Volume 9, No. 4, April - 2018 (Special Issue) International Journal of Mathematical Archive-9(4), 2018, 46-52 MAAvailable online through www.ijma.info ISSN 2229 - 5046

NEW CONTRA CONTINUITY AND SEPARATION AXIOMS

C. RAJAN¹ AND M. RAJAKALAIVANAN²

¹Department of Mathematics,\ Vivekananda College, Thiruvedagam (P.O.), Sholavandan, Madurai District, Tamil Nadu, India.

²Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai District, Tamil Nadu, India.

E-mail: rajanc2012@gamil.com¹, rajakalaivanan@yahoo.com²

ABSTRACT

In this paper, I_{g} -*-closed sets and I_{g} -*-open sets are used to define and investigate a new class of functions called contra I_{g} -*-continuous functions in ideal topological spaces. We discuss the relationships with some other related functions.

1. INTRODUCTION AND PRELIMINARIES

By a space, we always mean a topological space (X, τ) with no separation properties assumed. If $A \subset X$, cl(A) and int(A) will denote the closure and interior of A in (X, τ) respectively.

Definition 1.1: A subset A of a space (X, τ) is said to be regular open [16] (resp. preclosed [3]) if A = int(cl(A)) (resp. $cl(int(A)) \subseteq A$).

Definition 1.2: A subset A of a space (X, τ) is said to be g-closed if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

Definition 1.3: A space (X, τ) is called locally indiscrete [12] if every open set is closed.

The collection of all clopen subsets of X will be denoted by CO(X). We set $CO(X, x) = \{V \in CO(X) | x \in V\}$ for $x \in X$.

Definition 1.4 [15]: A space (X, τ) is said to be

- 1) Ultra Hausdorff if for each pair of distinct points x and y in X there exist $U \in CO(X, x)$ and $V \in CO(X, y)$ such that $U \cap V = \phi$ \$.
- 2) Ultra normal if each pair of non-empty disjoint closed sets can be separated by disjoint clopen sets.

Definition 1.5: A function $f: (X, \tau) \to (Y, \sigma)$ is called preclosed [3] if the image of every closed subset of X is preclosed in Y.

An ideal I on a topological space (X, τ) is a nonempty collection of subsets of X which satisfies

1) $A \in I$ and $B \subseteq A$ imply $B \in I$ and

2) $A \in I$ and $B \in I$ imply $A \cap B \in I$ \$.

Given a topological space (X, τ) with an ideal I on X and if $\mathbf{P}(X)$ is the set of all subsets of X, a set operator $(.)^* : \mathbf{P}(X) \to \mathbf{P}(X)$, called a local function [6] of A with respect to τ and I, is defined as follows: for $A \subset X$, $A^*(\tau, I) = \{x \in X \mid U \cap A \notin I \}$ for every $U \in \tau(x)\}$ where $\tau(x) = \{U \in \tau \mid x \in U\}$. A Kuratowski closure operator $cl^*(.)$ for a topology $\tau^*(\tau, I)$, called the *-topology, finer than τ , is defined by $cl^*r(A) = A \cup A^*(\tau, I)$, [17]. When there is no chance of confusion, we will simply write A^* for $A^*(\tau, I)$ and $\tau^*(\tau, I)$. If I is an ideal on X then (X, τ, I) is called an ideal topological space or an ideal space.

International Journal of Mathematical Archive- 9(4), April – 2018

CONFERENCE PAPER

In this paper, we introduce the notion of contra $I_{g^{-*}}$ -continuity in ideal topological spaces and discuss its properties and various characterizations.

Lemma 1.6 [5]: Let (X, τ, I) be an ideal space and A, B subsets of X. Then the following properties hold:

1) $A \subset B \rightarrow A^* \subset B^*$,

2) $A^* = cl(A^*) \subseteq cl(A),$ 3) $(A^*)^* \subseteq A^*$,

- 4)
- $(\mathbf{A} \cup \mathbf{B})^* = \mathbf{A}^* \cup \mathbf{B}^*,$ 5) $(A \cap B)^* \subseteq A^* \cap B^*.$

Definition 1.7: A subset A of an ideal topological space (X, τ, I) is said to be *-closed (τ *-closed) [5] if $A^* \subseteq A$. The complement of a *-closed set is called *-open.

Definition 1.8 [8]: Let (X, τ, I) be an ideal topological space and $A \subseteq X$. Then A is said to be *-g-closed set if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is *-open in X. The complement of a *-g-closed set is called a *-g-open set.

Definition 1.9: A subset A of an ideal space (X, τ, I) is said to be $I_{e^{-*}}$ -closed [13] if $A^* \subseteq U$ whenever $A \subseteq U$ and U is *-open in X.

The complement of an I_g -*-closed set is called I_g -*-open. The family of all I_g -*-open sets of (X, τ, I_g) \$ is denoted by $IG^* O(X)$.

Definition 1.10: A subset A of an ideal space (X, τ, I) is said to be

- 1) I_{g} -*-closed [10, 11] if $A^* \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.
- 2) I_{g} -*-closed [2, 9] if $A^* \subseteq U$ whenever $A \subseteq U$ and U is open in X.

Remark 1.11: In ideal space, the following properties hold.

- 1) every closed set is *-closed but not conversely [8].
- 2) every *-g-closed set is g-closed but not conversely [8].
- 3) every g-closed set is I_{g} -closed but not conversely [2, 9].
- 4) every I_g -closed set is I_{rg} -closed but not conversely [10,11].

Definition 1.12: A function $f: (X, \tau, I) \to (Y, \sigma)$ is called Ig-continuous [4] if the inverse image of every closed set in Y is I_g -closed in X.

Definition 1.13: A function $f: (X, \tau, I) \rightarrow (Y, \sigma)$ is said to be

- 1) contra continuous [1] if for each open set V in Y, $f^{I}(V)$ is closed in X,
- 2) contra *-g-continuous [13] if for each open set V in Y, f'(V) is *-g-closed in X.
- 3) I_{g} -*-continuous [13] if $f^{1}(V)$ is I_{g} -*-closed in (X, τ, I) for each closed set V in (Y, σ) .
- 4) contra I_g -continuous [14] if $f^1(V)$ is I_g -closed in (X, τ, I) for each open set V in (Y, σ) .

2. CONTRA Ig-*-CONTINUITY

Definition 2.1: An ideal topological space (X, τ, I) is said to be

- **-g-normal if each pair of non-empty disjoint closed sets can be separated by disjoint *-g-open sets. 1)
- 2) I_{g} -*-normal if each pair of non-empty disjoint closed sets can be separated by disjoint I_{g} -*-open sets.

Example 2.2:

- 1) Let $X = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{b, c\}\}$ and $I = \{\phi\}$. Then *-g-open sets are $\phi, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}$. Therefore (X, τ, I) is **-g-normal.
- 2) Let $X = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and $I = \{\phi, \{a\}\}$ \$. Then *-g-open sets are $\phi, X, \{a\}, \{b\}, \{a, b\}$. Therefore (X, τ, I) is not *-g-normal.

© 2018, IJMA. All Rights Reserved

CONFERENCE PAPER

Example 2.3:

- 1) In Example 2.2, I_{g} -*-open sets are { ϕ , X, \{a}, {b}, {c}, {a, b}, {a, c}, {b, c}}. Therefore (X, τ , I) is I_{g} -*-normal.
- 2) In Example 2.2, I_g -*-open sets are { ϕ , X, {a}, {b}, {a, b}}. Therefore (X, τ , I) is not I_g -*-normal.

Definition 2.4: A function $f: (X, \tau, I) \rightarrow (Y, \sigma)$ is said to be contra I_{g} -*-continuous if $f^{I}(V)$ is I_{g} -*-closed in (X, τ, I) for each open set V in (Y, σ) .

Proposition 2.5: *Every* I_{g} -*-*closed set is* I_{g} -*closed.*

Proof: The proof follows from the fact that every open set is *-open.

However, converse need not be true as seen from the following Example.

Example 2.6: Let $X = \{a, b, c\}, \tau = \{\phi, X, \backslash \{a\}\}$ and $I = \{\phi, \{c\}\}$. Then $\{b\}$ is an I_g -closed set but not I_g -*-closed.

Proposition 2.7: *Every* *-*g*-*closed set is* I_g -*-*closed.*

Proof: The proof follows from the fact that $A^* = cl(A)$.

However, converse need not be true as seen from the following Example.

Example 2.8: Let $X = \{a, b, c, d\}$, $\tau = \{\phi, X, \{b\}, \{b, c, d\}\}$ and $I = \{\phi, \{c\}\}$. Then $\{c\}$ is an I_g -*-closed set but not *-g-closed.

Proposition 2.9: Every contra *-g-continuous function is contra I_g -*-continuous.

Proof: Let $f: (X, \tau, I) \to (Y, \sigma)$ be a contra *-g-continuous function and let V be any open set in Y. Then, $f^{I}(V)$ is *-g-closed in X. Since every *-g-closed set is I_{g} -*-closed, $f^{I}(V)$ is I_{g} -*-closed in X. Therefore f is contra I_{g} -*-continuous.

However, converse need not be true as seen from the following Example.

Example 2.10: Let $X = Y = \{a, b, c\}$, $\tau = \sigma = \{\phi, X, \{a\}\}$, $I = J = \{\phi, \{a\}\}$. Then the identity function $f: (X, \tau, I) \rightarrow (Y, \sigma, J)$ is contra I_{g} -*-continuous but not contra *-g-continuous.

Remark 2.11: The following Example shows that $I_{g^{-}}$ -continuity and contra $I_{g^{-}}$ -continuity are independent.

Example 2.12:

- 1) Let R be the set of all real numbers and τ_u the usual topology on R. The identity function $f: (R, \tau_w, I = \{\phi\}) \rightarrow (R, \tau_u)$ is continuous and hence I_{g} -*-continuous but not contra I_{g} -*-continuous, since the preimage of each singleton fails to be I_{g} -*-open.
- 2) Let $X = \{a, b\}$ be the Sierpinski space with the topology $\tau = \{\phi, \{a\}, X\}$ and $I = \{\phi\}$. Let $f: (X, \tau, I) \to (X, \tau)$ be defined by f(a) = b and f(b) = a. Since the inverse image of every open set is I_{g} -*-closed, then f is contra I_{g} -*-continuous, but $f^{1}(\{b\})$ is not I_{e} -*-closed in (X, τ, I) \$. Therefore f is not I_{e} -*-continuous.

Proposition 2.13: Every contra I_{g} -*-continuous function is contra I_{g} -continuous.

Proof: The proof follows from the fact that every I_g -*-closed set is I_g -closed.

However, converse need not be true as seen from the following Example.

Example 2.14: Let $X = \{a, b, c\}$, $\tau = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}$, $\sigma = \{\phi, \{b\}, \{a, c\}, X\}$ and $I = \{\phi, \{c\}\}$. Then the identity function $f : (X, \tau, I) \rightarrow (X, \sigma)$ is contra I_g -continuous but not contra I_g -*-continuous.

© 2018, IJMA. All Rights Reserved

CONFERENCE PAPER

National Conference January 11-13, 2018, on Discrete & Computational Mathematics (NCDCM - 2018), Organized by Department of Mathematics, University of Kerala, Kariavattom Thiruvanathapuram-695581.

48

Proposition 2.15: Every contra continuous function is contra I_{g} -*-continuous.

Proof: Let $f: (X, \tau, I) \to (Y, \sigma)$ be a contra continuous function and let V be any open set in Y. Then, f'(V) is closed in X. Since every closed set is I_{g} -*-closed by Remark 1.11 (1) and Proposition 2.7, f'(V) is I_{g} -*-closed in X.

However, converse need not be true as seen from the following Example.

Example 2.16: In Example 2.10, the identity function $f: (X, \tau, I) \rightarrow (Y, \sigma, J)$ is contra I_g -\$\star\$-continuous but not contra continuous.

Theorem 2.17: Let $f: (X, \tau, I) \rightarrow (Y, \sigma)$ be a function. Then the following are equivalent:

- 1) f is contra I_g -*-continuous.
- 2) The inverse image of each closed set in Y is I_g -*-open in X.
- 3) For each point x in X and each closed set V in Y with $f(x) \in V$, there is an
- 4) I_{g} -*-open set U in X containing x such that $f(U) \subset V$.

Proof:

(1) \Rightarrow (2): Let *F* be closed in *Y*. Then *Y*-*F* is open in *Y*. By definition of contra I_{g^-*} -continuity, $f^{l}(Y-F)$ is I_{g^-*} -closed in *X*. But $f^{1}(Y-F) = X - f^{l}(F)$. This implies $f^{l}(F)$ is I_{g^-*} -open in *X*.

(2) \Rightarrow (3): Let $x \in X$ and V be any closed set in Y with $f(x) \in V$. By (2), $f^{I}(V)$ is I_{g} -*-open in X. Set $U = f^{I}(V)$. Then there is an I_{g} -*-open set U in X containing x such that $f(U) \subset V$.

(3) \Rightarrow (1): Let $x \in X$ and V be any closed set in Y with $f(x) \in V$. Then Y-V is open in Y with $f(x) \in V$. By (3), there is an $I_{g^-}*$ -open set U in X containing x such that $f(U) \subset V$. This implies $U = f^1(V)$ \$. Therefore, X - U = X - $f^1(V) = f^1(Y - V)$ which is $I_{g^-}*$ -closed in X.

Theorem 2.18: Let $f: (X, \tau, I) \to (Y, \sigma)$ and $g: (Y, \sigma) \to (Z, \mu)$. Then the following properties hold:

- 1) If f is contra I_{g} -*-continuous and g is continuous then g o f is contra I_{g} -*-continuous.
- 2) If f is contra I_{g} -*-continuous and g is contra continuous then g of is I_{g} -*-continuous.
- 3) If f is I_g -*-continuous and g is contra continuous then g o \$ is contra I_g -*-continuous.

Proof:

- (1) Let V be a closed set in Z. Since g is continuous, $g^{-1}(V)$ is closed in Y. Since f is contra I_{g^-*} -continuous, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is I_{g^-*} -open in X. Therefore $g \circ f$ is contra I_{g^-*} -continuous.
- (2) Let V be any closed set in Z. Since g is contra continuous, $g^{-1}(V)$ is open in Y. Since f is contra I_{g^-*} -continuous, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is I_{g^-*} -closed in X. Therefore $g \circ f$ is I_{g^-*} -continuous.
- (3) Let V be any closed set in Z. Since g is contra continuous, $g^{-1}(V)$ is open in Y. Since f is I_g -*-continuous, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is I_g -*-open in X. Therefore g o f is contra I_g -*-continuous.

Theorem 2.19: If a function $f: (X, \tau, I) \rightarrow (Y, \sigma)$ is contra I_g -*-continuous and Y is regular, then f is I_g -*-continuous.

Proof: Let *x* be an arbitrary point of *X* and *V* be an open set of *Y* containing f(x). Since *Y* is regular, there exists an open set *W* in *Y* containing f(x) such that $cl(W) \subset V$. Since *f* is contra I_{g^-*} -continuous, by Theorem 2.17, there exists an I_{g^-*} -open set *U* containing *x* such that $f(U) \subset cl(W)$. Thus $f(U) \subset cl(W) \subset V$. Hence *f* is I_{g^-*} -continuous.

Definition 2.20: A space (X, τ, I) is said to be an I_g -*-space if every I_g -*-open set of X is open in X.

Example 2.21:

- 1) Let $X = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and $I = \{\phi, \{a, c\}\}$. Then I_g -*-open sets are $\{a\}, \{b\}, \{a, b\}, \phi, X$. Then (X, τ, I) is I_g -*-space.
- 2) Let $X = \{a, b, c\}, \tau = \{\phi, X, \{b\}, \{a, c\}\}$ and $I = \{\phi, \{c\}\}$. Then (X, τ, I) is not $I_{g^{-*}}$ -space.

© 2018, IJMA. All Rights Reserved

CONFERENCE PAPER

National Conference January 11-13, 2018, on Discrete & Computational Mathematics (NCDCM - 2018), Organized by Department of Mathematics, University of Kerala, Kariavattom Thiruvanathapuram-695581.

49

Theorem 2.22: If a function $f: (X, \tau, I) \to (Y, \sigma)$ is contra I_g -*-continuous and X is an I_g -*-space then f is contra continuous.

Proof: Let *V* be a closed set in *Y*. Since *f* is contra I_{g} -*-continuous, $f^{l}(V)$ is I_{g} -*-open in *X*. Since *X* is an I_{g} -*-space, $f^{l}(V)$ is open in *X*. Therefore *f* is contra continuous.

Definition 2.23: An ideal topological space (X, τ, I) is said to be $I_{g^-}*-T_2$ space if for each pair of distinct points x and y in (X, τ, I) , there exist an $I_{g^-}*-$ open set U containing x and an $I_{g^-}*-$ open set V containing y such that $U \cap V = \phi$.

Example 2.24:

Let X = {a, b, c}, τ = {φ, X, {a}, {b, c}} and I = {φ}. Then (X, τ, I) is \$\mathcal{I} g\$-*-T₂ space.
Let X = {a, b, c}, τ = {φ, X, {a}} and I = {φ}. Then (X, τ, I) is not I_g-*-T₂ space.

Theorem 2.25: If (X, τ, I) is an ideal topological space and for each pair of distinct points x_1, x_2 in X, there exists a function f from (X, τ, I) into a Urysohn space Y such that $f(x_1) \neq f(x_2)$ and f is contra I_g -*-continuous at x_1 and x_2 , then X is I_g -*- T_2 .

Proof: Let x_i and x_2 be any two distinct points in *X*. Then by hypothesis, there is a function $f: (X, \tau, I) \to (Y, \sigma)$, such that $f(x_1) \neq f(x_2)$. Let $y_i = f(x_i)$ for i = 1, 2. Then $y_1 \neq y_2$. Since *Y* is Urysohn, there exist open neighbourhoods V_{y_1} and V_{y_2} of y_i and y_2 respectively in *Y* such that $cl(V_{y_1}) \cap cl(V_{y_2}) = \phi$. Since *f* is contra I_{g} -*-continuous, there exists an I_{g} -*-open set U_{x_i} of x_i in *X* such that $f(U_{x_i}) \subset cl(V_{y_i})$ for i = 1, 2. Hence we get $U_{x_1} \cap U_{x_2} = \phi$ because $cl(V_{y_1}) \cap cl(V_{y_2}) = \phi$. Thus *X* is I_{g} -*-T₂.

Corollary 2.26: If f is a contra I_{g} -*-continuous injection of an ideal topological space (X, τ, I) into a Urysohn space (Y, σ) , then (X, τ, I) is I_{g} -*- T_{2} .

Proof: Let x_1 and x_2 be any pair of distinct points in *X*. Since *f* is contra I_{g^-} -continuous and injective, we have $f(x_1) \neq f(x_2)$. Therefore by Theorem 2.25, *X* is I_{g^-} - T_2 .

Corollary 2.27: If f is a contra I_{g} -*-continuous injection of an ideal topological space (X, τ, I) into a Ultra Hausdorff space (Y, σ) , then (X, τ, I) is I_{g} -*- T_{2} .

Proof: Let x_1 and x_2 be any two distinct points in X. Then since f is injective and Y is Ultra Hausdorff, $f(x_1) \neq f(x_2)$ and there are two clopen sets V_1 and V_2 in Y such that $f(x_1) \in V_1$, $f(x_2) \in V_2$ and $V_1 \cap V_2 = \phi$. Then $x_i \in f^1(V_i) \in IG^* O(X)$ for i = 1, 2 and $f^1(V_1) \cap f^1(V_2) = \phi$. Thus X is $I_e^{-*-T_2}$.

Theorem 2.28: If $f: (X, \tau, I) \to (Y, \sigma)$ is a contra I_{g} -*-continuous, closed injection and Y is Ultra normal, then (X, τ, I) is I_{g} -*-normal.

Proof: Let F_1 and F_2 be disjoint closed subsets of X. Since f is closed and injective, $f(F_1)$ and $f(F_2)$ are disjoint closed subsets of Y. Since Y is Ultra normal, $f(F_1)$ and $f(F_2)$ are separated by disjoint clopen sets V_1 and V_2 respectively. Hence $F_i \subset f^1(V_i), f^1(V_i) \in IG^* O(X)$ for i = 1, 2 and $f^1(V_1) \cap f^1(V_2) = \phi$. Thus X is $I_{g^{-*}}$ -normal.

Definition 2.29: A graph G(f) of a function $f : (X, \tau, I) \to (Y, \sigma)$ is said to be contra $I_{g^{-*}}$ -closed if for each $(x, y) \in (X \times Y) \setminus G(f)$, there exist an $U \in IG^* O(X)$ containing x and a closed set V of (Y, σ) containing y such that $f(U) \cap V = \phi$.

Theorem 2.30: If $f: (X, \tau, I) \to (Y, \sigma)$ is contra I_g -\continuous and (Y, σ) is Urysohn, then G(f) is contra I_g -\closed in $X \times Y$.

© 2018, IJMA. All Rights Reserved

CONFERENCE PAPER

Proof: Let $(x, y) \in (X \times Y) \setminus G(f)$, then $f(x) \neq y$ and there exist open sets V, W such that $f(x) \in V$, $y \in W$ and $cl(V) \cap cl(W) = \phi$. Since f is contra I_{g^*} -*-continuous there exists $U \in IG^* O(X)$ containing x such that $f(U) \subset cl(V)$.

Since $cl(V) \cap cl(W) = \phi$, we have $f(U) \cap cl(W) = \phi$. This shows that G(f) is contra I_{g^*} -closed in $X \times Y$.

Remark 2.31: The following Example shows that the condition Urysohn on the space (Y, σ) in Theorem 2.30 cannot be dropped.

Example 2.32: Let $X = Y = \{a, b, c\}$, $\forall au = \{\phi, \{a\}, X\} = \sigma$ and $I = \{\phi, \{a\}\}$. Then X is not a Urysohn space. Also the identity function $f: (X, \tau, I) \rightarrow (Y, \sigma)$ is contra I_{g^-} -continuous but not contra I_{g^-} -closed.

Corollary 2.33: If $f: (X, \tau) \to (Y, \sigma)$ is contra *-g-continuous function and (Y, σ) is a Urysohn space, then G(f) is contra-*-g-closed in $X \times Y$.

Proof: The proof follows from the Theorem 2.30 if $I = \{\phi\}$.

Definition 2.34: An ideal topological space (X, τ, I) is said to be I_g -*-connected if (X, τ, I) cannot be expressed as the union of two disjoint nonempty I_g -*-open subsets of (X, τ, I) .

Example 2.35:

- 1) Let $X = \{a, b, c\}, \tau = \{\phi, X, \{a\}\}$ and $I = \{\phi\}$. Then I_{g} -*-open sets are $\{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \phi, X$ is I_{g} -*-connected.
- 2) Let $X = \{a, b, c\}, \tau = \{\phi, X, \{b\}, \{b, c\}\}$ and $I = \{\phi, \{c\}\}$. Then (X, τ, I) is not I_g -*-connected.

Theorem 2.36: A contra I_{g} -*-continuous image of a I_{g} -*-connected space is connected.

Proof: Let $f: (X, \tau, I) \to (Y, \sigma)$ be a contra I_{g} -*-continuous function of an I_{g} -*-connected space (X, τ, I) onto a topological space (Y, σ) . If possible, let Y be disconnected. Let A and B form a disconnection of Y. Then A and B are clopen and $Y = A \cup B$ where $A \cap B = \phi$. Since f is contra I_{g} -*-continuous, $X = f^{1}(Y) = f^{1}(A \cup B) = f^{1}(A) \cup f^{1}(B)$, where $f^{1}(A)$ and $f^{1}(B)$ are nonempty I_{g} -*-open sets in X. Also $f^{1}(A) \cap f^{1}(B) = \phi$. Hence X is not I_{g} -*-connected. This is a contradiction. Therefore Y is connected.

Definition 2.37: An ideal topological space (X, τ, I) is said to be *-g-connected if (X, τ, I) cannot be exp*ressed as the union of two disjoint non-empty *-g-open subsets of (X, τ, I) .

Example 2.38:

Let X = {a, b, c}, τ = {φ, X, {b}, {b, c}} and I = {φ, {c}}. Then (X, τ, I) is *-g-connected.
Let X = {a, b, c}, τ = {φ, X, {a}, {b, c}} and I = {φ}. Then (X, τ, I) is not *-g-connected.

Corollary 2.39: A contra *-g-continuous image of a *-g-connected space is connected.

Proof: The proof follows from the Theorem 2.36 if $I = \{\phi\}$.

Lemma 2.40: For an ideal topological space (X, τ, I) \$, the following are equivalent.

1) X is I_g -*-connected.

2) The only subset of X which are both I_{g} -*-open and I_{g} -*-closed are the empty set ϕ and X.

Proof:

(1) \Rightarrow (2): Let *F* be an I_{g} -*-open and I_{g} -*-closed subset of *X*. Then *X* - *F* is both I_{g} -*-open and I_{g} -*-closed. Since *X* is I_{g} -*-connected, *X* can be expressed as union of two disjoint nonempty I_{g} -*-open sets *X* and *X* - *F*, which implies *X* - *F* is empty.

© 2018, IJMA. All Rights Reserved

CONFERENCE PAPER

(2) \Rightarrow (1): Suppose $X = U \cup V$ where U and V are disjoint nonempty Ig-*-open subsets of X. Then U is both Ig-*-open and I_g -*-closed. By assumption either $U = \phi$ or X which contradicts the assumption that U and V are disjoint nonempty I_g -*-open subsets of X. Therefore X is I_g -*-connected.

Theorem 2.41: Let $f: (X, \tau, I) \rightarrow (Y, \sigma)$ be a surjective preclosed contra I_g -*-continuous function. If X is an I_g -*-space, then Y is locally indiscrete.

Proof: Suppose that V is open in Y. Since f is contra Ig-*-continuous, f'(V) = U is I_g -*-closed in X. Since X is an Ig-*-space, U is closed in X. Since f is preclosed, then V is preclosed in Y. Now we have $cl(V) = cl(int(V)) \subset V$. This means that V is closed and hence Y is locally indiscrete.

REFERENCES

- J. Dontchev, Contra-continuous functions and strongly S-closed spaces, Int. J. Math. Math. Sci., 19(2) (1996), 303-310.
- J. Dontchev, M. Ganster and T. Noiri, Unified operation approach of generalized closed sets via topological ideals, Math. Japan., 49 (1999), 395-401.
- 3. S. N. El-Deeb, I. A. Hasanien, A. S. Mashhour and T. Noiri, *On p-regular spaces*, Bull. Math. de la Soc. Sci. Math. de la Rs Roumanie., 27(4)(1983), 311-315.
- 4. V. Inthumathi, S. Krishnaprakash and M. Rajamani, *Strongly-I-locally closed sets and decompositions of* \$\star\$-continuity, Acta Math. Hungar., 130(4)(2011), 358-362.
- 5. D. Jankovic and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly 97(4)(1990), 295-310.
- 6. K. Kuratowski, Topology, Vol. 1, Academic Press, New York, (1966).
- 7. N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo (2), 19(1970), 89-96.
- 8. D. Mandal and M. N. Mukherjee, *Certain new classes of generalized closed sets and their applications in ideal topological spaces*, Filomat., 29(5)(2015), 1113-1120.
- 9. M. Navaneethakrishnan and J. Paulraj Joseph, *g-closed sets in ideal topological spaces*, Acta Math. Hungar., 119(4)(2008), 365-371.
- 10. M. Navaneethakrishnan, J. Paulraj Joseph and D. Sivaraj, *I_g-normal and I_g-regular spaces*, Acta Math Hungar., 125(4) (2009), 327-340.
- 11. M. Navaneethakrishnan and D. Sivaraj, *Regular generalized closed sets in ideal topological spaces*, J. Adv. Res. Pure Math., 2(3)(2010), 24-33.
- 12. T. Nieminen, On ultra pseudo compact and related topics, Ann. Acad. Sci. Fenn. Ser. A.I. Math., 3(1977), 185-205.
- 13. O. Nethaji, R. Premkumar and O. Ravi, *I_g-*-closed sets*, Submitted.
- 14. M. Rajamani, V. Inthumathi and V. Chitra, *On contra I_g-continuity in ideal topological spaces*, Journal of Informatics and Mathematical Sciences, 3(3) (2011), 233-239.
- 15. R. Staum, *The algebra of bounded continuous functions into a nonarchimedean field*, Pacific J. Math., 50(1974), 169-185.
- 16. M. H. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41(1937), 375-481.
- 17. R. Vaidyanathaswamy, Set topology, Chelsea Publishing Company, New York, (1960).

Source of support: Proceedings of National Conference January 11-13, 2018, on Discrete & Computational Mathematics (NCDCM - 2018), Organized by Department of Mathematics, University of Kerala, Kariavattom Thiruvanathapuram-695581.

© 2018, IJMA. All Rights Reserved

CONFERENCE PAPER