SOME RESULTS ON DIFFERENTIABLE GRAPHS
 ${ }^{1}$ SURESH SINGH G. AND ${ }^{2}$ MANJU V N
 ${ }^{1}$ Department of Mathematics, University of Kerala, Kariavattom. India.
 ${ }^{2}$ Department of Mathematics, University of Kerala, Kariavattom. India.
 E-mail: sureshsingg@yahoo.co.in¹, manjushaijulal@yahoo.com²

Abstract

$\boldsymbol{O}_{\text {perations have its own value and play a vital role in the development of results in the field of Mathematics. There are }}$ many operations by which new graphs are obtained from the old ones and are separated in to unary operations and binary operations. In this paper we try to get a new graph from the old one by introducing a new concept (operation), differentiability and study its various properties.

Keywords: Operations, Derivative, Differentiable graphs.

1. INTRODUCTION

The term "operation" plays a vital role in the scientific world especially in Mathematics. Many operations are defined in the field of Graph Theory to get new graphs from the old ones. They may be classified in to two classes namely, unary and binary operations.

Unary operations result a new graph from a given old one by a simple local change such as addition or deletion of a vertex or an edge, edge contraction and subdivision etc.

Binary operations result a new graph from the given two old ones such as union, intersection, conjunction, product, join and so on.

In this paper we try to get a new graph from the old one by introducing a new operation and study its various properties.

1.1 Construction

Let G be a graph of order p and $e=u v$ be an arbitrary edge in G. Now consider the graph ($G . e$). Remove all the loops from (G.e) if exists. The new graph is denoted as $G^{(1)}$. Next take $G^{(1)}$ and $e=u v$ be an arbitrary edge. Consider $\left(G^{(1)} \cdot e\right)$. Remove all the loops from $\left(G^{(1)} \cdot e\right)$ (if exists) and denote the new graph as $G^{(2)}$ and so on. Repeat the process till we get a positive integer ' r ' such that $G^{(r)} \cong K_{1}$. $G^{(i)}$ is known as the derivative of $G^{(i-1)}, i=1,2 \ldots, r$. Then this process is known as differentiation and symbolically it will be denoted as ($\frac{d G}{d e}$ where $e \in E(G)$). Also ' r ' is called as the order of differentiation.

Example 1.2:

Let $\mathrm{e}=\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)$, then $G^{(1)}$ is given by,

Now, let $\mathrm{e}=\left(\mathrm{v}_{1} \mathrm{v}_{2}, \mathrm{v}_{3}\right)$, then $G^{(2)}$ is given by

$$
G^{(2)}:
$$

Now, let $\mathrm{e}=\left(\mathrm{v}_{1} \mathrm{v}_{2} \mathrm{~V}_{3}, \mathrm{v}_{4}\right)$, then $G^{(3)}$ is given by

Let $\mathrm{e}=\left(\mathrm{v}_{1} \mathrm{~V}_{2} \mathrm{~V}_{3} \mathrm{~V}_{4}, \mathrm{v}_{5}\right)$, then $G^{(4)}$ is given by

$$
G^{(4)}: \underbrace{}_{\mathrm{v}_{1} \mathrm{v}_{2} \mathrm{v}_{3} \mathrm{~V}_{4} \mathrm{v}_{5}} \text {, which is isomorhic to } K_{1} \text {. }
$$

Observation 1.3:

1) If G is an empty graph then $r=0$
2) If G is a disconnected graph with ' m ' components, then there exists an ' r ' such that $\mathrm{G}^{(r)} \cong m K_{1}$.

Remark 1.4: If at each $\left(G^{(i)} . e\right), i=1,2, . . r-1$, the resultant graph is simple then the given graph G is said to be simply differentiable and in all other cases it may be called partially differentiable.

Definition 1.5: A graph G is said to be differentiable if it is either simply differentiable or partially differentiable.

Example 1.6:

Observation 1.7: Every graph is differentiable.

2. SOME RESULTS

In this section we give some results related to this concept.
Result 2.1: Let G be a connected graph of order p. If there exists an ' r ' such that $G^{(r)} \cong K_{1}$, then r must be equal to $p-1$.

Proof: Let G be a graph of order p. If we contract an edge in G and delete all loops from it, we get a new graph $G^{(1)}$ of order $p-1$. Again we contract an edge in $G^{(1)}$ and delete all loops from it we get a new graph say $G^{(2)}$ of order $p-2$. Continue this process until we get an ' r ' such that $G^{(r)} \cong K_{1}$

Now $G^{(r)}$ is a graph of order $p-r$. Since $G^{(r)} \cong K_{1}, p-r$ must be equal to1.
That is $p-r=1$

Therefore $r=p-1$.
Result 2.2: Let G be a disconnected graph of order p with ' m ' components, each of whose order is $p_{1}, p_{2}, \ldots, p_{m}$ respectively. If there exists an ' r ' such that $G^{(r)} \cong m K_{1}$, then ' r ' must be equal to $p-m$.

Proof: Let $G=(p, q)$ be a disconnected graph with m components $G_{1}, G_{2}, \ldots . G_{m}$ of order $p_{1}, p_{2}, \ldots p_{m}$ respectively. Since each G_{i} is connected, then by the above result, if there exists an ' r_{1} ' such that $G_{1}{ }^{\left(r_{1}\right)} \cong K_{1}$, then $r_{1}=p_{1}-1$. Again since G_{2} is connected if there exists an ' r_{2} ' such that $G_{2}{ }^{\left(r_{2}\right)} \cong K_{1}$ then $r_{2}=p_{2}-1$. Continuing like this there exists an' r_{m} ' such that $G_{m}{ }^{\left(r_{m}\right)} \cong K_{1}$ then $r_{m}=p_{m}-1$

Let $r=r_{1}+r_{2}+\cdots .+r_{m}$. Thus we get $G^{(r)} \cong m K_{1}$.
Since $r_{i}=p_{i}-1$, it follows that $r=p_{1}-1+p_{2}-1+\cdots+p_{m}-1$

$$
\begin{aligned}
& =p_{1}+p_{2}+\cdots+p_{m}-m \\
& =p-m .
\end{aligned}
$$

Theorem 2.3: Let G_{1} and G_{2} be two graphs with m and n components respectively. Then

$$
G_{1}{ }^{\left(r_{1}\right)} \vee G_{2}{ }^{\left(r_{2}\right)} \cong K m, n .
$$

${ }^{1}$ Suresh Singh G. and ${ }^{2}$ Manju V N / Some Results on Differentiable Graphs / IJMA-9(4), April-2018, (Special Issue)

Proof: Let G_{1} be a graph with ' m ' components and G_{2} be a graph with ' n ' components respectively.
Then $G_{1}{ }^{\left(r_{1}\right)} \cong m K_{1}$ and $G_{2}{ }^{\left(r_{2}\right)} \cong n K_{1}$
Clearly $G_{1}{ }^{\left(r_{1}\right)} \vee G_{2}{ }^{\left(r_{2}\right)}$ has $(m+n)$ verticesand each of m vertices in $G_{1}{ }^{\left(r_{1}\right)}$ is adjacent to all ' n ' vertices in $G_{2}{ }^{\left(r_{2}\right)}$.
Therefore, $G_{1}{ }^{\left(r_{1}\right)} \vee G_{2}{ }^{\left(r_{2}\right)} \cong K m, n$.

Remark 2.4:

1) If G_{1} and G_{2} are connected graphs then, $G_{1}{ }^{\left(r_{1}\right)} \vee G_{2}{ }^{\left(r_{2}\right)} \cong K_{2}$ that is $K_{1,1}$
2) Let G_{1} and G_{2} be two graphs such that one is connected and the other has n components then $G_{1}{ }^{\left(r_{1}\right)} \vee G_{2}{ }^{\left(r_{2}\right)} \cong K_{1, n}$.

Result 2.5: Let G_{1} and G_{2} be arbitrary graphs. Then $\left(G_{1} \vee G_{2}\right)^{(r)} \nsubseteq \mathrm{G}_{1}{ }^{\left(\mathrm{r}_{1}\right)} \vee \mathrm{G}_{2}\left(\mathrm{r}_{2}\right)$.
Proof: We shall prove this by exhibiting the following example

$G_{2}:{ }^{\mathrm{v}_{2}}{ }^{\mathrm{v}_{1}}$

Then $\mathrm{G}_{1}{ }^{\left(\mathrm{r}_{1}\right)} \cong K_{1}$ and $\mathrm{G}_{2}{ }^{\left(\mathrm{r}_{2}\right)} \cong K_{1}$.
Let

Then, $\mathrm{G}_{1}{ }^{\left(\mathrm{r}_{1}\right)} \vee \mathrm{G}_{2}{ }^{\left(\mathrm{r}_{2}\right)}$ is
$X \bullet Y$

That is $\mathrm{G}_{1}{ }^{\left(\mathrm{r}_{1}\right)} \vee \mathrm{G}_{2}{ }^{\left(\mathrm{r}_{2}\right)}$ is K_{2} (or $K_{1,1}$).
Now,

Therefore $\left(G_{1} \vee G_{2}\right)^{(r)} \cong K_{1}$
Hence $\left(G_{1} \vee G_{2}\right)^{(r)} \nsubseteq \mathrm{G}_{1}{ }^{\left(\mathrm{r}_{1}\right) \vee \mathrm{G}_{2}}{ }^{\left(\mathrm{r}_{2}\right)}$.
Theorem 2.6: If G_{1} and G_{2} be two arbitrary graphs, then $\left(G_{1} \cup G_{2}\right)^{(r)} \cong G_{1}{ }^{\left(r_{1}\right)} \cup G_{2}{ }^{\left(r_{2}\right)}$.
Proof: To prove this theorem, we have to consider two cases.
Case-(i): G_{1} and G_{2} are connected
Then $G_{1} \cup G_{2}$ has two components

Therefore $\left(G_{1} \cup G_{2}\right)^{(r)} \cong 2 \mathrm{~K}_{1}$.
Also, $G_{1}{ }^{\left(r_{1}\right)} \cong \mathrm{K}_{1}$ and $G_{2}{ }^{\left(r_{2}\right)} \cong \mathrm{K}_{1}$
Therefore $G_{1}{ }^{\left(r_{1}\right)} \cup G_{2}{ }^{\left(r_{2}\right)} \cong 2 \mathrm{~K}_{1}$
In this case $\left(G_{1} \cup G_{2}\right)^{(r)} \cong G_{1}{ }^{\left(r_{1}\right)} \cup G_{2}{ }^{\left(r_{2}\right)}$.
Case-(ii): G_{1} and G_{2} are disconnected graphs
Let G_{1} has m components and G_{2} has n components.
Then $G_{1}{ }^{\left(r_{1}\right)} \cong m K_{1}$ and $G_{2}{ }^{\left(r_{2}\right)} \cong n K_{1}$.
Since $G_{1} \cap G_{2}=\phi, G_{1} \cup G_{2}$ has $(m+n)$ components.
Therefore $\left(G_{1} \cup G_{2}\right)^{(r)} \cong(m+n) K_{1}$.
Also, $G_{1}{ }^{\left(r_{1}\right)} \cup G_{2}{ }^{\left(r_{2}\right)} \cong(m+n) K_{1}$.
In this case also $\left(G_{1} \cup G_{2}\right)^{(r)} \cong G_{1}{ }^{\left(r_{1}\right)} \cup G_{2}{ }^{\left(r_{2}\right)}$.
Theorem 2.7: If $\left(G_{1} \cup G_{2}\right)^{(r)} \cong G_{1}{ }^{\left(r_{1}\right)} \cup G_{2}{ }^{\left(r_{2}\right)}$, then $r=r_{1} r_{2}$.

Proof:

Case-(i): G_{1} and G_{2} are connected
Let G_{1} and G_{2} be of order p_{1} and p_{2} respectively.
Then $G_{1}{ }^{\left(p_{1}-1\right)} \cong K_{1}$ and $G_{2}{ }^{\left(p_{2}-1\right)} \cong K_{1}$
Also, $G_{1} \cup G_{2}$ is of order $p_{1}+p_{2}$ and has two components.
Therefore $\left(G_{1} \cup G_{2}\right)^{\left(p_{1}+p_{2}-2\right)} \cong 2 K_{1}$.

$$
G_{1}{ }^{\left(p_{1}-1\right)} \cup G_{2}{ }^{\left(p_{2}-1\right)} \cong 2 K_{1} .
$$

$\operatorname{Since}\left(G_{1} \cup G_{2}\right)^{(r)} \cong G_{1}{ }^{\left(r_{1}\right)} \cup G_{2}{ }^{\left(r_{2}\right)},\left(G_{1} \cup G_{2}\right)^{\left(p_{1}+p_{2}-2\right)} \cong G_{1}{ }^{\left(p_{1}-1\right)} \cup G_{2}{ }^{\left(p_{2}-1\right)}$
Now, $p_{1}+p_{2}-2=p_{1}-1+p_{2}-1$
That is $r=r_{1}+r_{2}$.
Case-(ii): G_{1} and G_{2} are disconnected graphs.
Let order of G_{1} be p_{1} and order of G_{2} be p_{2}.
Let G_{1} has m components each of whose order is $m_{1}, m_{2}, \ldots, m_{m}$ and G_{2} has n components, each of whose order is $n_{1}, n_{2}, \ldots, n_{n}$.

Then $G_{1}{ }^{\left(p_{1}-1\right)} \cong m K_{1}$ and $G_{2}{ }^{\left(p_{2}-1\right)} \cong n K_{1}$.
Therefore, $G_{1}{ }^{\left(p_{1}-\mathrm{m}\right)} \cup G_{2}{ }^{\left(p_{2}-\mathrm{n}\right)} \cong(m+n) K_{1}$
Now $G_{1} \cup G_{2}$ has $(m+n)$ components and order of $G_{1} \cup G_{2}$ is $p_{1}+p_{2}$.
Therefore, $\left(G_{1} \cup G_{2}\right)^{\left(p_{1}+p_{2}-(m+n)\right)} \cong(m+n) K_{1}$

Since $\left(G_{1} \cup G_{2}\right)^{(r)} \cong G_{1}{ }^{\left(r_{1}\right)} \cup G_{2}{ }^{\left(r_{2}\right)},\left(G_{1} \cup G_{2}\right)^{\left(p_{1}+p_{2}-(m+n)\right)} \cong G_{1}{ }^{\left(p_{1}-m\right)} \cup G_{2}{ }^{\left(p_{2}-n\right)}$
Now, $p_{1}+p_{2}-(m+n)=p_{1}-m+p_{2}-n$.
That is $r=r_{1}+r_{2}$.

Result 2.8: Let G_{1} and G_{2} be two subgraphs of G such that they have some vertices in common. Then $\left.\left(G_{1} \cup G_{2}\right)^{(r)}\right) \not \equiv$ $G_{1}{ }^{\left(r_{1}\right)} \cup G_{2}{ }^{\left(r_{2}\right)}$.

Proof: We shall prove this by exhibiting an example.
Let G be the graph given by

Let G_{1} and G_{2} be two subgraphs of G,

Now $G_{1} \cup G_{2}$ is,

Here $\left(G_{1} \cup G_{2}\right)^{(r)} \cong K_{1}, G_{1}^{\left(r_{1}\right)} \cong K_{1}, G_{2}{ }^{\left(r_{2}\right)} \cong K_{1}, G_{1}^{\left(r_{1}\right)} \cup G_{2}^{\left(r_{2}\right)} \cong 2 K_{1}$.
Therefore, $\left.\left(G_{1} \cup G_{2}\right)^{(r)}\right) \nexists G_{1}{ }^{\left(r_{1}\right)} \cup G_{2}{ }^{\left(r_{2}\right)}$.
Result 2.9: Let $G_{1}, G_{2}, \ldots, G_{n}$ be n disjoint graphs of order $p_{1}, p_{2}, \ldots, p_{n}$ respectively. Then
$\left(G_{1} \cup G_{2} \cup \ldots \cup G_{n}\right)^{(r)} \cong G_{1}{ }^{\left(r_{1}\right)} \cup G_{2}{ }^{\left(r_{2}\right)} \cup \ldots \cup G_{n}{ }^{\left(r_{n}\right)}$,
where $r=r_{1}+r_{2}+r_{3}+\cdots+r_{n}$.

Proof: We will prove the result by using mathematical induction.
When $\mathrm{n}=1, G_{1}{ }^{(r)} \cong G_{1}{ }^{(r)}$.
Therefore the result is true for $\mathrm{n}=1$.

When $\mathrm{n}=2,\left(G_{1} \cup G_{2}\right)^{(r)} \cong G_{1}{ }^{\left(r_{1}\right)} \cup G_{2}{ }^{\left(r_{2}\right)}$ and $r=r_{1}+r_{2}$ (From previous theorem)
Therefore, the result is true for $n=2$.
Now assume that the result is true for fewer than ngraphs
That is,
$\left(G_{1} \cup G_{2} \cup \ldots \cup G_{n-1}\right)^{(r)} \cong G_{1}{ }^{\left(r_{1}\right)} \cup G_{2}{ }^{\left(r_{2}\right)} \cup \ldots \cup G_{n-1}{ }^{\left(r_{n-1}\right)}$ where,

$$
\begin{aligned}
r & =r_{1}+r_{2}+r_{3}+\cdots+r_{n-1} \\
& =p_{1}+p_{2}+p_{3}+\cdots+p_{n-1}-(n-1)
\end{aligned}
$$

Next consider ngraphs. Then we have,

$$
\begin{aligned}
\left(G_{1} \cup G_{2} \cup \ldots \cup G_{n}\right)^{(r)} & =\left[\left(G_{1} \cup G_{2} \cup \ldots \cup G_{n-1}\right) \cup G_{n}\right]^{r} \\
& \cong\left(G_{1} \cup G_{2} \cup \ldots \cup G_{n-1}\right)^{\left(r_{1}\right)} \cup G_{n}^{\left(r_{2}\right)} ; r=r_{1}+r_{2} \\
& \cong G_{1}{ }^{\left(r_{1}^{\prime}\right)} \cup G_{2}{ }^{\left(r_{2}^{\prime}\right)} \cup \ldots \cup G_{n-1}{ }^{\left(r_{n-1}{ }^{\prime}\right)} \cup G_{n}{ }^{\left(r_{2}\right)} \text { and }
\end{aligned}
$$

$r_{1}=r_{1}{ }^{(\prime)}+r_{2}{ }^{(\prime)}+\cdots+r_{n-1}{ }^{(\prime)}$ by assumption.
Now, $r=r_{1}+r_{2}$

$$
\begin{aligned}
& =r_{1}{ }^{(\prime)}+r_{2}{ }^{(\prime)}+\cdots+r_{n-1}{ }^{(\prime)}+r_{2} \\
& =p_{1}+p_{2}+p_{3}+\cdots+p_{n-1}-(n-1)+p_{n}-1 \\
& =p_{1}+p_{2}+p_{3}+\cdots+p_{n-1}+p_{n}-n \\
& =r_{1}+r_{2}+r_{3}+\cdots+r_{n} .
\end{aligned}
$$

Therefore the result is true for n graphs. Hence the result is true for all $n \geq 1$.
Theorem 2.10: Let G_{1} and G_{2} be two connected graphs. Then, $\left(G_{1}\left[G_{2}\right]\right)^{(r)} \cong\left(G_{1}{ }^{\left(r_{1}\right)}\left[G_{2}{ }^{\left(r_{2}\right)}\right]\right)$.

Proof:

Since G_{1} and G_{2} are connected graphs, $G_{1}\left[G_{2}\right]$ is also connected.
Therefore, $\left(G_{1}\left[G_{2}\right]\right)^{(r)} \cong K_{1}$.
Since G_{1} is connected, $G_{1}{ }^{\left(r_{1}\right)} \cong K_{1}$ and since G_{2} is connected, $G_{2}{ }^{\left(r_{2}\right)} \cong K_{1}$.
Therefore, $G_{1}{ }^{\left(r_{1}\right)}\left[G_{2}{ }^{\left(r_{2}\right)}\right] \cong K_{1}$. Hence the theorem.
Remark 2.11: If any one of G_{1} and G_{2} is disconnected, then $\left(G_{1}\left[G_{2}\right]\right)^{(r)}$ need not be isomorphic to $\left(G_{1}{ }^{\left(r_{1}\right)}\left[G_{2}{ }^{\left(r_{2}\right)}\right]\right)$.

Example 2.12:

Here, $G_{1}{ }^{\left(r_{1}\right)} \cong 2 K_{1}$ and $\quad G_{2}{ }^{\left(r_{2}\right)} \cong 2 K_{1}$.

Let

Therefore, $G_{1}{ }^{\left(r_{1}\right)}\left[G_{2}{ }^{\left(r_{2}\right)}\right]$ is

$$
(x, u)
$$

- (x, y)
(y, u)
- (y, v)

That is $G_{1}{ }^{\left(r_{1}\right)}\left[G_{2}{ }^{\left(r_{2}\right)}\right] \cong 4 K_{1}$.
Now,

Therefore, $\left(G_{1}\left[G_{2}\right]\right)^{(r)} \cong 3 K_{1}$
Hence $\left(G_{1}\left[G_{2}\right]\right)^{(r)} \not \not \equiv\left(G_{1}{ }^{\left(r_{1}\right)}\left[G_{2}{ }^{\left(r_{2}\right)}\right]\right)$
Theorem 2.13: Let G_{1} and G_{2} be any two graphs. Then $\left(G_{1} \times G_{2}\right)^{(r)} \cong G_{1}{ }^{\left(r_{1}\right)} \times G_{2}{ }^{\left(r_{2}\right)}$.
Proof: We shall consider two cases.
Case-(i): Let G_{1} and G_{2} be connected graphs.
Then, $G_{1} \times G_{2}$ is also connected and $\left(G_{1} \times G_{2}\right)^{(r)} \cong K_{1}$
Now, $G_{1}{ }^{\left(r_{1}\right)} \cong K_{1}$ and $G_{2}{ }^{\left(r_{2}\right)} \cong K_{1}$.
Therefore, $G_{1}{ }^{\left(r_{1}\right)} \times G_{2}{ }^{\left(r_{2}\right)} \cong K_{1}$
Hence, $\left(G_{1} \times G_{2}\right)^{(r)} \cong G_{1}{ }^{\left(r_{1}\right)} \times G_{2}{ }^{\left(r_{2}\right)}$
Case-(ii): Let G_{1} has m components and G_{2} has n components.
Then, $G_{1} \times G_{2}$ has $m n$ components.
Therefore, $\left(G_{1} \times G_{2}\right)^{(r)} \cong m n K_{1}$.
Also, $G_{1}{ }^{\left(r_{1}\right)} \cong m K_{1}$ and $G_{2}{ }^{\left(r_{2}\right)} \cong n K_{1}$.
Therefore, $G_{1}{ }^{\left(r_{1}\right)} \times G_{2}{ }^{\left(r_{2}\right)} \cong m n K_{1}$
Hence, $\left(G_{1} \times G_{2}\right)^{(r)} \cong G_{1}{ }^{\left(r_{1}\right)} \times G_{2}{ }^{\left(r_{2}\right)}$.

Conjunction ${ }^{[2]}$: The conjunction of two graphs G_{1} and G_{2}, denoted by $G_{1} \wedge G_{2}$ is a graph with vertex set $V_{1} \times V_{2}$ and $u=\left(u_{1}, u_{2}\right)$ is adjacent to $v=\left(v_{1}, v_{2}\right)$ if u_{1} is adjacent to v_{1} in G_{1} and u_{2} is adjacent to v_{2} in G_{2}.

Result 2.14: Let G_{1} and G_{2} be two arbitrary graphs. Then, $\left(G_{1} \wedge G_{2}\right)^{(r)} \nsupseteq G_{1}{ }^{\left(r_{1}\right)} \wedge G_{2}{ }^{\left(r_{2}\right)}$.
Proof: We shall prove this by exhibiting an example.
Let G_{1} and G_{2} be,

Then,

Therefore, $\left(G_{1} \wedge G_{2}\right)^{(r)} \cong 2 K_{1}$
Now, $G_{1}{ }^{\left(r_{1}\right)} \cong K_{1}$ and $G_{2}{ }^{\left(r_{2}\right)} \cong K_{1}$
Therefore, $G_{1}{ }^{\left(r_{1}\right)} \wedge G_{2}{ }^{\left(r_{2}\right)} \cong K_{1}$
Hence, $\left(G_{1} \wedge G_{2}\right)^{(r)} \not \approx G_{1}{ }^{\left(r_{1}\right)} \wedge G_{2}{ }^{\left(r_{2}\right)}$.

REFERENCES

1. F. Harary, "Graph Theory", Narosa Publishing House, Delhi.
2. G .Suresh singh, "Graph Theory", PHI, New Delhi.
3. J. A. Bondy and U S R Murty, "Graph Theory with Applications", Elsevier Science Publishing Co.Inc.
[^0]
[^0]: Source of support: Proceedings of National Conference January 11-13, 2018, on Discrete \& Computational Mathematics (NCDCM - 2018), Organized by Department of Mathematics, University of Kerala, Kariavattom Thiruvanathapuram-695581.

