EDGE TRIMAGIC GRACEFUL LABELING OF SOME GRAPHS
M. REGEES ${ }^{\mathbf{1}}$ AND J. A. JOSE EZHIL ${ }^{2}$
${ }^{1}$ Head, Department of Mathematics, Malankara Catholic College, Mariagiri, Kaliakavilai - 629153, Tamilnadu, India.
${ }^{2}$ Research scholar, Department of Mathematics,
Nesamony Memorial Christian College, Marthandam - 629165, kanyakumari District, Tamil Nadu, India.

E-mail: regeesregees@gmail.com ${ }^{1}$, ezhilja@gmail.com ${ }^{2}$

Abstract

$\boldsymbol{A}(p, q)$ graph G is called edge trimagic total if there exists a bijection $f: V(G) \cup E(G) \rightarrow\{1,2,3, \ldots, p+q\}$ such that for each edge xy in $E(G)$ the value of $f(x)+f(x y)+f(y)=K_{1}$ or K_{2} or K_{3}. G is called edge trimagic graceful if there exists a bijection $f: V(G) \cup E(G) \rightarrow\{1,2,3, \ldots, p+q\}$ such that for each edge xy in $E(G),|f(x)-f(x y)+f(y)|=C_{1}$ or C_{2} or C_{3}, where C_{1}, C_{2} and C_{3} are constants. In this paper, we proved that the Umbrella graph U_{n}, m, circular ladder graph $C L(n)$ and the Dumbbell graph $D b_{n}$ are edge trimagic graceful graphs.

Key words: Graph, Labeling, Magic, Trimagic, Graceful.
AMS Subject Classification: 05C78.

1. INTRODUCTION

Let G be a simple undirected graph with n vertices. Let $\mathrm{V}(\mathrm{G})$ and $\mathrm{E}(\mathrm{G})$ denote the vertex set and the edge set of the graph G, respectively. Labeling of a graph G is an assignment f of labels to either the vertices or the edges or both subject to certain conditions. Graph labeling is an increasingly useful and important method of Mathematical models from a broad range of applications such as coding theory, X-ray crystallography, radar, astronomy, circuit design, communication networks and data base management etc. Graph labeling was first introduced in1960's. In 1970, Kotzig and Rosa [1] defined, a magic labeling of graph G is a bijection $f: V \cup E \rightarrow\{1,2, \ldots, p+q\}$ such that for each edge $u v \in E(G), f(u)+f(u v)+f(v)$ is a magic constant.

Rosa [1] introduced the β - valuations of a graph G with q edges is an injection f from the vertices of G to the set $\{0,1$, $2, \ldots, q\}$ such that, when each edge $x y$ is assigned the label $|f(x)-f(y)|$, the resulting edge labels are distinct. Golomb [6] called such labeling as graceful. G. Marimuthu and M. Balakrishnan [4] introduced, super edge magic graceful labeling of graphs. In 2013, C. Jayasekaran, M. Regees and C. Davidraj introduced the edge trimagic total labeling of graphs [2]. A (p, q) graph G is called an edge magic graceful if there exists a bijection $f: V(G) \cup E(G) \rightarrow\{1,2, \ldots$, $p+q\}$ such that for each edge $x y$ in $E(G)$ the value of $|f(x)+f(y)-f(x y)|=k$, a constant. The graph G is said to be super edge magic graceful if $V(G)=\{1,2, \ldots, p\}$. An edge trimagic total labeling of a (p, q) graph G is a bijective function $f: V(G) \cup E(G) \rightarrow\{1,2, \ldots, p+q\}$ such that for each edge $x y \in E(G)$, the value of $f(x)+f(x y)+f(y)$ is equal to any of the distinct constants k_{1} or k_{2} or k_{3}. A graph G is said to be edge trimagic total if it admits an edge trimagic total labeling [2]. An edge trimagic total labeling is called a super edge trimagic total labeling if G has the additional property that the vertices are labeled with smallest positive integers. The useful survey on graph labeling by J. A. Gallian (2017) can be found in [6].

The graph $F_{n}=P_{n}+K_{1}$ is called a fan [7] where $P_{n}: u_{1} u_{2} \ldots u_{n}$ be a path and $V\left(K_{1}\right)=u$. The Umbrella graph [7] $U_{n, m}, m>1$ is obtained from a fan F_{n} by passing the end vertex of the path $P_{m}: v_{1} v_{2} \ldots v_{m}$ to the vertex of K_{1} of the fan F_{n}. A Circular ladder [3,5] CL(n) is the union of an outer cycle $C_{0}: u_{1} u_{2} u_{3} \ldots u_{n} u_{1}$ and an inner cycle $C_{1}: v_{1} v_{2} v_{3} \ldots v_{n} v_{1}$ with additional edges $\left(u_{i} v_{i}\right), i=1,2,3, \ldots, n$ called spokes. The graph obtained by joining two disjoint cycles $u_{1} u_{2} u_{3} \ldots u_{n} u_{1}$ and $v_{1} v_{2} v_{3} \ldots$ $\mathrm{v}_{\mathrm{n}} \mathrm{v}_{1}$ with an edge $\mathrm{u}_{1} \mathrm{v}_{1}$ is called dumbbell [7] graph Db_{n}.

M. Regees ${ }^{1}$ and J. A. Jose Ezhil ${ }^{2}$ / Edge Trimagic Graceful Labeling of Some Graphs / IJMA- 9(4), April-2018, (Special Issue)

In this paper, we introduced edge trimagic graceful labelling of graphs and proved that the Umbrella $\mathrm{U}_{\mathrm{n}, \mathrm{m}}$, circular ladder $\mathrm{CL}(\mathrm{n})$ and the Dumbbell Db_{n} are edge trimagic graceful graphs.

2. MAIN RESULTS

Theorem 2.1: The Umbrella $U_{n, m}$ admits an edge trimagic graceful labeling for all n.
Proof: Let $V\left(U_{n, m}\right)=\left\{u_{i}, v_{i} 1 \leq i \leq n\right\}$ be the vertex set and $E\left(U_{n, m}\right)=\left\{u_{i} u_{i+1}, v_{i} V_{i+1} / 1 \leq i \leq n-1\right\} \cup\left\{u_{i} v_{1}, / 1 \leq i \leq n\right\}$ be the edge set of the graph $U_{n, m}$. Then $U_{n, m}$ has $n+m$ vertices and $2 n+2 m-2$ edges.

Case-1: n is odd and m is even
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)=3 \mathrm{n}+\mathrm{m}+\mathrm{i}-2,1 \leq \mathrm{i} \leq \mathrm{n}-1$
Define a bijection $\mathrm{f}: \mathrm{V} \cup \mathrm{E} \rightarrow\{1,2,3, \ldots, 3 \mathrm{n}+2 \mathrm{~m}-2\}$ such that

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\left\{\begin{array}{l}
\mathrm{m}+\frac{\mathrm{i}+1}{2}, \quad 1 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{i} \text { is odd } \\
\mathrm{n}+\frac{\mathrm{m}+\mathrm{i}}{2}, \quad 1 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{i} \text { is even }
\end{array}\right. \\
& \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\left\{\begin{array}{l}
\frac{\mathrm{i}+1}{2}, 1 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{i} \text { is odd } \\
\frac{\mathrm{m}+\mathrm{i}}{2}, 1 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{i} \text { is even }
\end{array}\right. \\
& \mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)=2 \mathrm{n}+\mathrm{m}+\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}-1
\end{aligned} \mathrm{f}\left(\mathrm{v}_{1} \mathrm{u}_{\mathrm{i}}\right)=\left\{\begin{array}{l}
\mathrm{n}+\mathrm{m}+\frac{\mathrm{i}+1}{2}, 1 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{i} \text { is odd } \\
2 \mathrm{n}+\frac{\mathrm{m}+\mathrm{i}}{2}, 1 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{i} \text { is even }
\end{array}\right.
$$

Now we prove this labeling is an edge trimagic graceful.
Consider the edges $\mathrm{v}_{1} \mathrm{u}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{n}$.
For odd $i,\left|f\left(v_{1}\right)-f\left(v_{1} u_{i}\right)+f\left(u_{i}\right)\right|=\left|1-\left(n+m+\frac{i+1}{2}\right)+m+\frac{i+1}{2}\right|=|1-n|=C_{1}$
For even $\mathrm{i},\left|\mathrm{f}\left(\mathrm{v}_{1}\right)-\mathrm{f}\left(\mathrm{v}_{1} \mathrm{u}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)\right|=\left|1-\left(2 \mathrm{n}+\frac{\mathrm{m}+\mathrm{i}}{2}\right)+\mathrm{n}+\frac{\mathrm{m}+\mathrm{i}}{2}\right|=|1-\mathrm{n}|=\mathrm{C}_{1}$
Consider the edges $\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}, 1 \leq \mathrm{i} \leq \mathrm{n}$.
For odd $\mathrm{i},\left|\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)-\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}+1}\right)\right|=\left|\mathrm{m}+\frac{\mathrm{i}+1}{2}-(3 \mathrm{n}+\mathrm{m}+\mathrm{i}-2)+\mathrm{n}+\frac{\mathrm{m}+\mathrm{i}+1}{2}\right|=\left|\frac{6+\mathrm{m}-4 \mathrm{n}}{2}\right|=\mathrm{C}_{2}$
For even $\mathrm{i},\left|\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)-\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}+1}\right)\right|=\left|\mathrm{n}+\frac{\mathrm{m}+\mathrm{i}}{2}-(3 n+m+\mathrm{i}-2)+m+\frac{i+1}{2}\right|=\left|\frac{6+m-4 n}{2}\right|=C_{2}$
Consider the edges $\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}, 1 \leq \mathrm{i} \leq \mathrm{n}$.
For odd $i,\left|f\left(v_{i}\right)-f\left(v_{i} v_{i+1}\right)+f\left(v_{i+1}\right)\right|=\left|\frac{i+1}{2}-(2 n+m+i)+\frac{m+i-1}{2}\right|=\left|\frac{2-m-4 n}{2}\right|=C_{3}$
For even $i,\left|f\left(v_{i}\right)-f\left(v_{i} v_{i+1}\right)+f\left(v_{i+1}\right)\right|=\left|\frac{m+i}{2}-(2 n+m+i)+\frac{i+2}{2}\right|=\left|\frac{2-m-4 n}{2}\right|=C_{3}$
Hence for each edge $u v \in E\left(U_{n, m}\right),|f(u)-f(u v)+f(v)|$ yields any one of the constants $C_{1}=|1-n|$,
$C_{2}=\left|\frac{6+m-4 n}{2}\right|$ and $C_{3}=\left|\frac{2-m-4 n}{2}\right|$. Therefore, the Umbrella graph $U_{n, m}$ admits an edge trimagic graceful labeling for odd n and even m.

Case-2: n is even and m is odd
Define a bijection $\mathrm{f}: \mathrm{V} \cup \mathrm{E} \rightarrow\{1,2,3, \ldots, 3 \mathrm{n}+2 \mathrm{~m}-2\}$ such that

$$
\left.\left.\begin{array}{l}
\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\left\{\begin{array}{l}
\mathrm{m}+\frac{\mathrm{i}+1}{2}, 1 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{i} \text { is odd } \\
\mathrm{m}+\frac{\mathrm{n}+\mathrm{i}}{2}, 1 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{i} \text { is even }
\end{array}\right. \\
\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\left\{\begin{array}{l}
\frac{\mathrm{i}+1}{2}, 1 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{i} \text { is odd } \\
\frac{\mathrm{m}+\mathrm{i}+1}{2}, 1 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{i} \text { is even }
\end{array}\right. \\
\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)=2 \mathrm{n}+2 \mathrm{~m}+\mathrm{i}-1,1 \leq \mathrm{i} \leq \mathrm{n}-1
\end{array}\right\} \begin{array}{l}
\mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)=2 \mathrm{n}+\mathrm{m}+\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}-1
\end{array}\right\} \begin{aligned}
& \mathrm{n}+\mathrm{m}+\frac{\mathrm{i}+1}{2}, 1 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{i} \text { is odd } \\
& \mathrm{f}\left(\mathrm{v}_{1} \mathrm{u}_{\mathrm{i}}\right)=\left\{\begin{array}{l}
\mathrm{n}+\frac{\mathrm{n+i}}{2}, 1 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{i} \text { is even }
\end{array}\right.
\end{aligned}
$$

Now we prove this labeling is an edge trimagic graceful.
Consider the edges $v_{1} u i, 1 \leq i \leq n$.
For odd $i,\left|f\left(v_{1}\right)-f\left(v_{1} u_{i}\right)+f\left(u_{i}\right)\right|=\left|1-\left(n+m+\frac{i+1}{2}\right)+m+\frac{i+1}{2}\right|=|1-n|=C_{1}$
For even $i,\left|f\left(v_{1}\right)-f\left(v_{1} u_{i}\right)+f\left(u_{i}\right)\right|=\left|1-\left(m+n+\frac{n+i}{2}\right)+m+\frac{n+i}{2}\right|=|1-n|=C_{1}$
Consider the edges $u_{i} u_{i+1}, 1 \leq i \leq n$.
For odd $\mathrm{i},\left|\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)-\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}+1}\right)\right|=\left|\mathrm{m}+\frac{\mathrm{i}+1}{2}-(2 \mathrm{n}+2 \mathrm{~m}+\mathrm{i}-1)+\mathrm{n}+\frac{\mathrm{i}+1}{2}\right|=|2-m-n| C_{2}$
For even $\mathrm{i},\left|\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)-\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}+1}\right)\right|=\left|\frac{2 \mathrm{n}+\mathrm{i}}{2}-(2 \mathrm{n}+2 \mathrm{~m}+\mathrm{i}-1)+\mathrm{m}+\frac{\mathrm{i}+1}{2}\right|=|2-m-\mathrm{n}|=\mathrm{C}_{2}$
Consider the edges $v_{i} v_{i+1}, 1 \leq i \leq n$.
For odd $\mathrm{i},\left|\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)-\mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)\right|=\left|\frac{\mathrm{i}+1}{2}-(2 \mathrm{n}+\mathrm{m}+\mathrm{i})+\frac{\mathrm{m}+\mathrm{i}+1}{2}\right|=\left|\frac{3-m-4 \mathrm{n}}{2}\right|=C_{3}$
For even $\mathrm{i},\left|\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)-\mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)\right|=\left|\frac{\mathrm{m}+\mathrm{i}+1}{2}-(2 \mathrm{n}+\mathrm{m}+\mathrm{i})+\frac{\mathrm{i}+2}{2}\right|=\left|\frac{3-m-4 \mathrm{n}}{2}\right|=C_{3}$
Hence for each edge $u v \in E\left(U_{n, m}\right),|f(u)-f(u v)+f(v)|$ yields any one of the constantsC $C_{1}=|1-n|$,
$C_{2}=|2-m-n|$ and $C_{3}=\left|\frac{3-m-4 n}{2}\right|$. Therefore, the Umbrella graph $U_{n, m}$ admits an edge trimagic graceful labeling for even n and odd m.

Case-3: both n and m are odd
Define a bijection $\mathrm{f}: \mathrm{V} \cup \mathrm{E} \rightarrow\{1,2,3, \ldots, 3 \mathrm{n}+2 \mathrm{~m}-2\}$ such that

$$
\begin{aligned}
& f\left(u_{i}\right)=\left\{\begin{array}{c}
m+\frac{i+1}{2}, 1 \leq i \leq n, i \text { is odd } \\
m+\frac{n+i+1}{2}, 1 \leq i \leq n, i \text { is even }
\end{array}\right. \\
& f\left(v_{i}\right)=\left\{\begin{array}{l}
\frac{i+1}{2}, 1 \leq i \leq n, i \text { is odd } \\
\frac{m+i+1}{2}, 1 \leq i \leq n, i \text { is even }
\end{array}\right. \\
& \mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)=2 \mathrm{n}+2 \mathrm{~m}+\mathrm{i}-1,1 \leq \mathrm{i} \leq \mathrm{n}-1 \\
& \mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)=2 \mathrm{n}+\mathrm{m}+\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}-1 \\
& f\left(v_{1} u_{i}\right)=\left\{\begin{array}{l}
n+m+\frac{i+1}{2} \quad, 1 \leq i \leq n, i \text { is odd } \\
n+m+\frac{n+i+1}{2}, 1 \leq i \leq n, i \text { is even }
\end{array}\right.
\end{aligned}
$$

Now we prove this labeling is an edge trimagic graceful.
Consider the edges $\mathrm{u}_{\mathrm{i}} \mathrm{v}_{1}, 1 \leq \mathrm{i} \leq \mathrm{n}$.
For odd $\mathrm{i},\left|\mathrm{f}\left(\mathrm{v}_{1}\right)-\mathrm{f}\left(\mathrm{v}_{1} \mathrm{u}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)\right|=\left|\mathrm{m}+\frac{\mathrm{i}+1}{2}-\left(\mathrm{n}+\mathrm{m}+\frac{\mathrm{i}+1}{2}\right)+1\right|=|1-\mathrm{n}|=\mathrm{C}_{1}$
For even $i,\left|f\left(v_{1}\right)-f\left(v_{1} u_{i}\right)+f\left(u_{i}\right)\right|=\left|m+\frac{n+i+1}{2}-\left(n+m+\frac{n+i+1}{2}\right)+1\right|=|1-n|=C_{1}$
Consider the edges $\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}, 1 \leq \mathrm{i} \leq \mathrm{n}$.
For odd $\mathrm{i},\left|\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)-\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}+1}\right)\right|=\left|\mathrm{m}+\frac{\mathrm{i}+1}{2}-(2 \mathrm{n}+2 \mathrm{~m}+\mathrm{i}-1)+\mathrm{m}+\frac{\mathrm{n}+\mathrm{i}+2}{2}\right|=\left|\frac{5-3 \mathrm{n}}{2}\right| \mathrm{C}_{2}$
For even $\mathrm{i},\left|\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)-\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}+1}\right)\right|=\left|m+\frac{\mathrm{n}+\mathrm{i}+1}{2}-(2 \mathrm{n}+2 \mathrm{~m}+\mathrm{i}-1)+\mathrm{m}+\frac{\mathrm{i}+2}{2}\right|=\left|\frac{5-3 n}{2}\right|=C_{2}$
Consider the edges $\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}, 1 \leq \mathrm{i} \leq \mathrm{n}$.
For odd $\mathrm{i},\left|\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)-\mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)\right|=\left|\frac{\mathrm{i}+1}{2}-(2 \mathrm{n}+\mathrm{m}+\mathrm{i})+\frac{\mathrm{m}+\mathrm{i}+1}{2}\right|=\left|\frac{3-\mathrm{m}-4 \mathrm{n}}{2}\right|=\mathrm{C}_{3}$
For even $i,\left|f\left(v_{i}\right)-f\left(v_{i} v_{i+1}\right)+f\left(v_{i}\right)\right|=\left|\frac{m+i+1}{2}-(2 n+m+i)+\frac{i+2}{2}\right|=\left|\frac{3-m-4 n}{2}\right|=C_{3}$
Hence for each edge $u v \in E\left(U_{n, m}\right),|f(u)-f(u v)+f(v)|$ yields any one of the constants $C_{1}=|1-n|$,
$\left.C_{2}=\left|\frac{5-3 n}{2}\right| \right\rvert\,$ and $C_{3}=\left|\frac{3-m-4 n}{2}\right|$. Therefore, the Umbrella graph $U_{n, m}$ admits an edge trimagic graceful labeling for both n and m are odd.

Case-4: both n and m are even
Define a bijection $\mathrm{f}: \mathrm{V} \cup \mathrm{E} \rightarrow\{1,2,3, \ldots, 3 \mathrm{n}+2 \mathrm{~m}-2\}$ such that

$$
\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\left\{\begin{array}{l}
\mathrm{m}+\frac{\mathrm{i}+1}{2}, 1 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{i} \text { is odd } \\
\mathrm{m}+\frac{\mathrm{n}+\mathrm{i}}{2}, 1 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{i} \text { is even }
\end{array}\right.
$$

$$
\left.\begin{array}{l}
\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\left\{\begin{array}{l}
\frac{\mathrm{i}+1}{2}, 1 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{i} \text { is odd } \\
\frac{\mathrm{n}+\mathrm{i}}{2}, 1 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{i} \text { is even }
\end{array}\right. \\
\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)=3 \mathrm{~m}+\mathrm{n}+\mathrm{i}+1,1 \leq \mathrm{i} \leq \mathrm{n}-1
\end{array} \mathrm{f(v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)=2 \mathrm{n}+\mathrm{m}+\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}-1 \begin{aligned}
& \mathrm{f}\left(\mathrm{v}_{1} \mathrm{u}_{\mathrm{i}}\right)=\left\{\begin{array}{l}
\mathrm{n}+\mathrm{m}+\frac{\mathrm{i}+1}{2}, 1 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{i} \text { is odd } \\
\mathrm{n}+\mathrm{m}+\frac{\mathrm{n}+\mathrm{i}}{2}, 1 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{i} \text { is even }
\end{array}\right.
\end{aligned}
$$

Now we prove this labeling is an edge trimagic graceful.
Consider the edges $\mathrm{u}_{\mathrm{i}} \mathrm{v}_{1}, 1 \leq \mathrm{i} \leq \mathrm{n}$.
For odd $i,\left|f\left(v_{1}\right)-f\left(v_{1} u_{i}\right)+f\left(u_{i}\right)\right|=\left|1-\left(n+m+\frac{i+1}{2}\right)+m+\frac{i+1}{2}\right|=|1-n|=C_{1}$
For even $\mathrm{i},\left|\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)-\mathrm{f}\left(\mathrm{v}_{1} \mathrm{u}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)\right|=\left|1-\left(\mathrm{n}+\mathrm{m}+\frac{\mathrm{n}+\mathrm{i}}{2}\right)+\mathrm{m}+\frac{\mathrm{n}+\mathrm{i}}{2}\right|=|1-\mathrm{n}|=\mathrm{C}_{1}$
Consider the edges $\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}, 1 \leq \mathrm{i} \leq \mathrm{n}$.
For odd $\mathrm{i}, \left\lvert\, \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)-\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}+1}\left|=\left|\mathrm{m}+\frac{\mathrm{i}+1}{2}-(\mathrm{n}+3 \mathrm{~m}+\mathrm{i}+1)+\mathrm{m}+\frac{\mathrm{n}+\mathrm{i}+1}{2}\right|=\left|\frac{-2 \mathrm{~m}-\mathrm{n}}{2}\right|=C_{2}\right.\right.\right.$
For even $\mathrm{i},\left|\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)-\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}+1}\right)\right|=\left|\mathrm{m}+\frac{\mathrm{n}+\mathrm{i}}{2}-(\mathrm{n}+3 \mathrm{~m}+\mathrm{i}+1)+\mathrm{m}+\frac{\mathrm{i}+2}{2}\right|=\left|\frac{-2 \mathrm{~m}-\mathrm{n}}{2}\right|=\mathrm{C}_{2}$
Consider the edges $\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}, 1 \leq \mathrm{i} \leq \mathrm{n}$.
For odd $\mathrm{i},\left|\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)-\mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)\right|=\left|\frac{\mathrm{i}+1}{2}-(2 \mathrm{n}+\mathrm{m}+\mathrm{i})+\frac{\mathrm{m}+\mathrm{i}+1}{2}\right|=\left|\frac{2-m-4 n}{2}\right|=C_{3}$
For even $i,\left|f\left(v_{i}\right)-f\left(v_{i} v_{i+1}\right)+f\left(v_{i}\right)\right|=\left|\frac{m+i}{2}-(2 n+m+i)+\frac{i+2}{2}\right|=\left|\frac{2-m-4 n}{2}\right|=C_{3}$
Hence for each edge $u v \in E\left(U_{n, m}\right),|f(u)-f(u v)+f(v)|$ yields any one of the constants $C_{1}=|1-n|$,
$\left.C_{2}=\left|\frac{-2 m-n}{2}\right| \right\rvert\,$ and $C_{3}=\left|\frac{2-m-4 n}{2}\right|$. Therefore, the Umbrella graph $U_{n, m}$ admits an edge trimagic graceful labeling for both n and m are even.

Corollary 2.2: The Umbrella graph $\mathrm{U}_{\mathrm{n}, \mathrm{m}}$ admits a super edge trimagic graceful labeling.
Proof: We proved that the Umbrella graph $\mathrm{U}_{\mathrm{n}, \mathrm{m}}$ admits an edge trimagic graceful labeling. The labeling given in the proof of theorem 2.1, the vertices get labels $1,2, \ldots, n+m$. Since the Umbrella graph $U_{n, m}$ has $n+m$ vertices and these $n+m$ vertices have labels $1,2, \ldots, n+m$ for both odd and even n and $m, U_{n, m}$ is a super edge trimagic graceful.

Example 2.3: An edge trimagic graceful labeling of $U_{5,4}, U_{6,3}, U_{5,3}$ and $U_{6,4}$ are given in figure 1, 2, 3 and figure 4 respectively.

Figure-1: $\mathrm{U}_{5,4}$ with $\stackrel{4}{\mathrm{C}}_{1}=4, \mathrm{C}_{2}=5$ and $\mathrm{C}_{3}=11$

Figure-2: $\mathrm{U}_{6,3}$ with $\mathrm{C}_{1}=5, \mathrm{C}_{2}=7$ and $\mathrm{C}_{3}=12$

Figure-3: $\mathrm{U}_{5,3}$ with $\mathrm{C}_{1}=4, \mathrm{C}_{2}=5$ and $\mathrm{C}_{3}=10$

Figure-4: $\mathrm{U}_{6,4}$ with $\mathrm{C}_{1}=5, \mathrm{C}_{2}=7$ and $\mathrm{C}_{3}=13$
Theorem 2.4: The circular ladder $C L(n)$ admits an edge graceful trimagic labeling for all n.
Proof: Let $V(C L(n))=\left\{u_{i}, v_{i} / 1 \leq i \leq n\right\}$ be the vertex set and $E(C L(n))=\left\{u_{i} u_{i+1}, v_{i} v_{i+1} / 1 \leq i \leq n-1\right\} \cup\left\{u_{i} v_{i}, / 1 \leq i\right.$ $\leq n\}$ be the edge set of the graph CL(n). Then CL(n) has $2 n$ vertices and 3n edges.

Case-1: \mathbf{n} is odd

Define a bijection $\mathrm{f}: \mathrm{V} \cup \mathrm{E} \rightarrow\{1,2,3, \ldots, 5 \mathrm{n}\}$ such that

$$
\left.\begin{array}{l}
\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\left\{\begin{array}{l}
\mathrm{n}+\frac{\mathrm{n}+\mathrm{i}+2}{2}, 1 \leq \mathrm{i} \leq \mathrm{n}-1, \mathrm{i} \text { is odd } \\
\mathrm{n}+\frac{\mathrm{i}+2}{2},
\end{array}, 1 \leq \mathrm{i} \leq \mathrm{n}-1, \mathrm{i}\right. \text { is even }
\end{array}\right\} \begin{aligned}
& \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\left\{\begin{array}{l}
\frac{\mathrm{i}+1}{2}, 1 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{i} \text { is odd } \\
\frac{\mathrm{n}+\mathrm{i}+1}{2}, 1 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{i} \text { is even }
\end{array}\right. \\
& \mathrm{f}\left(\mathrm{u}_{\mathrm{n}}\right)=\mathrm{n}+1
\end{aligned}, \begin{aligned}
& \mathrm{f}\left(\mathrm{u}_{i} \mathrm{u}_{\mathrm{i}+1}\right)=4 \mathrm{n}+\mathrm{i}+2,1 \leq \mathrm{i} \leq \mathrm{n}-2 \\
& \mathrm{f}\left(\mathrm{u}_{\mathrm{n}} \mathrm{u}_{\mathrm{n}-1}\right)=4 \mathrm{n}+1 \\
& \mathrm{f}\left(\mathrm{u}_{1} \mathrm{u}_{\mathrm{n}}\right)=4 \mathrm{n}+2 \\
& \mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)=3 \mathrm{n}+\mathrm{i}+1,1 \leq \mathrm{i} \leq \mathrm{n}-1 \\
& \mathrm{f}\left(\mathrm{v}_{1} \mathrm{v}_{\mathrm{n}}\right)=3 \mathrm{n}+1 \\
& \mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)=2 \mathrm{n}+\mathrm{i}+1,1 \leq \mathrm{i} \leq \mathrm{n}-1 \\
& \mathrm{and} \mathrm{f}\left(\mathrm{u}_{\mathrm{n}} \mathrm{v}_{\mathrm{n}}\right)=2 \mathrm{n}+1 .
\end{aligned}
$$

Now we prove this labeling is an edge trimagic graceful.
Consider the edges $\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}, 1 \leq \mathrm{i} \leq \mathrm{n}-2$.
For odd $\mathrm{i},\left|\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)-\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}+1}\right)\right|=\left|\mathrm{n}+\frac{\mathrm{n}+\mathrm{i}+2}{2}-(4 \mathrm{n}+\mathrm{i}+2)+\mathrm{n}+\frac{\mathrm{i}+3}{2}\right|=\left|\frac{1-3 n}{2}\right|=C_{1}$
For even $\mathrm{i},\left|\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)-\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}+1}\right)\right|=\left|\mathrm{n}+\frac{\mathrm{i}+2}{2}-(4 \mathrm{n}+\mathrm{i}+2)+\mathrm{n}+\frac{\mathrm{n}+\mathrm{i}+3}{2}\right|=\left|\frac{1-3 \mathrm{n}}{2}\right|=\mathrm{C}_{1}$
For the edge $u_{1} u_{n},\left|f\left(u_{1}\right)-f\left(u_{1} u_{n}\right)+f\left(u_{n}\right)\right|=\left|n+\frac{n+3}{2}-(4 n+2)+n+1\right|=\left|\frac{1-3 n}{2}\right|=C_{1}$

For the edge $u_{n-1} u_{n},\left|f\left(u_{n-1}\right)-f\left(u_{n-1} u_{n}\right)+f\left(u_{n}\right)\right|=\left|n+\frac{n+1}{2}-(4 n+2)+n+1\right|=\left|\frac{1-3 n}{2}\right|=C_{1}$
Consider the edges $u_{i} v_{i}, 1 \leq i \leq n-1$
For odd $\mathrm{i},\left|\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)-\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)\right|=\left|\mathrm{n}+\frac{\mathrm{n}+\mathrm{i}+2}{2}-(2 \mathrm{n}+\mathrm{i}+1)+\frac{\mathrm{i}+1}{2}\right|=\left|\frac{1-\mathrm{n}}{2}\right|=\mathrm{C}_{2}$
For even $\mathrm{i},\left|\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)-\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)\right|=\left|\mathrm{n}+\frac{\mathrm{i}+2}{2}-(2 \mathrm{n}+\mathrm{i}+1)+\frac{\mathrm{n}+\mathrm{i}+2}{2}\right|=\left|\frac{1-\mathrm{n}}{2}\right|=\mathrm{C}_{2}$
For the edge $u_{n} v_{n},\left|f\left(u_{n}\right)-f\left(u_{n} v_{n}\right)+f\left(v_{n}\right)\right|=\left|n+1-(2 n+1)+\frac{n+1}{2}\right|=\left|\frac{1-n}{2}\right|=C_{2}$
Consider the edges $\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}, 1 \leq \mathrm{i} \leq \mathrm{n}-1$.
For odd $\mathrm{i},\left|\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)-\mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)\right|=\left|\frac{\mathrm{i}+1}{2}-(3 \mathrm{n}+\mathrm{i}+1)+\frac{\mathrm{n}+\mathrm{i}+2}{2}\right|=\left|\frac{1-5 \mathrm{n}}{2}\right|=\mathrm{C}_{3}$
For even $i,\left|f\left(v_{i}\right)-f\left(v_{i} v_{i+1}\right)+f\left(v_{i}\right)\right|=\left|\frac{n+i+1}{2}-(3 n+i+1)+\frac{i+2}{2}\right|=\left|\frac{1-5 n}{2}\right|=C_{3}$
For the edge $v_{1} v_{n},\left|f\left(v_{1}\right)-f\left(v_{1} v_{n}\right)+f\left(v_{n}\right)\right|=\left|1-(3 n+1)+\frac{n+1}{2}\right|=\left|\frac{1-5 n}{2}\right|=C_{3}$
Hence for each edge $u v \in E(C L(n)),|f(u)-f(u v)+f(v)|$ yields any one of the constants $C_{1}=\left|\frac{1-3 n}{2}\right|$,
$C_{2}=\left|\frac{1-n}{2}\right|$ and $C_{3}=\left|\frac{1-5 n}{2}\right|$. Therefore, the circular ladder CL(n) admits an edge trimagic graceful labeling for odd n.

Case-2: \mathbf{n} is even

Define a bijection $\mathrm{f}: \mathrm{V} \cup \mathrm{E} \rightarrow\{1,2,3, \ldots, 5 \mathrm{n}\}$ such that

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\left\{\begin{array}{l}
\mathrm{n}+\frac{\mathrm{i}+1}{2}, 1 \leq \mathrm{i} \leq \mathrm{n}-1, \mathrm{i} \text { is odd } \\
\mathrm{n}+\frac{\mathrm{n}+\mathrm{i}}{2}, 1 \leq \mathrm{i} \leq \mathrm{n}-1, \mathrm{i} \text { is even }
\end{array}\right. \\
& \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\left\{\begin{array}{l}
\frac{\mathrm{i}+1}{2}, 1 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{i} \text { is odd } \\
\frac{\mathrm{n}+\mathrm{i}}{2}, 1 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{i} \text { is even }
\end{array}\right. \\
& \mathrm{f}\left(\mathrm{u}_{\mathrm{n}}\right)=2 \mathrm{n} \\
& \mathrm{f}\left(\mathrm{u}_{\mathrm{i}} u_{i+1}\right)=4 \mathrm{n}+\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}-1 \\
& \mathrm{f}\left(\mathrm{u}_{1} \mathrm{u}_{\mathrm{n}}\right)=5 \mathrm{n} \\
& \mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)=2 \mathrm{n}+\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}-1 \\
& \mathrm{f}\left(\mathrm{v}_{1} \mathrm{v}_{\mathrm{n}}\right)=3 \mathrm{n} \\
& \mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)=3 \mathrm{n}+\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}-1 \\
& \text { and } \mathrm{f}\left(\mathrm{u}_{\mathrm{n}} \mathrm{v}_{\mathrm{n}}\right)=4 \mathrm{n}
\end{aligned}
$$

Now we prove this labeling is an edge trimagic graceful.
Consider the edges $\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}, 1 \leq \mathrm{i} \leq \mathrm{n}-2$.
For odd $\mathrm{i},\left|\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)-\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}+1}\right)\right|=\left|\mathrm{n}+\frac{\mathrm{i}+2}{2}-(4 \mathrm{n}+\mathrm{i})+\mathrm{n}+\frac{\mathrm{n}+\mathrm{i}+1}{2}\right|=\left|\frac{2-3 \mathrm{n}}{2}\right|=\mathrm{C}_{1}$
For even $\mathrm{i},\left|\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)-\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}+1}\right)\right|=\left|\mathrm{n}+\frac{\mathrm{n}+\mathrm{i}}{2}-(4 \mathrm{n}+\mathrm{i})+\mathrm{n}+\frac{\mathrm{i}+2}{2}\right|=\left|\frac{2-3 \mathrm{n}}{2}\right|=\mathrm{C}_{1}$
Consider the edges $v_{i} v_{i+1}, 1 \leq i \leq n-1$.
For odd $\mathrm{i},\left|\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)-\mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)\right|=\left|\frac{\mathrm{i}+1}{2}-(2 \mathrm{n}+\mathrm{i})+\frac{\mathrm{n}+\mathrm{i}+1}{2}\right|=\left|\frac{2-3 n}{2}\right|=C_{1}$
For even i , $\left|f\left(v_{\mathrm{i}}\right)-\mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)\right|=\left|\frac{\mathrm{n}+\mathrm{i}}{2}-(2 \mathrm{n}+\mathrm{i})+\frac{\mathrm{i}+2}{2}\right|=\left|\frac{2-3 \mathrm{n}}{2}\right|=C_{1}$
Consider the edges $u_{i} v_{i}, 1 \leq i \leq n$,
For odd $\mathrm{i},\left|\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)-\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)\right|=\left|\mathrm{n}+\frac{\mathrm{i}+1}{2}-(3 \mathrm{n}+\mathrm{i})+\frac{\mathrm{i}+1}{2}\right|=|1-2 \mathrm{n}|=\mathrm{C}_{2}$
For even $\mathrm{i},\left|\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)-\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)\right|=\left|\mathrm{n}+\frac{\mathrm{n}+\mathrm{i}}{2}-(3 \mathrm{n}+\mathrm{i})+\frac{\mathrm{n}+\mathrm{i}}{2}\right|=|-\mathrm{n}|=\mathrm{C}_{3}$
For the edge $v_{1} v_{n},\left|f\left(v_{1}\right)-f\left(v_{1} v_{n}\right)+f\left(v_{n}\right)\right|=\left|1-3 n+\frac{2 n}{2}\right|=|1-2 n|=C_{2}$
For the edge $u_{1} u_{n},\left|f\left(u_{1}\right)-f\left(u_{1} u_{n}\right)+f\left(u_{n}\right)\right|=\left|\frac{2 n+2}{2}-(5 n)+2 n\right|=|1-2 n|=C_{2}$
For the edge $u_{n} v_{n},\left|f\left(u_{n}\right)-f\left(u_{n} v_{n}\right)+f\left(v_{n}\right)\right|=|2 n-(4 n)+n|=|-n|=C_{3}$
Hence for each edge uv $\in E(C L(n)),|f(u)-f(u v)+f(v)|$ yields any one of the constants $C_{1}=\left|\frac{2-3 n}{2}\right|$,
$\mathrm{C}_{2}=|1-2 \mathrm{n}|$ and $\mathrm{C}_{3}=|-\mathrm{n}|$. Therefore, the circular ladder CL(n) admits an edge trimagic graceful labeling for even n.

Corollary 2.5: The circular ladder CL(n) admits a super edge trimagic graceful labeling.
Proof: We proved that the circular ladder CL(n) admits an edge trimagic graceful labeling. The labeling given in the proof of theorem 2.4, the vertices get labels $1,2, \ldots, 2 n$. Since the circular ladder, CL(n) has $2 n$ vertices and these $2 n$ vertices have labels $1,2, \ldots, 2 n$ for both odd and even $n, C L(n)$ is a super edge trimagic graceful.

Example 2.6: An edge trimagic graceful labeling of CL(5), CL(6) are given in figure 5, and figure 6 respectively.

Figure-5: CL(5) with $\mathrm{C}_{1}=7, \mathrm{C}_{2}=2$ and $\mathrm{C}_{3}=12$

Figure-6: $\mathrm{CL}(6)$ with $\mathrm{C}_{1}=8, \mathrm{C}_{2}=11$ and $\mathrm{C}_{3}=6$
Theorem 2.7: The Dumbbell Dbn admits an edge trimagic graceful labeling for all n .
Proof: Let $V\left(D b_{n}\right)=\left\{u_{i}, v_{i} / 1 \leq i \leq n\right\}$ be the vertex set and $E\left(D b_{n}\right)=\left\{u_{i} u_{i+1}, v_{i} v_{i+1} / 1 \leq i \leq n-1\right\} \cup\left\{u_{1} u_{n}, v_{1} v_{n}\right\}$ $\cup\left\{u_{1} v_{1}\right\}$ be the edge set of the graph $D b_{n}$. Then $D b_{n}$ has $2 n$ vertices and $2 n+1$ edges.

Case-1: \mathbf{n} is odd

Define a bijection $\mathrm{f}: \mathrm{V} \cup \mathrm{E} \rightarrow\{1,2, \ldots, 4 \mathrm{n}+1\}$ such that

$$
\begin{aligned}
& f\left(u_{i}\right)=\left\{\begin{array}{l}
\frac{i+1}{2}, 1 \leq i \leq n, i \text { is odd } \\
\frac{n+i+1}{2}, 1 \leq i \leq n, i \text { is even }
\end{array}\right. \\
& f\left(v_{i}\right)=\left\{\begin{array}{l}
\frac{2 n+i+1}{2}, 1 \leq i \leq n, i \text { is odd } \\
\frac{3 n+i+1}{2}, 1 \leq i \leq n, i \text { is even }
\end{array}\right. \\
& f\left(u_{i} u_{i+1}\right)=2 n+i+1 \\
& f\left(v_{i} v_{i+1}\right)=3 n+i+1 \\
& f\left(u_{1} u_{n}\right)=2 n+1 \\
& \text { and } f\left(v_{1} v_{n}\right)=3 n+1
\end{aligned}
$$

Now we prove this labeling is an edge trimagic graceful.
Consider the edges $\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}, 1 \leq \mathrm{i} \leq \mathrm{n}-1$
For odd $i,\left|f\left(u_{i}\right)-f\left(u_{i} u_{i+1}\right)+f\left(u_{i+1}\right)\right|=\left|\frac{i+1}{2}-(2 n-i-1)+\frac{n+i}{2}+1\right|=\left|\frac{1-3 n}{2}\right|=C_{1}$
For even $\mathrm{i},\left|\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)-\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}+1}\right)\right|=\left|\frac{\mathrm{n}+\mathrm{i}+1}{2}-(2 \mathrm{n}-\mathrm{i}-1)+\frac{\mathrm{i}+2}{2}\right|=\left|\frac{1-3 \mathrm{n}}{2}\right|=C_{1}$
Consider the edges $\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}, 1 \leq \mathrm{i} \leq \mathrm{n}-1$
For odd $i,\left|f\left(v_{i}\right)-f\left(v_{i} v_{i+1}\right)+f\left(v_{i+1}\right)\right|=\left|\frac{2 n+i+1}{2}-(3 n+i+1)+\frac{3 n+i+2}{2}\right|=\left|\frac{1-n}{2}\right|=C_{2}$
For even $\mathrm{i},\left|\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)-\mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}+1}\right)\right|=\left|\frac{3 \mathrm{n}+\mathrm{i}+1}{2}-(3 \mathrm{n}+\mathrm{i}+1)+\mathrm{n}+\frac{\mathrm{i}+2}{2}\right|=\left|\frac{1-\mathrm{n}}{2}\right|=\mathrm{C}_{2}$
Consider the edge $u_{1} u_{n},\left|f\left(u_{1}\right)-f\left(u_{1} u_{n}\right)+f\left(u_{n}\right)\right|=\left|1-(2 n-1)+\frac{n+1}{2}\right|=\left|\frac{1-3 n}{2}\right|=C_{1}$

Consider the edge $\mathrm{v}_{1} \mathrm{v}_{\mathrm{n},}\left|\mathrm{f}\left(\mathrm{v}_{1}\right)-\mathrm{f}\left(\mathrm{v}_{1} \mathrm{v}_{\mathrm{n}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{n}}\right)\right|=\left|\mathrm{n}+1-(3 \mathrm{n}+1)+\frac{3 \mathrm{n}+1}{2}\right|=\left|\frac{1-\mathrm{n}}{2}\right|=\mathrm{C}_{2}$
Consider the edge $u_{1} v_{1},\left|f\left(u_{1}\right)-f\left(u_{1} v_{1}\right)+f\left(v_{1}\right)\right|=|1-(4 n-1)+n+1|=|1-3 n|=C_{3}$
Hence for each edge $u v \in E\left(D b_{n}\right),|f(u)-f(u v)+f(v)|$ yields any one of the constants $C_{1}=\left|\frac{1-3 n}{2}\right|$,
$\mathrm{C}_{2}=\left|\frac{1-\mathrm{n}}{2}\right|$ and $\mathrm{C}_{3}=|1-3 \mathrm{n}|$. Therefore, the Dumbbell graph Db_{n} admits an edge trimagic graceful labeling for odd n.

Case-2: n is even

Define a bijection f: $V \cup E \rightarrow\{1,2, \ldots, 4 n+1\}$ such that

$$
\begin{aligned}
& f\left(u_{i}\right)= \begin{cases}n+\frac{i+1}{2}, & 1 \leq i \leq n, i \text { is odd } \\
\frac{i}{2}, & 1 \leq i \leq n, i \text { is even }\end{cases} \\
& \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\left\{\begin{array}{l}
\frac{\mathrm{n}+\mathrm{i}+1}{2}, 1 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{i} \text { is odd } \\
\frac{3 \mathrm{n}+\mathrm{i}}{2}, \\
1 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{i} \text { is even }
\end{array}\right. \\
& \mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)=2 \mathrm{n}+\mathrm{i} \\
& \mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)=3 \mathrm{n}+\mathrm{i} \\
& \mathrm{f}\left(\mathrm{u}_{1} \mathrm{u}_{\mathrm{n}}\right)=3 \mathrm{n} \\
& \text { and } f\left(v_{1} v_{n}\right)=4 n \text {. }
\end{aligned}
$$

Now we prove this labeling is an edge trimagic graceful.
Consider the edges $\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}, 1 \leq \mathrm{i} \leq \mathrm{n}-1$
For odd $i,\left|f\left(u_{i}\right)-f\left(u_{i} u_{i+1}\right)+f\left(u_{i+1}\right)\right|=\left|n+\frac{i+1}{2}-(2 n+i)+\frac{i+1}{2}\right|=|1-n|=C_{1}$ (say)
For even $\mathrm{i},\left|\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)-\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)+\mathrm{f}\left(\mathrm{u}_{\mathrm{i}+1}\right)\right|=\left|\frac{\mathrm{i}}{2}-(2 \mathrm{n}+\mathrm{i})+\mathrm{n}+\frac{\mathrm{i}+2}{2}\right|=|1-\mathrm{n}|=C_{1}$.
Consider the edges $\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}, 1 \leq \mathrm{i} \leq \mathrm{n}-1$
For odd $i,\left|f\left(v_{i}\right)-f\left(v_{i} v_{i+1}\right)+f\left(v_{i+1}\right)\right|=\left|\frac{n+i+1}{2}-(3 n+i)+\frac{3 n+i+1}{2}\right|=|1-n|=C_{1}$
For even $i,\left|f\left(v_{i}\right)-f\left(v_{i} v_{i+1}\right)+f\left(v_{i+1}\right)\right|=\left|\frac{3 n+i}{2}-(3 n+i)+\frac{n+i+2}{2}\right|=|1-n|=C_{1}$
Consider the edges $u_{1} u_{n}\left|f\left(u_{1}\right)-f\left(u_{1} u_{n}\right)+f\left(u_{n}\right)\right|=\left|n+1-3 n+\frac{n}{2}\right|=\left|\frac{2-3 n}{2}\right|=C_{2}$.
Consider the edges $\mathrm{v}_{1} \mathrm{v}_{\mathrm{n}},\left|\mathrm{f}\left(\mathrm{v}_{1}\right)-\mathrm{f}\left(\mathrm{v}_{1} \mathrm{v}_{\mathrm{n}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{n}}\right)\right|=\left|\frac{\mathrm{n}}{2}+1-4 \mathrm{n}+2 \mathrm{n}\right|=\left|\frac{2-3 \mathrm{n}}{2}\right|=\mathrm{C}_{2}$.
Consider the edges $u_{1} v_{1},\left|f\left(u_{1}\right)-f\left(u_{1} v_{1}\right)+f\left(v_{1}\right)\right|=\left|n-1-(4 n-1)+\frac{n+2}{2}\right|=\left|\frac{2-5 n}{2}\right|=C_{3}$
Hence for each edge $u v \in E\left(D b_{n}\right),|f(u)-f(u v)+f(v)|$ yields any one of the constants $C_{1}=|1-n|$,
$C_{2}=\left|\frac{2-3 n}{2}\right|$ and $C_{3}=\left|\frac{2-5 n}{2}\right|$. Therefore, the Dumbbell graph Db_{n} admits an edge trimagic graceful labeling for even n.

Corollary 2.8: The Dumbbell graph Db_{n} admits a super edge trimagic graceful labeling.
Proof: We proved that the graph Db_{n} admits an edge trimagic graceful labeling. The labeling given in the proof of theorem 2.7, the vertices get labels $1,2, \ldots, 3 n+3$. Since the Dumbbell graph Db_{n} has 2 n vertices and these 2 n vertices have labels $1,2, \ldots, 2 n$ for both odd and even $n, \mathrm{Db}_{\mathrm{n}}$ is a super edge trimagic graceful.

Example 2.9: An edge trimagic graceful labeling of Db_{5} and Db_{6} are given in figure 7 and figure 8 respectively.

Figure-7: Db_{5} with $\mathrm{C}_{1}=7, \mathrm{C}_{2}=2$ and $\mathrm{C}_{3}=14$.

Figure-8: Db_{6} with $\mathrm{C}_{1}=5, \mathrm{C}_{2}=8$ and $\mathrm{C}_{3}=14$.

3. CONCLUSION

In this paper, we proved that the Umbrella graph $\mathrm{U}_{\mathrm{n}, \mathrm{m}}$, circular ladder graph CL(n) and the Dumbbell graph Db_{n} are edge trimagic graceful and super edge trimagic graceful. In future, we can construct many trimagic graceful graphs using these ideas.

REFERENCES

1. A. Kotzig and A. Rosa, "Magic Valuations of finite graphs", Canad. Math. Bull., vol. 13 (1970) $415-416$.
2. C. Jayasekaran, M. Regees and C. Davidraj, "Edge trimagic labeling of some graphs", Intern. Journal of Combinatorial Graph Theory and Applications, 6(2) (2013)175-186.
3. C. Jayasekaran and J. Little Flower, "On Edge Trimagic Labeling of Umbrella, Dumb Bell and Circular Ladder Graphs", Annals of Pure and Applied Mathematics, vol. 13, N0. 1, 2017, 73 - 87.
4. G. Marimuthu and M. Balakrishnan, "Super Edge Magic graceful Graphs", information sciences 287(2014), $140-151$.
5. I. Rajasingh, B. Rajan and V. Annamma, "Total vertex irregularity strength of circular ladder and windmill graphs", International Conference on Mathematical Computer Engineering - ICMCE (2013) 418-423.
6. Joseph A. Gallian, "A Dynamic Survey of graph Labeling of Some Graphs", The Electronic Journal of Combinatorics (2017), \#DS6.
7. R. Ponraj, S. S. Narayanan and A.M. S. Ramasamy, "Total mean cardinality of umbrella, butterfly and dumb bell graphs", Jordan Journal of Mathematics and Statistics, 8(1) (2015) 59 - 77.
[^0]
[^0]: Source of support: Proceedings of National Conference January 11-13, 2018, on Discrete \& Computational Mathematics (NCDCM-2018), Organized by Department of Mathematics, University of Kerala, Kariavattom Thiruvanathapuram-695581.

