THE TOTAL x-EDGE STEINER NUMBER OF A GRAPH

A. SIVA JOTHI ${ }^{1}$ AND S. ROBINSON CHELLATHURAI ${ }^{2}$

${ }^{1}$ Department of Mathematics, Marthandam College of Engineering and Technology, Kuttakuzhi-629 177, INDIA.
${ }^{2}$ Department of Mathematics, Scott Christian College, Nagercoil-629 003, INDIA.

E-mail: sivajothi.a@gmail.com ${ }^{1}$

Abstract

For a vertex x of a connected graph $G=(V, E)$ and $W \subset V(G)$ is called total x-edge Steiner set if the subgraph < W > induced by W has no isolated vertex. The minimum cardinality of a total x-edge Steiner set of G is the total x-edge Steiner number of G and denoted by st1x(G). Some general properties satisfied by this concept are studied. The total x-edge Steiner number of certain classes of graphs are determined. Necessary conditions for connected graph of order p with total x-edge Steiner number to be $p l$ is given. It is shown that for positive integers r, d and $n>2$ with $r \leq d \leq 2 r$, there exists a connected graph G with radG $=r$, diam $G=d$ and $\operatorname{st1x}(G)=n$ for any vertex x in G. It is shown that for p, a and b are positive integers such that $4 \leq a \leq b \leq p-1$, then there exists a connected graph G of order p such that $s_{1 x}(G)=a$ and $s_{t 1 x}(G)=b$ for some vertex x in G.

Keywords: Steiner distance, Steiner number, edge Steiner number, x-edge Steiner number, total x-edge Steiner number.
AMS Subject Classification: 05C12.

1. INTRODUCTION

By a graph $G=(V, E)$, we mean a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively. The distance $d(u, v)$ between two vertices u and v in a connected graph G is the length of a shortest $u-v$ path in G. An $u-v$ path of length $d(u, v)$ is called an $u-v$ geodesic. It is known that the distance is a metric on the vertex set of G. For a vertex v of G, the eccentricity $e(v)$ is the distance between v and a vertex farthest from v. The minimum eccentricity among the vertices of G is the radius, radG and the maximum eccentricity is its diameter, diamG of G. For basic graph theoretic terminology, we refer to Harary [1]. For a nonempty set W of vertices in a connected graph G, the Steiner distance $d(W)$ of W is the minimum size of a connected subgraph of G containing W. Necessarily, each such subgraph is a tree and is called a Steiner tree with respect to W or a Steiner W - tree. It is to be noted that $d(W)=d(u, v)$, when $W=\{u, v\}$. If v is an end vertex of a Steiner W-tree, then $v \in W$. Also if $\langle\mathrm{W}\rangle$ is connected, then any Steiner W -tree contains the elements of W only. The set of all vertices of G that lie on some Steiner W-tree is denoted by $S(W)$. If $S(W)=V$, then W is called a Steiner set for G. A Steiner set of minimum cardinality is a minimum Steiner set or simply a s-set of G and this cardinality is the Steiner number $s(G)$ of G. If W is a Steiner set of G and v a cut vertex of G, then v lies in every Steiner W-tree of G and so $W \cup\{v\}$ is also a Steiner set of G. The Steiner number of a graph was introduced in [2] and further studied in [3, 4, 6, 7]. Let x be a vertex of a connected graph G and $W \subset V(G)$ such that $x \notin W$. Then W is called an x-edge Steiner set of G if every vertex of G lies on some Steiner $W \cup\{x\}$ - tree of G. The minimum cardinality of an x-edge Steiner set of G is defined as x-edge Steiner number of G and denoted by $s_{1 x}(G)$. Any x-edge Steiner set of cardinality $s_{1 x}(G)$ is called an $s_{1 x}$-set of G. This concept is introduced in [8].

Theorem 1.1: [6] Every extreme vertex of G other than the vertex x (whether x is extreme or not) belongs to every x edge Steiner set for any vertex x in G.

2. THE TOTAL x-EDGE STEINER NUMBER OF GRAPH

Definition 2.1: Let x be a vertex of a connected graph G and $W \subset V(G)$. Then W is called a total x-edge Steiner set of G if W is an x-edge Steiner set of G and $<\mathrm{W}>$ has no isolated vertices. The minimum cardinality of a t total x-edge Steiner set of G is defined as total x - edge Steiner number of G and denoted by $s_{t 1 x}(\mathrm{G})$. Any total x-edge Steiner set of cardinality $s_{t 1 x}(\mathrm{G})$ is called a $s_{t 1 x}$ - set of G .

Note 2.2: The vertex does not belongs to any minimum x - edge Steiner set of G Where as the vertex may belongs to a total x -edge Steiner set of G .

Example 2.3: For the graph G in Figure 2.1, the minimum total x-edge Steiner sets and the total x-edge Steiner numbers are given in Table 2.1.

Figure2.1
Table-2.1

x-edge	$s_{t 1 x}$ sets	$s_{t 1 x}(G)$
v_{1}	$\left\{v_{2}, v_{4}, v_{5}, v_{7}\right\}$, $\left\{v_{2}, v_{3}, v_{5}, v_{6}\right\}$, $\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}$	4
v_{2}	$\left\{v_{1}, v_{2}, v_{4}, v_{5}, v_{6}\right\}$	5
v_{3}	$\left\{v_{1}, v_{2}, v_{5}, v_{6}\right\}$	4
v_{4}	$\left\{v_{1}, v_{2}, v_{5}, v_{6}, v_{7}\right\}$	5
v_{5}	$\left\{v_{1}, v_{2}\right\}$	2
v_{6}	$\left\{v_{1}, v_{2}, v_{3}, v_{5}\right\}$	4
v_{7}	$\left\{v_{1}, v_{2}, v_{4}, v_{5}, v_{6}\right\}$	5

Theorem 2.4: Every extreme vertex of G other than the vertex x (whether x is extreme or not) belongs to every total x -edge Steiner set for any vertex x in G.

Proof: Since every total x-edge Steiner set of is a x-edge Steiner set, the result follows from Theorem 1.1.
Theorem 2.5: Let x be a vertex of a connected graph G and v be an extreme vertex of G such that $x \neq v$. Then every total x-edge Steiner set of contains at least one vertex of $N(v)$.

Proof: Suppose there exists a total x-edge Steiner set of G such that W contains no element of $N(v)$. By Theorem 2.4, $\mathrm{v} \in W$. Then v is a isolated vertex of $\langle\mathrm{W}\rangle$.
Hence it follows that W is not total x-edge Steiner set of G.

Corollary 2.6: For the complete graph $K_{p}(p \geq 2), s_{t 1 x}\left(K_{p}\right)=p-1$ for every vertex x.
Theorem 2.7: For the cycle $G=C_{p}(p \geq 3), s_{t 1 x}(G)=2$ for every x in $\mathrm{V}(\mathrm{G})$.
Proof: Let $G=C_{p}(p \geq 4)$ be the cycle. Let p be even. Let x be any vertex of G and v be the antipodal vertex of x. Let z be an adjacent vertex of y. Let $W=\{y, z\}$ is a total x-edge Steiner set of G so that $s_{\mathrm{t} 1 x}(G)=2$.

Let p be odd. Let x be any vertex of G. Let y and z be two antipodal vertices of x. Then $W=\{y, z\}$ is a total x-edge Steiner of set of G so that $s_{t 1 x}(G)=2$.

Theorem 2.8: For a complete bipartite graph $G=K_{m, n}(2 \leq m \leq n)$ with bipartite set $X=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$, $Y=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}, s_{t 1 x}(G)=m+n-1$.

Proof: Let $X=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}, Y=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$, be the bipartite sets of G. Let $x \in X$ and $W=X-\{x\}$. Then it is clear that W is an x-edge Steiner set of G . However it $\langle\mathrm{W}\rangle$ has isolated vertices. Then it follows that every total x edge Steiner set of G contains at least one vertex of $X-\{x\}$ and at least one vertex of Y. Since $<\mathrm{W}>$ is connected, $\mathrm{S}=\mathrm{G}-\{\mathrm{x}\}$ is the unique minimum total x -edge Steiner set so that $s_{t 1 x}(G)=m+n-1$.

Theorem 2.9: For a star $G=K_{1, p-1}$,

$$
s_{t 1 x}(G)= \begin{cases}p & \text { if } x \text { is a cut vertex of } G \\ p-1 & \text { if } x \text { is an end vertex of } G\end{cases}
$$

Proof: If x is a cut vertex of G, then the result follows from Theorem 2.4 and 2.5 . If x is an end vertex of G, then the result follows from Theorem 2.4.

Theorem 2.10: For any vertex x in $\mathrm{G}, 2 \leq s_{t 1 x}(G) \leq p$.
Proof: Any total x-edge Steiner set needs at least two vertices. Therefore $s_{t 1 x}(G) \geq 2$. For a vertex $x, W=V(G)$ is an total x-edge Steiner set of G and so $s_{t 1 x}(G) \leq|W|=p$.

Remark 2.11: The bounds in Theorem 2.10 are sharp. For an odd cycle $G=C_{2 n+1}, s_{t 1 x}(G)=2$ for every vertex x in G. For the complete graph $K_{p}, s_{t 1 x}\left(K_{p}\right)=p-1$ for every vertex x in G. The inequality in Theorem 2.10 can also strict. For the graph G in Figure 2.1, $s_{t 1 x}(G)=4$ for $x=v_{1}$. Thus we have, $2<s_{t 1 x}(G)<p$.

Theorem 2.12: Let G be a connected graph. Let x be a vertex of degree $p-1$. Then $\mathrm{N}(x)$ is a subset of every total $x-$ edge Steiner set of G.

Proof: Let x be a vertex of degree $p-1$. Let $v_{1}, v_{2}, \ldots, v_{p-1}$ be the neighbors of x in G. Suppose that $v_{1} \in \mathrm{~W}$. Then the edge $x v_{1}$ lies on a Steiner W-tree of G, say T. Since $v_{1} \notin \mathrm{~W}_{\mathrm{x}}, v_{1}$ is not an end vertex of T. Let T^{\prime} be a tree obtained from T by removing the vertex v_{1} in T joining all the neighbors of v_{1} other than x in T to x. Then T^{\prime} is a Steiner W-tree such that $\left|V\left(T^{\prime}\right)\right|=|V(T)|-1$ Which is a contradiction to T a Steiner W-tree. Therefore all $\mathrm{N}(x)$ is a subset of every total x-edge Steiner set of G.

Theorem 2.13: Let G be a connected graph and x a vertex of degree $\mathrm{p}-1$. Which is not a cut vertex of G , then $s_{t 1 x}(G)$ $=p-1$.

Proof: Assume that x be a vertex of degree $p-1$. By Theorem 2.12, $s_{t 1 x}(G) \geq p-1$. Then $\mathrm{N}(x)$ is a total $x-$ edge Steiner set of G . Since $<\mathrm{W}>$ is connected, $<\mathrm{W}>$ has no isolated vertices. Therefore W is a total x-edge Steiner set of G so that $s_{t 1 x}(G)=p-1$.

Theorem 2.14: Let G be a connected graph and x a vertex of degree $p-1$ which is a cut vertex of G, then $s_{t 1 x}(G)=p$.

Proof: Assume that x be a vertex of degree $p-1$ which is a cut vertex of G . Let W be a total x-edge Steiner set of G . By Theorem 2.12, $\mathrm{N}(x)$ is a subset of every total x-edge Steiner set of G . Since $<\mathrm{N}(\mathrm{x})>$ contains isolated vertices, $\mathrm{N}(\mathrm{x})$ is not a total x-edge Steiner set of G and so $s_{t 1 x}(G) \geq p$. Hence it follows that $\mathrm{N}[\mathrm{x}]$ is a total x-edge Steiner set of G and so $s_{t 1 x}(G)=p$.

Theorem 2.15: For positive integers r, d and $n \geq 2$ with $r \leq d \leq 2 r$, there exists a connected graph G with rad $G=r$, $\operatorname{diam} G=d$ and $s_{t 1 x}(G)=n$ for some vertex x in G.

Proof: When $r=1$, If $d=1$, let $G=K_{n+1}$. Then by Corollary2.7, $\mathrm{s}_{1 \mathrm{x}}(\mathrm{G})=n$, for any vertex x in G. If $d=2$, let $G=K_{1, n}$. Then by Theorem 2.9, $s_{t 1 x}(G)=n$ for an end vertex x in G . Now, let $r \geq 2$. Construct a graph G with the desired properties as follows: Let $C_{2 r}: u_{1}, u_{2}, \ldots . u_{2 r}, u_{1}$ be a cycle of order $2 r$ and let $P_{d-r+1}: v_{0}, v_{1}, v_{2}, \ldots, v_{d-r} v_{0}$ be a path of order $d-r+1$. Let H be the graph obtained from $C_{2 r}$ and P_{d-r+1} by identifying u_{1} in $C_{2 r}$ and v_{0} in P_{d-r+1}. Let G be graph obtained from H by adding ($n-2$) new vertices $w_{1}, w_{2}, \ldots w_{n-2}$ to H and join each vertex $w_{i}(1 \leq i \leq n-2)$ to the vertex v_{d-r-1}. The graph G of Figure 2.2. Then rad $G=r$ and $\operatorname{diam} G=d$ and G has $\mathrm{n}-1$ end vertices. Let $\mathrm{x}=\mathrm{u}_{\mathrm{r}+1}$. Then by Theorem 2.4 and 2.5, $W=\left\{v_{d-r-1}, v_{d-r}, w_{1}, w_{2}, \ldots w_{n-2}\right\}$ is a subset of every total x-edge Steiner set of G. Now W is a total x-edge Steiner set of G. Since $<W>$ is connected, W is a total x-edge Steiner set of G so that $s_{t 1 x}(G)=\mathrm{n}-2+2=\mathrm{n}$.

Figure-2.2
Theorem 2.16: For a connected graph G, $1 \leq s_{1 x}(G) \leq s_{t 1 x}(G) \leq \mathrm{p}$.
Proof: Let x be a vertex of G. Any x-edge Steiner set of G needs atleast two vertices and so $s_{1 x}(G) \geq 1$. Also every total x-edge Steiner set of G and so $s_{1 x}(G) \leq s_{t 1 x}(G)$. Also $\mathrm{V}(\mathrm{G})$ is a total x-edge Steiner set of G and so $s_{t x}(G) \leq p$. Thus $1 \leq s_{x}(G) \leq s_{t 1 x}(G) \leq \mathrm{p}$.

Theorem 2.17: If p, a and b are positive integers such that $4 \leq \mathrm{a} \leq b \leq p-1$, then there exists a connected graph G of order p such that $s_{1 x}(G)=a$ and $s_{t 1 x}(G)=b$ for x be a vertex of G.

Proof: Let $P: v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ be the path on Five vertices. Let G be the graph obtained from by adding the new vertices $w_{1}, w_{2}, \ldots, w_{b-\mathrm{a}-1}$ and $z_{1}, z_{2}, \ldots, z_{\mathrm{a}-1}$ and join each $z_{i}(1 \leq i \leq \mathrm{a}-1)$ with v_{5} join each $w_{i}(1 \leq i \leq b-\mathrm{a}-1)$ with v_{1}, v_{2} and v_{3}. The graph G is shown in Figure 2.3.

Let $x=v_{1}$. Let $Z=\left\{z_{1}, z_{2}, \ldots, z_{\mathrm{a}-1}\right\}$. By Theorem $1.1, \mathrm{Z}$ is a subset of every x-edge Steiner set of G and so that $s_{1 x}(G) \geq a-1$. It is clear that Z is not a x-edge Steiner set of G and so that $s_{1 x}(G) \geq a$. However $\mathrm{Z} \cup\left\{v_{5}\right\}$ is a x-edge Steiner set of G and so $s_{1 x}(G)=\mathrm{a}$.

Next we prove that $s_{t 1 x}(G)=b$. It is easily seen that each $w_{i}(1 \leq i \leq b-a-1)$ is a subset of every total x-edge Steiner set of G. Let $Z_{1}=\mathrm{Z} \cup\left\{w_{1}, w_{2}, \ldots, w_{b-\mathrm{a}-1}\right\}$. Then Z_{1} is not a total x-edge Steiner set of G and so that $s_{t 1 x}(G) \geq a-$ $1+b-a-1=b-2$. Since $<Z_{1}>$ has no isolated vertices, v_{2} and v_{5} must lie Z_{2}. Now $Z_{2} \cup\left\{v_{2}, v_{5}\right\}$ is a total x edge Steiner set of G and so that $s_{t 1 x}(G)=\mathrm{b}$.

Figure-2.3

REFERENCES

1. F.Buckley, F. Harary, Distance in Graphs, Addition-Wesley, Redwood City, CA, 1990.
2. G. Chartrand and P. Zhang, The Steiner number of a graph, Discrete Mathematics Vol. 242 (2002), pp. 41-54.
3. Carmen Hernando, Tao Jiang, Merce Mora, Ignacio. M. Pelayo and Carlos Seara, On the Steiner, geodetic and hull number of graphs, Discrete Mathematics 293 (2005) 139-154.
4. R. Eballe, S. Canoy, Jr., Steiner sets in the join and composition of graphs, Congressus Numerantium, 170(2004)65-73.
5. A. Ostrand, Graphs with specified radius and diameter, Discrete Mathematics 4(1973) 71-75.
6. A. P. Santhakumaran and J. John, The Edge Steiner Number of a Graph, Journal of Discrete Mathematical Science and Cryptography Vol. 10(2007), No. 5, pp 677 - 696.
7. A. P. Santhakumaran and J. John, The forcing Steiner Number of a Graph, Discussiones Mathematicae Graph Theory 31(1) (2011) 171-181.
8. S.Robinson Chellathurai, A.Siva Jothi, The x-edge Steiner number of a graph (communicated).
[^0]
[^0]: Source of support: Proceedings of National Conference January 11-13, 2018, on Discrete \& Computational Mathematics (NCDCM - 2018), Organized by Department of Mathematics, University of Kerala, Kariavattom Thiruvanathapuram-695581.

