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ABSTRACT 
Let 𝐺 = (𝑉,𝐸) be an undirected simple graph. The transformation graph 𝐺−−− of G is a simple graph with vertex set 
𝑉(𝐺) ∪ 𝐸(𝐺) in which adjacency is defined as follows: (a) two elements in 𝑉(𝐺) are adjacent if and only if they are 
non-adjacent in 𝐺, (b) two elements in 𝐸(𝐺) are adjacent if and only if they are non-adjacent in 𝐺, and (c) an element 
of  𝑉(𝐺) and an element of  𝐸(𝐺) are adjacent if and only if they are non-incident in 𝐺. In this paper, we determine the 
chromatic number of Transformation graph 𝐺−−− for Path and Cycle graph. 
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1. INTRODUCTION  
 
In this paper, we are concerned with finite, simple graph. Let  𝐺 = �𝑉(𝐺),𝐸(𝐺)� be a graph, if there is an edge 𝑒 
joining any two vertices 𝑢 and 𝑣 of 𝐺, we say 𝑢 and 𝑣 are adjacent. An n-vertex colouring or an n-colouring of a graph 
𝐺 = (𝑉,𝐸) is a mapping 𝑓:𝑉 → 𝑆, where S is a set of n-colours.  
 
Definition 1.1: A graph 𝐺 is an ordered pair (𝑉(𝐺),𝐸(𝐺)) consisting of a non-empty set 𝑉(𝐺) of vertices and a set 
𝐸(𝐺), disjoint from 𝑉(𝐺) of edges together with an incidence function 𝜓𝐺  that associates with each edge of  𝐺 is an 
unordered pair of vertices of  𝐺. 
 
Definition 1.2: A colouring C of a simple graph G is proper if no two adjacent vertices are assigned the same colour.  
 
A graph is properly coloured if it is coloured with the minimum possible number of colours. 
 
Definition 1.3: The chromatic number of a graph G is the minimum number of colours required to colour the vertices 
of G and is denoted by 𝜒(𝐺).  
 
Definition 1.4: The total graph  𝑇(𝐺) of a graph  𝐺  is the graph whose vertex set is  𝑉(𝐺) ∪ 𝐸(𝐺)  and two vertices 
are adjacent in  𝑇  if and only if  the elements are either adjacent or incident in 𝐺.  
 
Definition 1.5: The complement �̅� of a graph  𝐺, have the same vertex set 𝑉(𝐺) and those vertices which are adjacent 
in G are not adjacent in �̅�. 
 
Definition 1.6: Walk is an alternating sequence of vertices and edges starting and ending with vertices. A walk in 
which all the vertices are distinct is called a path. A path containing n-vertices is denoted by 𝑃𝑛. 
 
Definition 1.7: A closed path is called cycle. A cycle containing n-vertices is denoted by 𝐶𝑛, the length of a cycle is the 
number of edges occurring on it. 
 
In [2] generalized the concept of total graphs to a transformation graph 𝐺𝑥𝑦𝑧  with x,𝑦, 𝑧;  {−, +}, where 𝐺+++ is the 
total graph of G, and 𝐺−−− is its complement. Also, 𝐺−−+, 𝐺−+−  and 𝐺−++  are the complement of  𝐺++−,  𝐺+−+ and 
𝐺+−−  respectively.  
 
Here we investigate the transformation graph 𝐺−−− of some graphs. 
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Theorem 2.1: Let 𝐺 = 𝑃𝑛 be any path graph,  𝐺−−− is the transformation of  𝐺, then any particular colour  𝑐𝑖  can be 
assigned to at most three vertices of   𝐺−−−. 
 
Proof:  
 Let 𝐺 = 𝑃𝑛 be any path graph of length n and  𝐺−−−  is the transformation of G. 
 The vertex set of  𝐺−−−  is  𝑉(𝐺−−−) = {𝑣𝑖 , 𝑒𝑖−1 / 𝑖 = 1,2, … . . ,𝑛}. 
 Let C be the colour class of   𝐺−−−  and  𝑐𝑖 ∈ 𝐶, 𝑖 = 1,2, …. 
 
We have to prove that the colour  𝑐𝑖  can be assigned to at most three vertices of   𝐺−−−. 
 
Without loss of generality, we assume that the colour  𝑐𝑖   can be given to at least four vertices of 𝐺−−−. Let it be 
𝑣, 𝑣𝑗 , 𝑣𝑘 , 𝑣𝑙. 
 
Case-(i): Choose the vertex  𝑣 of degree 2(middle vertex) in 𝐺 and it is coloured by the colour  𝑐𝑖 . 

 
 
Let 𝑣𝑗 and 𝑣𝑘 be the neighbours of v in G, that is 𝑁(𝑣) = �𝑣𝑗 , 𝑣𝑘� in G and 𝑣𝑙  be the vertex non-adjacent to  �𝑣, 𝑣𝑗 ,𝑣𝑘� 
in 𝐺. 
 
Since  𝑣𝑗  and 𝑣𝑘 are independent in 𝐺, they are adjacent in  𝐺−−−, so we can give the colour  𝑐𝑖  either to the vertex 𝑣𝑗 or 
𝑣𝑘, but not to both. 
 
Also, the vertex 𝑣𝑙  is non-adjacent to 𝑣 in 𝐺, so it is adjacent with 𝑣 in  𝐺−−−. Hence, we need another new colour to 
colour the remaining vertices. 
 
Therefore, we need 2 −colours to colour the vertices  𝑣, 𝑣𝑗 , 𝑣𝑘 and 𝑣𝑙  which is a contradiction. 

 
 
If the vertices 𝑣, 𝑣𝑗 , 𝑣𝑘  and 𝑣𝑙  are independent in 𝐺; clearly, they are adjacent in 𝐺−−−, so we cannot give the colour 
𝑐𝑖 to all the four vertices. Hence, we need more than one colour to colour these four vertices, which is again a 
contradiction. 
 
Case-(ii): Suppose 𝑣 is a pendent vertex in 𝐺. The vertex is coloured by the colour 𝑐𝑖 in 𝐺−−−. 

 
If  𝑁(𝑣) = {𝑣𝑗} in 𝐺 and 𝑣𝑘 , 𝑣𝑙  be the vertices non-adjacent with 𝑣 in 𝐺. Since 𝑣 and 𝑁(𝑣) are independent in 
𝐺−−−, we can give the colour 𝑐𝑖 to 𝑣 and 𝑁(𝑣). Also, the vertices 𝑣𝑘 and  𝑣𝑙  are adjacent to 𝑣 in 𝐺−−−, we need some 
new colours to colour the vertices 𝑣𝑘 and  𝑣𝑙 . Hence, we need more than one colour to colour these four vertices, which 
is again a contradiction. 
 
Case-(iii): Choose the edge 𝑣 of degree 2 in 𝐺 and it is coloured by the colour ci. 

 
 
If  𝑁(𝑣) = �𝑣𝑗 , 𝑣𝑘� in G and 𝑣𝑙  be the edge non-adjacent to 𝑣, 𝑣𝑗 , 𝑣𝑘  in 𝐺, then 𝑣𝑙  is adjacent to 𝑣, 𝑣𝑗 , 𝑣𝑘  in  𝐺−−−. It is a 
contradiction by case (i). 
 
If the edges 𝑣, 𝑣𝑗 ,𝑣𝑘  and 𝑣𝑙  are independent in 𝐺, then they are adjacent in 𝐺−−−. 

 
It is again a contradiction by case (i) 
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Case-(iv): Suppose 𝑣 is a vertex in 𝐺 of degree 2 and 𝑣𝑗 , 𝑣𝑘  are the edges incident with 𝑣 and 𝑣𝑙  be any other vertex or 
edge in 𝐺. 

 
 
Clearly, 𝑣𝑗  and 𝑣𝑘   are non-adjacent with 𝑣 in 𝐺−−− and 𝑣𝑗 and 𝑣𝑘  are independent in 𝐺−−−, so we can give the colour 
𝑐𝑖  to these three vertices 𝑣, 𝑣𝑗  and 𝑣𝑘  . But the vertex 𝑣𝑙  is adjacent with 𝑣 in 𝐺−−−, so we need more than one colour 
to colour all these four vertices, which is a contradiction. 
 
Hence, in 𝐺−−−, any particular colour can be assigned to at most three vertices. 
 
Hence proved. 
 
Theorem 2.2: Let 𝐺 be any simple graph and  𝐺−−−  is the transformation of  𝐺, then a colour can be given to three 
vertices of  𝐺−−−  if and only if either they formed a  𝐾2 in  𝐺 or a pair of edges are incident with a vertex in  𝐺. 
 
Proof: 
 Let 𝐺 be any simple graph with n-vertices.  

Let 𝑉(𝐺−−−) be the vertex set of  𝐺−−−,  that is, 𝑉(𝐺−−−) = {𝑣𝑖 , 𝑒𝑗/ �𝑖 = 1,2, … ,𝑛; 𝑗 = 1,2, … }. 
 
Assume that, the vertices in 𝐺−−−  formed either a  𝐾2 in  𝐺 or a pair of edges are incident with a vertex in  𝐺. 
 
Case-(i): 

 
 
Choose an arbitrary vertex 𝑣 in 𝐺, 𝑁(𝑣) = �𝑣𝑗� 𝑎𝑛𝑑 𝑒𝑗 is an edge incident with 𝑣 and 𝑣𝑗. Clearly, 𝑣, 𝑣𝑗  and 𝑒𝑗 are 
independent in 𝐺−−−. Hence, we can give a single colour to 𝑣, 𝑣𝑗 and 𝑒𝑗. 
 
Case-(ii): 

 
 
Suppose 𝑣 is a vertex in 𝐺 and 𝑒𝑖 , 𝑒𝑗 are the edges incident with 𝑣 in 𝐺. Clearly, 𝑣, 𝑒𝑖 and 𝑒𝑗 are independent in 𝐺−−−. 
Hence, we can give a single colour to 𝑣, 𝑒𝑖 and 𝑒𝑗. 
 
Therefore, a single colour can be given to exactly three vertices. 
 
Conversely, Assume that a single colour can be given to three vertices of  𝐺−−− .  
 
To prove that the vertices in 𝐺−−− formed either a  𝐾2 in  𝐺 or a pair of edges are incident with a vertex in  𝐺. 
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Suppose the vertices in 𝐺−−− formed neither a  𝐾2 in  𝐺 nor a pair of edges are incident with a vertex in  𝐺. Clearly, 
they are adjacent in 𝐺−−−, so we need more than one colour to colour these three vertices in 𝐺−−− which is a 
contradiction to our assumption. 
 
Therefore, the vertices in 𝐺−−− formed either a  𝐾2 in  𝐺 or a pair of edges are incident with a vertex in  𝐺. 
 
Hence proved. 
 
Theorem 2.3: Let 𝐺 be any path or cycle graph. If its transformation  𝐺−−− has  3𝑘 −vertices, then we need exactly 
𝑘 −colours. 
 
Proof: Let 𝐺 be any path or cycle graph and  𝐺−−− be the transformation graph. 
 
By theorem: 2.2, 
 
We can give the same colour to exactly three vertices of  𝐺−−−. 
 
Therefore, we need 𝑘 −colours to colour a graph with  3𝑘 −vertices. 
 
Hence proved. 
 
Theorem 2.4: Let 𝐺 = 𝑃𝑛 be any path graph with 𝑛-vertices, then 𝜒(𝐺−−−) = �2𝑛−1

3
�. 

 
Proof: 
                        

 

 
Let 𝐺 = 𝑃𝑛 be any path graph with 𝑛-vertices, whose vertices {𝑣𝑖/𝑖 = 1,2, … ,𝑛} are linear. Its transformation 𝐺−−− has 
(2𝑛 − 1)-vertices. 
 
Let 𝑉(𝐺−−−) = {𝑣𝑖 , 𝑒𝑖−1/ �𝑖 = 1,2, … ,𝑛} be the vertex set of  𝐺−−−. 
 
Now, we divide the vertex set of  𝐺−−− into three sets, 

𝑖) 𝑉1 = {𝑣𝑛/ 𝑛 ≡ 1(𝑚𝑜𝑑 3) 
𝑖𝑖) 𝑉2 = {𝑣𝑛/ 𝑛 ≡ 2(𝑚𝑜𝑑 3) 
𝑖𝑖𝑖) 𝑉3 = {𝑣𝑛/ 𝑛 ≡ 0(𝑚𝑜𝑑 3) 

Case-(i): If  𝑛 ≡ 1(𝑚𝑜𝑑 3), that is 𝑛 = 3𝑘 + 1, we have (6𝑘 + 1)-vertices in  𝐺−−−. 
 
By theorem: 2.3, To colour 6𝑘-vertices, we need 2𝑘-colours, that is �6𝑘

3
�-colours. 

 
The (6𝑘 + 1)𝑡ℎ-vertex of 𝐺−−− is a pendent vertex in G is of degree 2𝑛 − 3. It is adjacent with all the vertices which 
are coloured by the (2𝑘)-colours, so we need a new colour to colour the pendent vertex. Hence, we need (2𝑘 + 1)-
colours to colour the (6𝑘 + 1)-vertices of  𝐺−−−. 
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⇒ �
6𝑘 + 1

3
� = �

2(3𝑘 + 1) − 1
3

� 

 
Therefore, we need �2(3𝑘+1)−1

3
�-colours to colour the (6𝑘 + 1)-vertices of  𝐺−−−. 

 
Case-(ii): If  𝑛 ≡ 2(𝑚𝑜𝑑 3), then |𝑉( 𝐺−−−)| = 6𝑘 + 3. 
 
By theorem: 2.3, 

𝜒(𝐺−−−) = 2𝑘 + 1 = �6𝑘+3
3
� = �2(3𝑘+2)−1

3
�. 

 
Therefore, we need �2(3𝑘+2)−1

3
�-colours to colour the (6𝑘 + 3)-vertices of  𝐺−−−. 

 
Case-(iii): If  𝑛 ≡ 0(𝑚𝑜𝑑 3), then |𝑉( 𝐺−−−)| = 6𝑘 − 1. 
 
By theorem: 2.3, To colour (6𝑘 − 3)-vertices, we need (2𝑘 − 1)-colours. 
 
The (6𝑘 − 2)𝑡ℎ 𝑎𝑛𝑑 (6𝑘 − 1)𝑡ℎ vertices of 𝐺−−−  is a leaf in 𝐺. It is adjacent with all the vertices which are coloured 
by the (2𝑘 − 1)-colours, so we need a new colour to colour the leaf. Hence, we need (2𝑘)-colours to colour the 
(6𝑘 − 1)-vertices of  𝐺−−−. 
 
Therefore, we need �2(3𝑘)−1

3
�-colours to colour the (6𝑘 − 1)-vertices of  𝐺−−−. 

 
Hence, in all three cases we need �2𝑛−1

3
�-colours to colour the (2𝑛 − 1)-vertices of  𝐺−−−.  

 
Therefore, 𝜒(𝐺−−−) = �2𝑛−1

3
�. 

 
Corollary 2.5: Let 𝐺 = 𝐶𝑛 be any cycle graph with 𝑛-vertices, then 𝜒(𝐺−−−) = �2𝑛

3
�. 

 
Proof: Let 𝐺 = 𝐶𝑛 be any cycle graph with 𝑛-vertices, whose vertices {𝑣𝑖/𝑖 = 1,2, … … . ,𝑛} are linear. Its 
transformation 𝐺−−− has (2𝑛)-vertices. 
 
Let 𝑉(𝐺−−−) = {𝑣𝑖 , 𝑒𝑖/ �𝑖 = 1,2, … ,𝑛} be the vertex set of  𝐺−−−. 
 
By theorem: 2.2 and by theorem: 2.3, 

𝜒(𝐺−−−) = �
2𝑛
3
�. 

 
Hence the proof.  
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