EDGE COLOURING OF GENERALIZED PETERSEN GRAPH OF TYPE k
 B. STEPHEN JOHN ${ }^{1}$ AND J. C. JESSY*2

Department of Mathematics, Annai Velankanni College, Tholayavattam, Tamilnadu. India-629157.
(Received On: 11-04-18; Revised \& Accepted On: 02-05-18)

Abstract

Let $G=\{V, E\}$ be a connected simple graph. An edge colouring of a graph G is a function $f: E(G) \rightarrow C$, where C is a set of distinct colours. The edge colouring problem is one of the fundamental problem on graphs which often appears in various scheduling problems like the file transfer problem on computer networks. In this paper we determine the edge colouring of generalized petersen graph of type k.

Keywords: Cycle, Chromatic number, Edge colouring, Generalized petersen graph.

INTRODUCTION

The theory of graph colouring has existed for more than 150 years from its modest beginning of determining whether a geographic map can be coloured with four colours. The theory has become central in discrete mathematics with many contemporary generalization and application.

In this paper, we are concerned with finite, connected, simple graph. Let $G=\{V(G), E(G)\}$ be a graph, if there is an edge e joining any two vertices u and v of G, we say that u and v are adjacent. A k-edge colouring C of a graph G is an assignment of k-colours to the edges of G.

Definition 1.1: A graph G is an ordered pair $(V(G), E(G))$ consisting of a non-empty set $V(G)$ of vertices and a set $E(G)$, disjoint from $V(G)$ of edges together with an incidence function ψ_{G} that associates with each edge of G is an unordered pair of vertices of G.

Definition 1.2: An edge colouring C of a simple graph G is proper if no two adjacent edges are assigned the same colour.

A graph is properly edge coloured if it is coloured with the minimum possible number of colours.
Definition 1.3: The edge chromatic number of a graph G is the minimum number of colours required to colouring the edges of G in properly and is denoted by $\chi^{\prime}(G)$.

Definition 1.4: The generalized petersen graph $G P(n, k)$ has vertices and edges of the form $V(G P(n, k))=\left\{a_{i}, b_{i} / 0 \leq i \leq n-1\right\}, E(G P(n, k))=\left\{a_{i} a_{i+1}, a_{i} b_{i}, b_{i} b_{i+k} / 0 \leq i \leq n-1\right\}$.

Definition 1.5: Walk is an alternating sequence of vertices and edges starting and ending with vertices.
A walk in which all the vertices are distinct is called a path. A path containing n-vertices is denoted by P_{n}.
A closed path is called cycle. A cycle containing n-vertices is denoted by C_{n}, the length of a cycle is the number of edges occurring on it.

Lemma 1: For any cycle $C_{n}, \chi^{\prime}\left(C_{n}\right)= \begin{cases}3, & \text { if } n \text { is odd } \\ 2, & \text { if } n \text { is even }\end{cases}$

Theorem 2.1: Let G be the generalized petersen graph of type k , that is $G=G P(n, k)$ for all $n \geq 6$ and k is odd, then $\chi^{\prime}(G)= \begin{cases}4, & \text { if } n \text { is odd } \\ 3, & \text { if } n \text { is even }\end{cases}$

Proof: Let $G=G P(n, k)$ be the generalized petersen graph of type k. Let $V(G)=\left\{v_{i}, u_{i} / i=1,2, \ldots, n\right\}$ be the vertex set of $G=G P(n, k)$ and $E(G)$ are the edges of G , it can be partitioned into three sets, E_{1}, E_{2} and E_{3} such that $E_{1}(G)=\left\{v_{i} v_{i+1}, v_{1} v_{n} / i=1,2, \ldots,(n-1)\right\}$,
$E_{2}(G)=\left\{u_{i} u_{i+k}, u_{1} u_{n-k+1} / i=1,2, \ldots,(n-(k-1))\right\}$ and $E_{3}(G)=\left\{v_{i} u_{i} / i=1,2, \ldots, n\right\}$.

Clearly, the edges of $E_{i}, i=1,2,3$ satisfies the condition

$$
E_{1}(G) \cap E_{2}(G) \cap E_{3}(G)=\emptyset
$$

The elements of E_{1} and E_{2} formed separated cycles of length n. Let it be C_{1} and C_{2}.
The edges of $C_{i ;(i=1,2)}$ are independent to each other, that is $\bigcap_{i=1}^{2} E\left(C_{i}\right)=\emptyset$ and the edges of E_{3} are independent in G.
Type-I: If n is odd and $(n, k)=1$.
For example, $G P(7,3)$ is represented in figure: 1.1

Figure:1.1
The cycle C_{1} is of odd in length.
By lemma:1,
We need 3-colours to colour the edges of E_{1}, let it be c_{1}, c_{2} and c_{3}.
The edge $v_{1} u_{1}$ is adjacent to the edges $v_{1} v_{2}$ and $v_{n} v_{1}$ which are coloured by the colours c_{1} and c_{3}, so we can assign the colour c_{2} to $v_{1} u_{1}$.

Also, the edge $v_{n} u_{n}$ is adjacent to the edges $v_{n} v_{1}$ and $v_{n-1} v_{n}$, which are coloured by the colours c_{3} and c_{2} respectively, so we can colour $v_{n} u_{n}$ by the colour c_{1}.

The remaining edges $v_{i} u_{i}(i=2, \ldots, n-1)$, are adjacent with the edges of C_{1} which are coloured by the colours c_{1} and c_{2}, hence we can use the colour c_{3} to the edges $v_{i} u_{i}(i=2, \ldots, n-1)$.

The edge $u_{2} u_{2+k}$ is adjacent to the edge $v_{2} u_{2}$ which is coloured by the colour c_{3}, so we can give either c_{1} or c_{2} to the edge $u_{2} u_{2+k}$.

Without loss of generality, assume that the edge $u_{2} u_{2+k}$ is coloured by the colour c_{1}.
Also, the edge $u_{n-k+2} u_{2}$ is adjacent to the edges $u_{2} u_{2+k}$ and $v_{2} u_{2}$, which are coloured by the colour c_{1} and c_{3}, so we can assign the colour c_{2} to the edge $u_{n-k+2} u_{2}$.

Repeat the above, to all the edges of E_{2}, which are adjacent with $v_{i} u_{i}(i=3, \ldots, n-1)$. except the edges adjacent with $v_{n} u_{n}$ and $v_{1} u_{1}$.

Let $u_{n} u_{n-k}$ and $u_{n-k-1} u_{n}$ are the edges adjacent with $v_{n} u_{n}$.

The edge $v_{n} u_{n}$ is coloured by the colour c_{1} and we cannot give the colour c_{3} to the edges $u_{n} u_{n-k}$ and $u_{n-k-1} u_{n}$, since they are adjacent with the edges $u_{n-k} v_{n-k}$ and $u_{n-k-1} v_{n-k-1}$ respectively, which are already coloured by the colour c_{3}. So we can give the colour c_{2} either to $u_{n} u_{n-k}$ or $u_{n-k-1} u_{n}$.

Without loss of generality, assume that the edge $u_{n-k-1} u_{n}$ is coloured by the colour c_{2}. Now, the edge $u_{n} u_{n-k}$ is adjacent with all the three existing colours say, c_{1}, c_{2} and c_{3}.

Hence, we need a new colour c_{4} to colour the edge $u_{n} u_{n-k}$.
Similarly, $u_{1} u_{1+k}$ and $u_{n-k+1} u_{1}$ are the edges adjacent with $v_{1} u_{1}$.
The edge $v_{1} u_{1}$ is coloured by the colour c_{2} and we cannot give the colour c_{3} to the edges $u_{1} u_{1+k}$ and $u_{n-k+1} u_{1}$, since they are adjacent with the edges $v_{1+k} u_{1+k}$ and $v_{2+k} u_{2+k}$ respectively, which are coloured by the colour c_{3}, so we can give the colour c_{1} either to $u_{1} u_{1+k}$ or $u_{n-k+1} u_{1}$.

Without loss of generality, assume that the edge $u_{1} u_{1+k}$ is coloured by the colour c_{1}.
Now, the edge $u_{n-k+1} u_{1}$ is adjacent with all the three used colours c_{1}, c_{2} and c_{3}.
Hence, we need a new colour c_{4} to colour the edge $u_{n-k+1} u_{1}$.
Therefore, $\chi^{\prime}(G)=4$.
Type-II: If n is even and $(n, k)=1$.
For example, $G P(8,3)$ is represented in figure: 1.2

Figure:1.2

The cycles C_{1} and C_{2} are of even length.
By lemma:1,
The edges of C_{1} and C_{2} are coloured by two colours, let it be c_{1} and c_{2}.
The edges $v_{i} u_{i}(i=1,2, \ldots, n-1)$, joining the cycles C_{1} and C_{2} are independent and adjacent with the existing coloured edges of C_{1} and C_{2}, so we need a new colour c_{3} to colour the edges of E_{3}.

Hence, we need 3-colours to colour all the edges.
Therefore, in this type $\chi^{\prime}(G)=3$.
Type-III: If $\operatorname{gcd}(n, k)=k$
The edge set $E(G)$ can be partitioned into three sets E_{1}, E_{2} and E_{3} such that
$E_{1}(G)=\left\{v_{i} v_{i+1}, v_{1} v_{n} / i=1,2, \ldots, n-1\right\}$,
$E_{2}(G)=\left\{u_{i} u_{i+k}, u_{n-k+i} u_{i} / i=1,2, \ldots, n-(k-1)\right\}$ and $E_{3}(G)=\left\{v_{i} u_{i} / i=1,2, \ldots, n\right\}$.

In this type, the edge set of E_{2} contains k-disjoint cycles of length-n/k. Let it be $\left\{C_{2_{1}}, C_{2_{2}}, \ldots, C_{2_{k}}\right\}$. The cycles $C_{2_{i ;(i=1,2, \ldots, k)}}$ are either odd or even.

Case-(i): If n and n / k are even, the cycles $C_{2_{i ;(i=1,2, \ldots, k)}}$ are of even in length.
For example, $G P(12,3)$ is represented in figure: 1.3

Figure:1.3
By Type: II,

$$
\chi^{\prime}(G)=3
$$

Case-(ii): If n and n / k are odd, the cycles $C_{2_{i ;(i=1,2, \ldots, k)}}$ are of odd length.
For example, GP $(9,3)$ is represented in figure: 1.4

Figure: 1.4
By Type: I,

$$
\chi^{\prime}(G)=4
$$

Hence the theorem is proved.
Theorem 2.2: Let G be the generalized petersen graph of type k, that is $G=G P(n, k)$ for all n is odd and k is even, then $\chi^{\prime}(G)=4$.

Proof: Let $G=G P(n, k)$ be the generalized petersen graph of type k. Let $V(G)=\left\{v_{i}, u_{i} / i=1,2, \ldots, n\right\}$ be the vertex set of $G=G P(n, k)$.

Type-I: If n is odd and $(n, k)=1$.
For example, $G P(9,2)$ is represented in figure: 1.5

Figure:1.5

The edge set of $E(G)$ can be partitioned into three sets, E_{1}, E_{2} and E_{3} such that $E_{1}(G)=\left\{v_{i} v_{i+1}, v_{1} v_{n} / i=1,2, \ldots, n-1\right\}$,
$E_{2}(G)=\left\{u_{i} u_{i+k}, u_{1} u_{n-k+1} / i=1,2, \ldots, n-(k-1)\right\}$ and $E_{3}(G)=\left\{v_{i} u_{i} / i=1,2, \ldots, n\right\}$.

Clearly, the edges of $E_{i}, i=1,2,3$ satisfies the condition
$E_{1}(G) \cap E_{2}(G) \cap E_{3}(G)=\varnothing$ and $E(G)=E_{1}(G) \cup E_{2}(G) \cup E_{3}(G)$.
The elements of E_{1} and E_{2} form separate cycles of length n. Let it be C_{1} and C_{2}.
The edges of $C_{i, j}(i=1,2)$ are independent to each other, that is $\bigcap_{i=1}^{2} E\left(C_{i}\right)=\emptyset$ and the edges of E_{3} are also independent in G.

Also, the cycles C_{1} and C_{2} are of odd in length.
By lemma:1,
We need 3-colours to colour the edges of the cycles C_{1} and C_{2}, let it be c_{1}, c_{2} and c_{3}.
The edges $\left(v_{i} u_{i}(i=1,2, \ldots, n)\right)$ of E_{3} which are formed by joining the cycles C_{1} and C_{2} are coloured according to there adjacency with the edges of E_{1} and E_{2}. But the edge say, $v_{s} u_{s}(1 \leq s \leq n)$ is adjacent to the edges of E_{1} and E_{2} which are coloured by the colours c_{1}, c_{2} and c_{3}. So, we cannot give these three colours to colour the edge $v_{s} u_{s}(1 \leq s \leq$ n).
Hence, we need another new colour c_{4} to colour the edge $v_{s} u_{s} \in E_{3}(G)$.
Thus, we need 4-colours to colour all the edges of $E(G)$.
Therefore, $\chi^{\prime}(G)=4$.
Type-II: If $\operatorname{gcd}(n, k)=t, n$ and n / t are odd.
For example, $\operatorname{GP}(15,6)$ is represented in figure: 1.6

Figure:1.6

The edge set of $E(G)$ can be partitioned into three sets, E_{1}, E_{2} and E_{3} such that
$E_{1}(G)=\left\{v_{i} v_{i+1}, v_{1} v_{n} / i=1,2, \ldots, n-1\right\}$,
$E_{2}(G)=\left\{u_{i} u_{i+k}, u_{1} u_{n-k+1} / i=1,2, \ldots, n-(k-1)\right\}$ and
$E_{3}(G)=\left\{v_{i} u_{i} / i=1,2, \ldots, n\right\}$.
Clearly, the edges of $E_{i ;(i=1,2,3)}$ satisfies the condition
$E_{1}(G) \cap E_{2}(G) \cap E_{3}(G)=\emptyset$ and $E(G)=E_{1}(G) \cup E_{2}(G) \cup E_{3}(G)$.
The edges of E_{2} forms t-disjoint cycles in C_{2}, let it be $\left\{C_{2_{1}}, C_{2_{2}}, \ldots, C_{2_{t}}\right\}$. Each cycle is of odd length. Also, the cycle C_{1} formed by the elements of E_{1} is of odd length.
By type: I

$$
\chi^{\prime}(G)=4
$$

Therefore, for all n is odd and k is even, $\chi^{\prime}(G)=4$.
Hence the theorem is proved.
Theorem 2.3: Let G be the generalized petersen graph of type k , that is $G=G P(n, k)$ for all n and k are even, then $\chi^{\prime}(G)= \begin{cases}4, & \text { if } n / \operatorname{gcd}(n, k) \\ 3, & \text { is odd } \\ 3 / \operatorname{li} \operatorname{gcd}(n, k) & \text { is even }\end{cases}$

Proof: Let $G=G P(n, k)$ be the generalized petersen graph of type k.
Let $V(G)=\left\{v_{i}, u_{i} ; i=1,2, \ldots, n\right\}$ be the vertex set of $G=G P(n, k)$ and $E(G)$ can be partitioned into three sets, E_{1}, E_{2} and E_{3} such that
$E_{1}(G)=\left\{v_{i} v_{i+1}, v_{1} v_{n} / i=1,2, \ldots, n-1\right\}$,
$E_{2}(G)=\left\{u_{i} u_{i+k}, u_{i} u_{n-k+i} / i=1,2, \ldots, n-(k-1)\right\}$ and
$E_{3}(G)=\left\{v_{i} u_{i} / i=1,2, \ldots, n\right\}$
Clearly, the edges of $E_{i}, i=1,2,3$ satisfies the condition
$E_{1}(G) \cap E_{2}(G) \cap E_{3}(G)=\emptyset$ and $E(G)=E_{1}(G) \cup E_{2}(G) \cup E_{3}(G)$.
The elements of E_{1} form an even cycle of length n. Let it be C_{1}.
By lemma:1,
We need 2 -colours say, c_{1} and c_{2} to colour the edges of the cycle C_{1}.
Clearly, $\operatorname{gcd}(n, k)=t$. Hence the edge set of E_{2} forms t-disjoint cycles of length, let it be $\left\{C_{2_{1}}, C_{2_{2}}, \ldots, C_{2_{t}}\right\}$ and these cycles are independent.

Also, the edges of E_{3} are independent on G and the edges of E_{1} and E_{2} are independent in G.
Type-I: If n / t is odd, then the cycles $C_{2_{i ;(i=1,2, \ldots, t)}}$ are of odd length.
For example, $\operatorname{GP}(10,4)$ is represented in figure: 1.7

Figure: 1.7

Since, the edges of E_{1} and E_{2} are independent, by lemma: 1, the cycles $C_{2_{i ;(i=1,2, \ldots, t)}}$ are coloured by 3-colours say, c_{1}, c_{2} and c_{3}.
The edges $v_{i} u_{i}(i=1,2, \ldots, n)$ of E_{3} which are connected by the cycles C_{1} and $C_{2_{i ;(i=1,2, \ldots, t)}}$ they are coloured according to there adjacency with the edges of E_{1} and E_{2}. The edges $v_{s} u_{s}(1 \leq s \leq n)$ is adjacent to the edges of E_{1} and E_{2} which are coloured by the colours c_{1}, c_{2} and c_{3}. So, we cannot give these three colours to colour the edge $v_{s} u_{s}(1 \leq s \leq$ n).
Hence, we need another new colour c_{4} to colour the edge $v_{s} u_{s} \in E_{3}(G)$.
Thus, in this type we need 4-colours to colour all the edges of $E(G)$.
Therefore, $\chi^{\prime}(G)=4$.
Type-II: If n / t is even, then the cycles $C_{2_{i ;(i=1,2, \ldots, t)}}$ are of even length.
For example, $G P(16,6)$ is represented in figure: 1.8

Figure: 1.8
Since, the edges of E_{1} and E_{2} are independent, by lemma:1, the cycles $C_{2_{i ;(i=1,2, \ldots, t)}}$ are coloured by 2-colours say, c_{1} and c_{2}.
The edges $\left(v_{i} u_{i}(i=1,2, \ldots, n)\right)$ of E_{3} which are formed by joining the cycles C_{1} and $C_{2_{i ;(i=1,2, \ldots, t)}}$ are adjacent with the existing colours. So, we need a new colour c_{3} to colour the edges of E_{3}.
Hence, we need 3 -colours to colour the edges of type: II.
Therefore, $\chi^{\prime}(G)=3$.
Hence the theorem is proved.

REFERENCE

1. Robento.W.Frucht, Jack.E.Graver and Mark.E.Watkins, "The groups of the generalized petersen graph", Proc. Cambridge Philas. Sec.,70(1971), 211-218.
2. Halton.D.A and Sheehan.J, "Generalized Petersen and Permutation Graphs", Cambridge, England; Cambridge University Press, pp-45 and 315-317, 1998.
3. Ponstein.J. (1969). A New Proof of Brooks', "Chromatic Number Theorem for Graphs", Journal of Combinatorial theory, 7, 255-257.
4. Dantas.S, de Figueiredo.C.M.H, Maxzuoccoloc.G, Preissmann.M, dos Santos.V.F and Sasaki.D(2016) "On the Total Colouring of Generalized Petersen Graphs", Discrete Mathematics, 339, 1471-1475.

Source of support: Nil, Conflict of interest: None Declared.
[Copy right © 2018. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]

