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ABSTRACT 
In this paper, Ig-*-closed sets and Ig-*-open sets are used to define and investigate a new class of functions called 
contra Ig-*-continuous functions in ideal topological spaces. We discuss the relationships with some other related 
functions. 
 
 
1. INTRODUCTION AND PRELIMINARIES 
 
By a space, we always mean a topological space (X ,τ) with no separation properties assumed. If A ⊂ X, cl(A) and int(A) 
will denote the closure and interior of A in (X, τ) respectively. 
 
Definition 1.1: A subset A of a space (X, τ) is said to be regular open [16] (resp. preclosed [3]) if A = int(cl(A)) (resp. 
cl(int(A)) ⊆ A). 
 
Definition 1.2: A subset A of a space (X,τ) is said to be g-closed if cl(A) ⊆ U whenever A ⊆ U and U is open in X. 
 
Definition 1.3:  A space (X, τ) is called locally indiscrete [12] if every open set is closed. 
 
The collection of all clopen subsets of X will be denoted by CO(X). We set CO(X, x) = {V ∈ CO(X)|  x ∈ V} for x ∈ X. 
 
Definition 1.4 [15]: A space (X, τ) is said to be 
1) Ultra Hausdorff if for each pair of distinct points x and y in X there exist U ∈ CO(X, x) and V ∈ CO(X, y) such that 

U ∩ V = φ$. 
2) Ultra normal if each pair of non-empty disjoint closed sets can be separated by disjoint clopen sets. 
 
Definition 1.5: A function f : (X,τ) → (Y, σ) is called preclosed [3] if the image of every closed subset of X is preclosed 
in Y. 
 
An ideal I on a topological space (X, τ) is a nonempty collection of subsets of X which satisfies 
1) A ∈ I  and B ⊆ A imply B ∈ I  and 
2) A ∈ I and B ∈ I imply A ∩ B ∈ I $. 
Given a topological space (X, τ) with an ideal I  on X and if P(X) is the set of all subsets of X, a set operator               
(.)* : P(X) → P(X), called a local function [6] of A with respect to τ and  I, is defined as follows: for A ⊂ X, A*(τ, I) = 
{x ∈ X | U ∩ A ∉ I $ for every U ∈ τ(x)} where τ(x) = {U ∈ τ | x ∈ U}. A Kuratowski closure operator cl*(.) for a 
topology $τ*(τ, I), called the *-topology, finer than τ, is defined by cl*r(A) = A ∪ A*(τ, I)$, [17]. When there is no 
chance of confusion, we will simply write A* for A*(τ, I)$ and $\tau^\star$ for τ*(τ, I). If I is an ideal on X then        
(X, τ, I) is called an ideal topological space or an ideal space. 
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In this paper, we introduce the notion of contra Ig-*-continuity in ideal topological spaces and discuss its properties and 
various characterizations. 
 
Lemma 1.6 [5]: Let (X, τ, I) be an ideal space and A, B subsets of X. Then the following properties hold: 
1) A ⊆ B → A* ⊆ B*, 
2) A* = cl(A*) ⊆ cl(A), 
3) (A*)* ⊆ A*, 
4)  (A ∪ B)* = A* ∪ B*, 
5)  (A ∩ B)* ⊆ A* ∩ B*. 
 
Definition 1.7: A subset A of an ideal topological space (X,τ, I) is said to be *-closed (τ*-closed) [5] if A* ⊆ A. The 
complement of a *-closed set is called *-open. 
 
Definition 1.8 [8]: Let (X,τ, I) be an ideal topological space and A ⊆  X. Then A is said to be *-g-closed set if         
cl(A) ⊆ U whenever A ⊆ U and U is *-open in X. The complement of a *-g-closed set is called a *-g-open set. 
 
Definition 1.9:  A subset A of an ideal space (X, τ, I) is said to be Ig-*-closed [13] if A* ⊆ U whenever A ⊆ U and U is 

*-open in X. 
The complement of an Ig-*-closed set is called Ig-*-open. 
The family of all Ig-*-open sets of (X,τ, Ig)$ is denoted by IG* O(X). 
 
Definition 1.10:  A subset A of an ideal space (X, τ, I)$ is said to be 
1) Ig-*-closed [10, 11] if A* ⊆ U whenever A ⊆ U and U is regular open in X. 
2) Ig-*-closed [2, 9] if A* ⊆  U whenever A ⊆ U and U is open in X. 
 
Remark 1.11: In ideal space, the following properties hold. 
1) every closed set is *-closed but not conversely [8]. 
2) every *-g-closed set is g-closed but not conversely [8]. 
3) every g-closed set is Ig-closed but not conversely [2, 9]. 
4) every Ig-closed set is Irg--closed but not conversely [10,11]. 
 
Definition 1.12: A function f: (X, τ, I) →  (Y,σ) is called Ig-continuous [4] if the inverse image of every closed set in Y 
is Ig-closed in X. 
 
Definition 1.13:  A function f : (X, τ, I) → (Y, σ)$ is said to be 
1) contra continuous [1] if for each open set V in Y, f-1(V) is closed in X, 
2) contra *-g-continuous [13] if for each open set V in Y, f-1(V) is *-g-closed in X. 
3) Ig-*-continuous [13] if f-1(V) is Ig-*-closed in (X,τ, I) for each closed set V in (Y, σ). 
4) contra Ig-continuous [14] if $f-1(V) is Ig-closed in (X,τ, I) for each open set V in  (Y, σ). 
 
2. CONTRA Ig-*-CONTINUITY 
 
Definition 2.1: An ideal topological space (X, τ, I) is said to be 
1) **-g-normal if each pair of non-empty disjoint closed sets can be separated by disjoint *-g-open sets. 
2) Ig-*-normal if each pair of non-empty disjoint closed sets can be separated by disjoint Ig-*-open sets. 
 
Example 2.2:  
1) Let X = {a, b, c}, τ = {φ, X, {a}, {b, c}} and I = {φ}. Then *-g-open sets are φ, X, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}. 

Therefore (X, τ, I) is **-g-normal. 
2) Let X = {a, b, c}, τ = {φ, X, {a}, {b}, {a, b}} and I = {φ, {a}} $. Then *-g-open sets are φ, X, {a}, {b}, {a, b}. 

Therefore (X, τ, I) is not *-g-normal. 
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Example 2.3: 
1) In Example 2.2, Ig-*-open sets are {φ, X, \{a}, {b}, {c}, {a, b}, {a, c}, {b, c}}. Therefore (X, τ, I) is Ig-*-normal. 
2) In Example 2.2, Ig-*-open sets are {φ, X, {a}, {b}, {a, b}}. Therefore (X,τ, I) is not Ig-*-normal. 
 
Definition 2.4: A function f : (X, τ, I) →  (Y, σ) is said to be contra Ig-*-continuous if f-1(V) is Ig-*-closed in (X, τ, I) for 
each open set V in (Y, σ). 
 
Proposition 2.5: Every Ig-*-closed set is Ig-closed. 
 
Proof:  The proof follows from the fact that every open set is *-open. 
 
However, converse need not be true as seen from the following Example. 
 
Example 2.6: Let X = {a, b, c}, τ = {φ, X, \{a}} and I = {φ, {c}}. Then {b} is an Ig-closed set but not Ig-*-closed. 
 
Proposition 2.7: Every *-g-closed set is Ig-*-closed. 
 
Proof: The proof follows from the fact that A* = cl(A).  
 
However, converse need not be true as seen from the following Example. 
 
Example 2.8: Let X = {a, b, c, d}, τ = {φ, X, {b}, {b, c, d}} and I = {φ, {c}}. Then {c} is an  Ig-*-closed set but not        

*-g-closed. 
 
Proposition 2.9: Every contra *-g-continuous function is contra Ig-*-continuous. 
 
Proof: Let f: (X, τ, I) → (Y, σ)  be a contra *-g-continuous function and let V be any open set in Y. Then, f-1(V) is *-g-
closed in X. Since every *-g-closed set is Ig-*-closed, f-1(V) is Ig-*-closed in X. Therefore f is contra Ig-*-continuous. 
 
However, converse need not be true as seen from the following Example. 
 
Example 2.10: Let X = Y = {a, b, c}, τ = σ = {φ, X, {a}}, I = J = {φ, {a}}. Then the identity function f: (X,τ, I) →      
(Y, σ, J) is contra Ig-*-continuous but not contra *-g-continuous. 
 
Remark 2.11:  The following Example shows that Ig-*-continuity and contra Ig-*-continuity are independent. 
 
Example 2.12:  
1) Let R be the set of all real numbers and τu the usual topology on R. The identity function f : (R, τu, I = {φ}) →     

(R, τu) is continuous and hence Ig-*-continuous but not contra Ig-*-continuous, since the preimage of each 
singleton fails to be Ig-*-open. 

2) Let X = {a, b} be the Sierpinski space with the topology τ = {φ, {a}, X} and I = {φ}. Let f : (X, τ, I) → (X, τ) be 
defined by f(a) = b and f(b) = a. Since the inverse image of every open set is Ig-*-closed, then f is contra Ig-*-
continuous, but f-1({b}) is not Ig-*-closed in (X, τ, I)$. Therefore f is not Ig-*-continuous. 

 
Proposition 2.13:  Every contra Ig-*-continuous function is contra Ig-continuous. 
 
Proof: The proof follows from the fact that every Ig-*-closed set is Ig-closed. 
 
However, converse need not be true as seen from the following Example. 
 
Example 2.14: Let X = {a, b, c}, τ = {φ, {a},{c}, {a, c}, X}, σ = {φ, {b}, {a, c}, X} and  I = {φ, {c}}. Then the identity 
function f : (X, τ, I) → (X, σ) is contra Ig-continuous but not contra  Ig-*-continuous. 
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Proposition 2.15: Every contra continuous function is contra Ig-*-continuous. 
 
Proof:  Let f : (X, τ, I) → (Y, σ) be a contra continuous function and let V be any open set in Y. Then, f-1(V) is closed in 
X. Since every closed set is Ig-*-closed by Remark 1.11 (1) and Proposition 2.7, f-1(V) is Ig-*-closed in X. 
 
However, converse need not be true as seen from the following Example. 
 
Example 2.16: In Example 2.10, the identity function f : (X, τ, I) → (Y, σ, J) is contra  Ig-$\star$-continuous but not 
contra continuous. 
 
Theorem 2.17: Let f : (X, τ, I) → (Y, σ) be a function. Then the following are equivalent: 
1) f is contra Ig-*-continuous. 
2) The inverse image of each closed set in Y is Ig-*-open in X. 
3) For each point x in X and each closed set V in Y with f(x)∈ V, there is an 
4) Ig-*-open set U in X containing x such that f(U)⊂ V. 
 
Proof:  
(1) ⇒ (2): Let F be closed in Y. Then Y-F is open in Y. By definition of contra Ig-*-continuity, f-1(Y-F) is Ig-*-closed in 
X. But f-1(Y-F) = X-f-1(F). This implies f-1(F) is Ig-*-open in X. 
 
(2) ⇒ (3): Let x ∈ X and V be any closed set in Y with f(x) ∈ V. By (2), f-1(V) is Ig-*-open in X. Set U = f-1(V). Then 
there is an Ig-*-open set U in X containing x such that f(U) ⊂ V. 
 
(3) ⇒ (1): Let x ∈ X and V be any closed set in Y with f(x) ∈ V. Then Y-V is open in Y with    f(x) ∈ V. By (3), there is 
an Ig-*-open set U in X containing x such that f(U)⊂ V. This implies U = f-1(V)$.  
Therefore, X - U = X - f-1(V) = f-1(Y - V) which is Ig-*-closed in X. 
 
Theorem 2.18:  Let f : (X, τ, I) → (Y, σ) and g : (Y, σ) → (Z, µ)$. Then the following properties hold: 
1) If f is contra Ig-*-continuous and g is continuous then g o f is contra Ig-*-continuous. 
2) If f is contra Ig-*-continuous and g is contra continuous then g o f is Ig-*-continuous. 
3) If f is Ig-*-continuous and g is contra continuous then g o $ is contra Ig-*-continuous. 
 
Proof: 
(1) Let V be a closed set in Z. Since g is continuous, g-1(V) is closed in Y. Since f is contra Ig-*-continuous,                 

(g o  f)-1(V) = f-1(g-1(V)) is Ig-*-open in X. Therefore g o f is contra   Ig-*-continuous. 
(2) Let V be any closed set in Z. Since g is contra continuous, g-1(V) is open in Y. Since f is contra Ig-*-continuous,     

(g o f)-1(V) = f-1(g-1(V)) is Ig-*-closed in X. Therefore g o f  is  Ig-*-continuous. 
(3) Let V be any closed set in Z. Since g is contra continuous, g-1(V) is open in Y. Since f is Ig-*-continuous,               (g 

o f)-1(V) = f-1(g-1(V)) is Ig-*-open in X. Therefore g o f is contra  Ig-*-continuous. 
 
Theorem 2.19: If a function f : (X, τ, I) → (Y, σ) is contra Ig-*-continuous and Y is regular, then f is Ig-*-continuous. 
 
Proof: Let x be an arbitrary point of X and V be an open set of Y containing f(x). Since Y is regular, there exists an open 
set W in Y containing f(x) such that cl(W) ⊂ V. Since f is contra Ig-*-continuous, by Theorem 2.17, there exists an Ig-*-
open set U containing x such that f(U) ⊂ cl(W). Thus f(U) ⊂ cl(W) ⊂ V. Hence f is Ig-*-continuous. 
 
Definition 2.20: A space (X, τ, I) is said to be an Ig-*-space if every Ig-*-open set of X is    open in X. 
 
Example 2.21: 
1) Let X = {a, b, c}, τ = {φ, X, {a}, {b}, {a, b}} and I = {φ, {a, c}}. Then Ig-*-open sets are {a}, {b}, {a, b}, φ, X. Then 

(X, τ, I) is Ig-*-space. 
2) Let X = {a, b, c}, τ = {φ, X, {b}, {a, c}} and I = {φ, {c}}. Then (X, τ, I) is not  Ig-*-space. 
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Theorem 2.22: If a function f : (X, τ, I) → (Y, σ) is contra Ig-*-continuous and X is an Ig-*-space then f is contra 
continuous. 
 
Proof: Let V be a closed set in Y. Since f is contra Ig-*-continuous, f-1(V) is Ig-*-open in X. Since X is an Ig-*-space, f-

1(V) is open in X. Therefore f is contra continuous. 
 
Definition 2.23: An ideal topological space (X,τ, I) is said to be Ig-*-T2 space if for each pair of distinct points x and y 
in (X, τ, I), there exist an Ig-*-open set U containing x and an   Ig-*-open set V containing y such that U ∩ V = φ. 
 
Example 2.24:  
1) Let X = {a, b, c}, τ = {φ, X, {a}, {b, c}} and I = {φ}. Then (X, τ, I) is $\mathcal{I} g$-*-T2 space. 
2) Let X = {a, b, c}, τ = {φ, X, {a}} and I = {φ}. Then (X, τ, I) is not Ig-*-T2 space. 
 
Theorem 2.25: If (X, τ, I) is an ideal topological space and for each pair of distinct points x1, x2 in X, there exists a 
function f from (X, τ, I) into a Urysohn space Y such that f(x1) ≠ f(x2) and f is contra Ig-*-continuous at x1 and x2, then X 
is Ig-*-T2. 
 
Proof: Let x1 and x2 be any two distinct points in X. Then by hypothesis, there is a function   f : (X, τ, I) → (Y, σ), such 
that f(x1) ≠ f(x2). Let yi = f(xi) for i = 1, 2. Then y1 ≠ y2. Since Y is Urysohn, there exist open neighbourhoods 

1yV and 

2yV  of y1 and y2 respectively in Y such that cl(
1yV ) ∩  cl(

2yV ) = φ. Since f is contra Ig-*-continuous, there exists an 

Ig-*-open set 
ixU  of xi in X such that )(

ixUf  ⊂ )(
iyVcl  for i = 1, 2. Hence we get 

1xU ∩ 
2xU = φ  because 

)(
1yVcl ∩ )(

2yVcl  = φ. Thus X is Ig-*-T2. 

 
Corollary 2.26: If f is a contra Ig-*-continuous injection of an ideal topological space   (X, τ, I) into a Urysohn space 
(Y, σ), then (X,τ, I) is Ig-*-T2. 
 
Proof: Let x1 and x2 be any pair of distinct points in X. Since f is contra Ig-*-continuous and injective, we have f(x1) ≠  
f(x2). Therefore by Theorem 2.25, X is Ig-*-T2. 
 
Corollary 2.27: If f is a contra Ig-*-continuous injection of an ideal topological space (X,τ, I) into a Ultra Hausdorff 
space (Y, σ), then (X, τ, I) is Ig-*-T2. 
 
Proof: Let x1 and x2 be any two distinct points in X. Then since f is injective and Y is Ultra Hausdorff, f(x1) ≠ f(x2) and 
there are two clopen sets V1 and V2 in Y such that f(x1) ∈ V1, f(x2) ∈ V2 and V1 ∩ V2 = φ. Then xi ∈ f-1(Vi) ∈ IG* O(X) 
for i = 1, 2 and f-1(V1) ∩ f-1(V2) = φ. Thus X is Ig-*-T2. 
 
Theorem 2.28: If f : (X, τ, I) → (Y, σ) is a contra Ig-*-continuous, closed injection and Y is Ultra normal, then (X,τ, I) 
is Ig-*-normal. 
 
Proof: Let F1 and F2 be disjoint closed subsets of X. Since f is closed and injective, f(F1) and f(F2) are disjoint closed 
subsets of Y. Since Y is Ultra normal, f(F1) and f(F2) are separated by disjoint clopen sets V1 and V2 respectively. Hence 
Fi ⊂ f-1(Vi), f-1(Vi) ∈ IG* O(X) for i = 1, 2 and f-1(V1) ∩ f-1(V2) = φ. Thus X is Ig-*-normal. 
 
Definition 2.29: A graph G(f) of a function f : (X, τ, I) → (Y,σ) is said to be contra  Ig-*-closed if for each                   
(x, y) ∈ (X ×  Y) \ G(f), there exist an U ∈ IG* O(X) containing x and a closed set V of (Y, σ) containing y such that 
f(U) ∩ V = φ. 
 
Theorem 2.30: If f : (X, τ, I) → (Y, σ) is contra Ig-\continuous and (Y, σ) is Urysohn, then G(f) is contra Ig-\closed in   
X ×  Y. 
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Proof: Let (x, y) ∈ (X ×  Y) \ G(f), then f(x) ≠ y and there exist open sets V, W such that   f(x) ∈ V, y ∈ W and          
cl(V) ∩ cl(W) = φ. Since f is contra Ig-*-continuous there exists U ∈ IG* O(X) containing x such that f(U) ⊂ cl(V).    
 
Since cl(V) ∩ cl(W) = φ, we have f(U) ∩ cl(W) = φ. This shows that G(f) is contra Ig-*-closed in X ×  Y. 
 
Remark 2.31: The following Example shows that the condition Urysohn on the space (Y, σ) in Theorem 2.30 cannot be 
dropped. 
 
Example 2.32: Let X = Y= {a, b, c}, \tau = {φ, {a}, X} = σ and I = {φ, {a}}. Then X is not a Urysohn space. Also the 
identity function f : (X, τ, I) → (Y,σ) is contra Ig-*-continuous but not contra Ig-*-closed. 
 
Corollary 2.33: If f : (X, τ) → (Y, σ) is contra *-g-continuous function and (Y, σ) is a Urysohn space, then G(f) is 
contra-*-g-closed in X×Y. 
 
Proof: The proof follows from the Theorem 2.30 if I = {φ}. 
 
Definition 2.34:  An ideal topological space (X, τ, I) is said to be Ig-*-connected if (X, τ, I) cannot be expressed as the 
union of two disjoint nonempty Ig-*-open subsets of (X, τ, I). 
 
Example 2.35: 
1) Let X = {a, b, c}, τ = {φ, X, {a}} and I = {φ}. Then Ig-*-open sets are {a},{b},{c}, {a, b}, {a, c}, φ, X is                  

Ig-*-connected. 
2) Let X = {a, b, c}, τ = {φ, X, {b}, {b, c}} and I = {φ, {c}}. Then (X, τ, I) is not   Ig-*-connected. 
 
Theorem 2.36: A contra Ig-*-continuous image of a Ig-*-connected space is connected. 
 
Proof: Let f : (X, τ, I) → (Y, σ) be a contra Ig-*-continuous function of an Ig-*-connected space (X, τ, I) onto a 
topological space (Y, σ). If possible, let Y be disconnected. Let A and B form a disconnection of Y. Then A and B are 
clopen and Y = A ∪ B where A ∩ B =φ. Since f is contra Ig-*-continuous, X = f-1(Y) = f-1(A ∪ B) = f-1}(A) ∪ f-1(B), 
where f-1(A) and f-1(B) are nonempty Ig-*-open sets in X. Also f-1(A) ∩ f-1(B) = φ. Hence X is not Ig-*-connected. This is 
a contradiction. Therefore Y is connected. 
 
Definition 2.37: An ideal topological space (X, τ, I) is said to be *-g-connected if (X, τ, I) cannot be exp*ressed as the 
union of two disjoint non-empty *-g-open subsets of (X,τ, I). 
 
Example 2.38: 
1) Let X = {a, b, c}, τ = {φ, X, {b}, {b, c}} and I = {φ, {c}}. Then (X,τ, I) is  *-g-connected. 
2) Let X = {a, b, c}, τ = {φ, X, {a}, {b, c}} and I = {φ}. Then (X, τ, I) is not *-g-connected. 
 
Corollary 2.39: A contra *-g-continuous image of a *-g-connected space is connected. 
 
Proof:  The proof follows from the Theorem 2.36 if I = {φ}. 
 
Lemma 2.40: For an ideal topological space (X, τ, I)$, the following are equivalent. 
1) X is Ig-*-connected. 
2) The only subset of X which are both Ig-*-open and Ig-*-closed are the empty set φ  and X. 
 
Proof:  
(1) ⇒ (2): Let F be an Ig-*-open and Ig-*-closed subset of X. Then X - F is both  Ig-*-open and Ig-*-closed. Since X is 
Ig-*-connected, X can be expressed as union of two disjoint nonempty Ig-*-open sets X and X - F, which implies X - F is 
empty. 
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(2) ⇒ (1): Suppose X = U ∪ V where U and V are disjoint nonempty Ig-*-open subsets of X. Then U is both Ig-*-open 
and Ig-*-closed. By assumption either U = φ or X which contradicts the assumption that U and V are disjoint nonempty 
Ig-*-open subsets of X. Therefore X is   Ig-*-connected. 
 
Theorem 2.41:  Let f : (X, τ, I) → (Y,σ) be a surjective preclosed contra Ig-*-continuous function. If X is an Ig-*-space, 
then Y is locally indiscrete. 
 
Proof: Suppose that V is open in Y. Since f is contra Ig-*-continuous, f-1(V) = U is Ig-*-closed in X. Since X is an          
Ig-*-space, U is closed in X. Since f is preclosed, then V is preclosed in Y. Now we have cl(V) = cl(int(V)) ⊂ V. This 
means that V is closed and hence Y is locally indiscrete. 
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