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ABSTRACT 
One dimensional Differential Transformation Method (1-dim DTM) is used to find the solution of the eighth order 
boundary value problems. The approximate solution of the problem is obtained in the form of a rapid convergent 
series. To illustrate the ability, efficiency and reliability of the method, some examples are given, revealing its 
effectiveness and simplicity and the calculated results are compared with exact solution. 
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1. INTRODUCTION 
 
Generally, the eighth-order boundary value problems (BVPs) are recognized to occur in Mathematics, Physics and 
Engineering Sciences [1, 2]. In the book written by Chandrasekhar [3], we find therein that whenever horizontal infinite 
layers of fluid are heated from below and those are then under the rotation-action, and hence instability develops. 
When the instability  develops as ordinary convection, then that ordinary differential equation (ODE) is a sixth-order 
ODE. When the said instability sets as over stability, then it is to be modelled by eighth-order ODE. Bishop 
investigated eighth-order D.E for uniform beams for their torsional vibration. Over the years, some authors used 
different methods and worked on such types (eighth-order) boundary value problems [4, 5, 6, 7, 8, 9, 10, 11, 12]. 
Differential quadrature method [9], finite difference method (FDM) [4], spline method and modified decomposition 
method [10] are applicable to find the solution of eighth-order BVPs. But, these methods involve huge calculations and 
the solution is found at grid points only. 
 
In 1986, Zhou and Pukhov have developed a so-called differential transformation method (DTM) for electrical circuit’s 
problems [13]. The DTM is a technique that uses Taylor series for the solution of differential equations in the form of a 
polynomial. The Taylor series method is computationally unexciting for high order equations. The DTM leads to an 
iterative procedure for obtaining an analytic series solutions of functional equations. In recent years, many papers were 
devoted to the problem of approximate solution of system of differential equations. The implementation of the 
Differential Transform Method (DTM) [14, 15, 16] amongst others has shown reliable results to solve ordinary 
differential equations, partial differential equations, integral-differential equations, the Schrödinger equations, Analytic 
solution for Telegraph equation, Systems of Volterra Integral Equations of the First Kind, non-linear fractional 
differential equations and delay differential equations. 
 
2. ONE-DIMENSIONAL DIFFERENTIAL TRANSFORMS METHOD 

 
Definition: 
One dimensional Differential transformation of function y(x) is defined as follows [14] 

Y(K) =
1
K!
�
dKy(x)

dxK
�
x=0

 
(1) 

 
In equation (1), y(x) is the original function and Y(K) is the transformed function. One dimensional Differential inverse 
transform of Y(K) is defined as 

y(x) = � xK Y(K)
∞

K=0

 
(2) 
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In fact, from (1) and (2), we obtain 

y(x) = �
xK

K!
�
dKy(x)

dxK
�
x=0

∞

K=0

 
(3) 

 
Equation (3) implies that the concept of differential transformation is derived from the Taylor series expansion. The 
differential transform’s operators are shown in the table 1. 
 

Table-1: Differential transform operators 
Sr. No Original function Transform function 

1 u(x) ± v(x) U(K) ± V(K) 
2 αu(x) 

Where α is a constant 
αU(K) 

3 du(x)
dx

 
(K + 1) U(K + 1) 

4 dnu(x)
dxn

 
(K + 1)(K + 2)⋅⋅⋅(K + n)U(K + n) 

6  
xm 

δ(K– m) 

where δ(K– m) = �1,     if K = m
0,     if K ≠ m

� 

7 eαx αK

K!
 

8 sin (ωx + α) ωK

K!
sin �

πK
2

+ α� 

9 cos (ωx + α) ωK

K!
cos �

πK
2

+ α� 

 
3. NUMERICAL APPLICATION 
Example 1: [12] 

y( 𝐯𝐢𝐢𝐢)(x) = e−xy2       0 < 𝑥 < 1 
Initial conditions are 

y𝑖(0) = 1,    𝑖 = 0,1,2, … ,7 
The exact solution is y(x) = ex 
 
Solution: 
Applying 1-dim D.T.M. on initial condition we get 

Y(0) = 1, Y(1) = 1, Y(2) = 1
2
, Y(3) = 1

3!
 

Y(4) = 1
4!

, Y(5) = 1
5!

, Y(6) = 1
6!

,  Y(7) = 1
7!

 
Using inverse 1-dim differential transform we have 
𝑦(𝑥) = ∑ 𝑌(𝑘)𝑥𝑘∞

𝑘=0   
𝑦(𝑥) = 𝑌(0) + 𝑌(1)𝑥 + 𝑌(2)𝑥2 + 𝑌(3)𝑥3 + 𝑌(4)𝑥4 + ⋯ 

𝑦(𝑥) = 1 + 𝑥 +
x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
+

x6

6!
+

x7

7!
+ ⋯ 

 
Table-2: Exact and approximate values of solution, and error of solution 

x Exact 𝑦(𝑥) 1-Dim DTM 𝑦∗(𝑥) |𝑦(𝑥) − 𝑦∗(𝑥)| 
0 1.000000000000000 1.000000000000000 0 

0.1 1.105170918075648 1.105170918075397 2.511324000x10-13 

0.2 1.221402758160170 1.221402758095238 6.49318377x10-11 
0.3 1.349858807576003 1.349858805892857 1.6831460670x10-9 
0.4 1.491824697641270 1.491824680634921 1.70063498839x10-8 
0.5 1.648721270700128 1.648721168154762 1.025453664205x10-7 
0.6 1.822118800390509 1.822118354285714 4.461047944382x10-7 
0.7 2.013752707470477 2.013751158194445 1.5492760319091x10-6 
0.8 2.225540928492468 2.225536365714286 4.5627781819491x10-6 
0.9 2.459603111156950 2.459591262678571 1.18484783784290x10-5 
1.0 2.718281828459046 2.718253968253968 2.78602050771681x10-5 

                𝑦∗(𝑥) is the approximate solution of 𝑦(𝑥) 
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Figure-1: Comparative analysis of exact and 1-dim DTM solution results 

 
Example 2: [11] 

y( 𝐯𝐢𝐢𝐢) + y( 𝐯𝐢𝐢) + 2y( 𝐯𝐢) + 2y( 𝐯) + 2y(𝐢𝐯) + 2y′′′ + 2y′′ + y′ + y = 14cosx − 16sinx − 4xsinx 
   0 < 𝑥 < 1 
Boundary conditions are  
y(0) = 0,  y′(0) = −1, y′′(0) = 0, y′′′(0) = 7      
y(1) = 0, y′(1) = 2sin1 ,y′′(1) = 4cos1 + 2sin1, y′′′(1) = 6cos1 − 6sin1 (4) 
 
The exact solution is y(x) = (x2 − 1)sin𝑥 
 
Solution: 
Applying 1-dim D.T.M. on (3) we get 

Y(0) = 0,  Y(0) = −1,  Y(2) = 0,  Y(3) = 7
6
 

 
Using inverse 1-dim D.T.M. We have  
𝑦(𝑥) = ∑ 𝑌(𝑘)𝑥𝑘∞

𝑘=0       
𝑦(𝑥) = 𝑌(0) + 𝑌(1)𝑥 + 𝑌(2)𝑥2 + ⋯ 
 
Let   𝑌(4) = 𝐴,    𝑌(5) = 𝐵,   𝑌(6) = 𝐶, 𝑌(7) = 𝐷 
𝑦(𝑥) = −𝑥 + 7

6
𝑥3 + 𝐴𝑥4 + 𝐵𝑥5 + 𝐶𝑥6 + 𝐷𝑥7 + ⋯   (5) 

 
As  y(1) = 0 in (4) we get 

𝐴 + 𝐵 + 𝐶 + 𝐷 = −
1
6

 
   
(6) 

As  y′(1) = 2sin1 in (4) we get 
4𝐴 + 5𝐵 + 6𝐶 + 7𝐷 = −0.8170580304 (7) 
 
As  y′′(1) = 4cos1 + 2sin1 in (4) we get 
12𝐴 + 20𝐵 + 30𝐶 + 42𝐷 = −3.155848807 (8) 
 
As  y′′′(1) = 6cos1 − 6sin1 in (4) we get 
24A + 60B + 120C + 210D = −8.84867874    (9) 
 
From equations (6) to (9), we get the values 
𝐴 = 0.00075045083330 
𝐵 = −0.177827573600001  
𝐶 = 0.003795158433337  
𝐷 = 0.00661529766666 
 
Putting the values of A, B, C and D in (5) we get  

𝑦(𝑥) = −𝑥 +
7
6
𝑥3 + 0.00075045083330𝑥4 − 0.177827573600001𝑥5 + 0.003795158433337𝑥6

+ 0.00661529766666𝑥7 + ⋯ 
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1-dim DTM
Exact
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Table-3: Exact and approximate values of solution, and error of solution 

x Exact 𝑦(𝑥) 1-Dim DTM 𝑦∗(𝑥) |𝑦(𝑥) − 𝑦∗(𝑥)| 
0 0   0   0 

0.1 -0.098835082480360 -0.098835032107298 5.0373062054910x10-08 

0.2 -0.190722557563259 -0.190722043202935 5.1436032327823x10-07 
0.3 -0.268923388061819 -0.268921828916000 1.55914581861927x10-6 
0.4 -0.327111407539266 -0.327108692673024 2.71486624231487x10-6 
0.5 -0.359569153953152 -0.359565893801042 3.26015211038477x10-6 
0.6 -0.361371182972823 -0.361368360786509 2.82218631347808x10-6 
0.7 -0.328551020491222 -0.328549335580049 1.68491117297220x10-6 
0.8 -0.258248192723828 -0.258247614837010 5.77886818231570x10-7 
0.9 -0.148832112829222  -0.148832053983802 5.8845419786960x10-8 
1.0 0 -0.000000000000001 1.267220000000x10-15 

                  𝑦∗(𝑥) is the approximate solution of 𝑦(𝑥) 
 

 
Figure-2: Comparative analysis of exact and 1-dim DTM solution results 

 
Example 3: [11] 
y( 𝐯𝐢𝐢𝐢)(x) + xy = −(48 + 15x + 𝑥3)ex       0 < 𝑥 < 1 
 
Boundary conditions are 
y(0) = 0,   y′(0) = 1,  y′′(0) = 0,    y′′′(0) = −3   (10) 
y(1) = 0,   y′(1) = −e,  y′′(1) = −4e,    y′′′(1) = −9e (11) 
 
The exact solution is y(x) = x(1 − x)ex 
 
Solution: 
Applying 1-dim D.T.M. on (10) 

Y(0) = 0, Y(1) = 1,    Y(2) = 0,    Y(3) = −1
2
 

 
Using Inverse 1-dim Differential Transform we have 
𝑦(𝑥) = 𝑌(0) + 𝑌(1)𝑥 + 𝑌(2)𝑥2 + 𝑌(3)𝑥3 + 𝑌(4)𝑥4 + ⋯ 

𝑦(𝑥) = 𝑥 −
𝑥3

2
+ Y(4)𝑥4 + 𝑌(5)𝑥5 + Y(6)𝑥6 + 𝑌(7)𝑥7 + ⋯ 

 
Let     𝑌(4) = 𝐴,   𝑌(5) = 𝐵,    𝑌(6) = 𝐶,    𝑌(7) = 𝐷 

𝑦(𝑥) = 𝑥 −
𝑥3

2
+ A𝑥4 + 𝐵𝑥5 + C𝑥6 + 𝐷𝑥7 + ⋯ 

(12) 

 
As  y(1) = 0  gives 

𝐴 + 𝐵 + 𝐶 + 𝐷 = −
1
2

   
(13) 

 
As  y′(1) = −e gives 

4𝐴 + 5𝐵 + 6𝐶 + 7𝐷 = −𝑒 +
1
2

 
(14) 
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As  y′′(1) = −4e gives 
12𝐴 + 20𝐵 + 30𝐶 + 42𝐷 = −4𝑒 + 3 (15) 
 
As  y′′′(1) = −9𝑒 gives 
24𝐴 + 60𝐵 + 120𝐶 + 210𝐷 = −9𝑒 + 3 (16) 
 
From equation (13), (14), (15) and (16) we get 

𝐴 = −0.331168115016212 
𝐵 = −0.133368341115217 
𝐶 = −0.021477144261922 
𝐷 = −0.013986399606659 

 
Putting A, B, C and D into (12) we get 

𝑦(𝑥) = 𝑥 −
1
2
𝑥3 − 0.331168115016212𝑥4 − 0.133368341115217𝑥5

− 0.021477144261922𝑥6−0.013986399606659𝑥7 + ⋯ 
 

Table-4: Exact and approximate values of solution, and error of solution 
x Exact 𝑦(𝑥) 1-Dim DTM 𝑦∗(𝑥) |𝑦(𝑥) − 𝑦∗(𝑥)| 
0 0   0    0 

0.1 0.099465382626808 0.099465526629303 1.4400249472024x10-7 

0.2 0.195424441305627 0.195425899583669 1.45827804226562x10-6 
0.3 0.283470349590961 0.283474737535698 4.38794473711646x10-6 
0.4 0.358037927433905 0.358045518742553 7.59130864785851x10-6 
0.5 0.412180317675032 0.412189383025617 9.06535058464719x10-6 
0.6 0.437308512093722 0.437316322770066 7.81067634431088x10-6 
0.7   0.422888068568800 0.422892713798975 4.64523017534857x10-6 
0.8 0.356086548558795 0.356088136976538 1.58841774272611x10-6 
0.9  0.221364280004125 0.221364441395012 1.61390886932460x10-7 
1.0 0 -0.000000000000010 1.0023230000000x10-14 

                      𝑦∗(𝑥) is the approximate solution of 𝑦(𝑥) 
 

 
Figure-3: Comparative analysis of exact and 1-dim DTM solution results 

 
Example 4: [12] 
y( 𝐯𝐢𝐢𝐢)(x) + 8ex − y(x) = 0       0 < 𝑥 < 1 
 
Boundary conditions are 
𝑦(0) = 0, y′(0) = 0, y′′(0) = −1, y′′′(0) = −2, y(𝐢𝐯)(0) = −3, y(𝐯)(0) = −4 (17) 
y′(1) = −e, y′′(1) = −2e (18) 
 
The exact solution is y(x) = (1 − x)ex 
 
Solution: 
Applying 1-dim D.T.M. on (17) we get 

Y(0) = 1,   Y(1) = 0,   Y(2) = −1
2
,   Y(3) = −1

3
,   Y(4) = − 1

8
,   Y(5) = − 1

30
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Using Inverse 1-dim Differential Transform we have 
𝑦(𝑥) = 𝑌(0) + 𝑌(1)𝑥 + 𝑌(2)𝑥2 + 𝑌(3)𝑥3 + 𝑌(4)𝑥4 + 𝑌(5)𝑥5 + 𝑌(6)𝑥6 + 𝑌(7)𝑥7 + ⋯ 

𝑦(𝑥) = 1 −
𝑥2

2
−
𝑥3

3
−
𝑥4

8
−
𝑥5

30
+ 𝑌(6)𝑥6 + 𝑌(7)𝑥7 + ⋯ 

 
Let   𝑌(6) = 𝐴, 𝑌(7) = 𝐵 

𝑦(𝑥) = 1 −
𝑥2

2
−
𝑥3

3
−
𝑥4

8
−
𝑥5

30
+ 𝐴𝑥6 + 𝐵𝑥7 + ⋯ 

(19) 

As  y′(1) = −e gives 

6𝐴 + 7𝐵 = −𝑒 +
8
3

 
(20) 

 
         
As  y′′(1) = −2e Gives 

30𝐴 + 42𝐵 = −2𝑒 +
31
6

 
(21) 

 
From equation (20) and (21) we get 

𝐴 = −0.006632330083808 
𝐵 = −0.001688740184218 

 
Putting A, and B into (19) we get 

𝑦(𝑥) = 1 −
𝑥2

2
−
𝑥3

3
−
𝑥4

8
−
𝑥5

30
− 0.006632330083808𝑥6 − 0.001688740184218𝑥7 + ⋯ 

 
 

Table-5: Exact and approximate values of solution, and error of solution 
x Exact 𝑦(𝑥) 1-Dim DTM 𝑦∗(𝑥) |𝑦(𝑥) − 𝑦∗(𝑥)| 
0 1.000000000000000 1.000000000000000 0 

0.1 0.994653826268083 0.994653826532129 2.6404622930x10-10 

0.2 0.977122206528136 0.977122220581667 1.40535308946x10-8 
0.3 0.944901165303202 0.944901295703891 1.304006884695x10-7 
0.4 0.895094818584762 0.895095400477392 5.818926300805x10-7 
0.5 0.824360635350064 0.824362343226418 1.7078763537848x10-6 
0.6 0.728847520156204 0.728851288090389 3.7679341854391x10-6 
0.7 0.604125812241143 0.604132471315550 6.6590744072226x10-6 
0.8 0.445108185698493 0.445117886643695 9.7009452019181x10-6 
0.9 0.245960311115695 0.245972088672914 1.17775572190670x10-5 
1.0 0 0.000012263065307 1.22630653073522x10-5 

                   𝑦∗(𝑥) is the approximate solution of 𝑦(𝑥) 
 

 
Figure-4: Comparative analysis of exact and 1-dim DTM solution results 
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4. CONCLUSION 
 
In this work, one dimensional Differential Transformation Method has been applied to obtain the numerical solution of 
linear and nonlinear eighth order boundary value problems. The present method has been applied in a direct way 
without using linearization, discretization, or perturbation. The numerical results obtained by this method are in good 
agreement with the exact solutions available in the literature. This technique is fast converging to the exact solution and 
requires much less computational work than other methods. The objective of this paper is to present a simple method to 
solve an eighth order boundary value problem and its easiness for implementation. 
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