minimal restrained ev-weight m-dominating set. 
Combining the above two theorems, we obtain the following theorem, 
 
Theorem 3.13: A subset T ⊆  E of GS is a restrained ev-weight m-dominating independent set iff T is a minimal 
restrained ev-weight m-dominating set. 
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