Volume 9, No. 4, April - 2018 (Special Issue) International Journal of Mathematical Archive-9(4), 2018, 1-6 MAAvailable online through www.ijma.info ISSN 2229 - 5046

(k,1)-CONTRA HARMONIC MEAN LABELING OF GRAPHS

S. S. SANDHYA¹, S. SOMASUNDARAM² AND J. RAJESHNI GOLDA³

¹Department of Mathematics, Sree Ayyappa College for Women, Nagercoil, India.

²Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli, India.

³Department of Mathematics, Women's Christian College, Nagercoil, India.

E-mail: sssandhya2009@gmail.com¹, somutvl@gmail.com² and rajeshnigolda3@gmail.com³

ABSTRACT

Let G = (V, E) be a graph with p vertices and q edges. Let $f : V(G) \rightarrow \{0, 1, 2, ..., k+(q-1)\}$ be an injective function such that the induced edge labeling f(e = uv) is defined by $f(e) = \left[\frac{f(u)^2 + f(v)^2}{f(u) + f(v)}\right]$ or $\left[\frac{f(u)^2 + f(v)^2}{f(u) + f(v)}\right]$ is a bijection from E to $\{k, k+1, k+2, ..., k+(q-1)\}$. Then f has a (k, 1)- contra harmonic mean labeling. Any graph which admits a (k, 1)- contra harmonic mean graph. In this paper we investigate the (k, 1)- Contra Harmonic mean labeling for some path related graphs.

Keywords: Contra Harmonic mean labeling, (k, 1) - Contra Harmonic mean labeling.

1. INTRODUCTION

Let G = (V, E) be a finite, simple, undirected graph with p vertices and q edges. For all detailed survey of graph labeling we refer to Gallian [1]. For all other standard terminology and notation we follow Harray [4]. We will give a brief summary of definition and other information which are useful for the present investigation.

A graph G = (V,E) with p vertices and q edges is called a Contra Harmonic mean graph if it is possible to label the vertices $x \in V$ with distinct elements f(x) from 0,1,...,q in such a way that when each edge e=uv is labeled with $f(e=uv) = \left[\frac{f(u)^2 + f(v)^2}{f(u) + f(v)}\right]$ or $\left[\frac{f(u)^2 + f(v)^2}{f(u) + f(v)}\right]$ with distinct edge labels. Here f is called a Contra Harmonic mean labeling of G.

S. Somasundaram and R. Ponraj introduced mean labeling of graphs and investigated mean labeling for some standard graph in [6]. These labeling patterns motivated us to introduced Contra Harmonic mean labeling [5]. In this paper we prove that some path related graphs admits (k,1)-Contra Harmonic mean labeling where k is any positive integer greater than or equal to 1.

Definition 1.1: Let G = (V, E) be a graph with p vertices and q edges. Let f : V(G) $\rightarrow \{0, 1, 2, ..., k+(q-1)\}$ be an injective function such that the induced edge labeling f(e = uv) is defined by f(e) = $\left[\frac{f(u)^2 + f(v)^2}{f(u) + f(v)}\right]$ or $\left[\frac{f(u)^2 + f(v)^2}{f(u) + f(v)}\right]$ is a bijection from E to $\{k, k+1, k+2, ..., k+(q-1)\}$. Then f has a (k,1)- contra harmonic mean labeling. Any graph which admits a (k,1)- contra harmonic mean labeling is called a (k,1)-contra harmonic mean graph. Here k is a positive integer greater than or equal to 1.

Definition 1.2: A Triangular snake T_n is obtained from a path $u_1 \dots u_n$ by joining u_i and to a vertex v_i for $1 \le i \le n - 1$.

International Journal of Mathematical Archive- 9(4), April – 2018

CONFERENCE PAPER

National Conference January 11-13, 2018, on Discrete & Computational Mathematics (NCDCM - 2018), Organized by Department of Mathematics, University of Kerala, Kariavattom Thiruvanathapuram-695581.

1

Definition 1.3: A Quadrilateral snake Q_n is obtained from a path $u_1...u_n$ by joining u_i and u_{i+1} to new vertices v_i , w_i , $1 \le i \le n-1$.

Definition 1.4: A middle graph M(G) of a graph G is the graph whose vertex set is $V(G) \cup E(G)$ and in which two vertices are adjacent if and only if either they are adjacent edges of G or one is a vertex of G and the other is an edge incident on it.

2. MAIN RESULTS

Theorem 2.1: A path has a (k, 1)-Contra Harmonic mean labeling for all k.

Proof: Let $u_1...u_n$ be the vertices of the path P_n .

We define an injective function f: V(P_n) \rightarrow {0, 1, 2,...,k+(q-1)} as follows f(u₁)=k-1, f(u_i)=k+i-2, 2 \le i \le n

The distinct edge labeling are as follows $f(u_iu_{i+1}) = i \cdot 1 + k, \ 1 \le i \le n \cdot 1$

Hence, f is a (k, 1) -Contra Harmonic mean labeling of G.

Thus, the path admits a (k, 1)-Contra Harmonic mean graph for all k.

Figure-1: (17, 1) Contra Harmonic mean labeling of P₅

Theorem 2.2: A comb is a (k, 1) - Contra Harmonic mean graph for all k.

Proof: Let $u_1, u_2, u_3, ..., u_n$ be the vertices of the path and let v_i be the pendant vertices attached to each u_i , $1 \le i \le n$.

Let G be a comb graph $P_n \bigcirc K_1$.

We define f: V(G) \rightarrow {0, 1, 2,...,k+(q-1)} as follows f(u_i)=2*i*-3+k, 1≤*i*≤n f(v_i)=2*i*-2+k, 1≤*i*≤n

The distinct edge labeling are as follows $\begin{array}{l} f(u_iu_{i+1}){=}2i{-}1{+}k, \ 1{\leq}i{\leq}n{-}1\\ f(u_iv_i){=}2i{-}2{+}k, \ 1{\leq}i{\leq}n \end{array}$

Hence, f is a (k, 1)-Contra Harmonic mean labeling of G.

Then, the comb is a (k, 1)-Contra Harmonic mean graph for all k.

Figure-2: (51, 1)-Contra Harmonic mean labeling of $P_4 \odot K_1$

© 2018.	IJMA.	All Rights	Reserved
S 2010,	13101/14	All Hughes	neserveu

CONFERENCE PAPER National Conference January 11-13, 2018, on Discrete & Computational Mathematics (NCDCM - 2018), Organized by Department of Mathematics, University of Kerala, Kariavattom Thiruvanathapuram-695581. **Theorem 2.3:** $P_n \bigcirc K_{1,2}$ admits (k,1)-Contra Harmonic mean labeling for all k.

Proof: Let P_n be the path $u_{1,} u_{2,} u_{3,}...,u_n$ and v_i , w_i be the vertices of $K_{1,2}$ which are attached to the vertex u_i of P_n , $1 \le i \le n$

Let $G = P_n \bigcirc K_{1,2}$

We define f: V(G) \rightarrow {0, 1, 2...,k+(q-1)} as f(u_i)=3*i*-3+k, 1≤*i*≤n f(v_i)=3*i*-4+k, 1≤*i*≤n f(x_i)=3*i*-2+k, 1≤*i*≤n

The distinct edge labeling are as follows $f(u_iu_{i+1})=3i-1+k, 1 \le i \le n-1$ $f(u_iv_i)=3i-3+k, 1 \le i \le n$ $f(u_ix_i)=3i-2+k, 1 \le i \le n$

Hence, the function f is a (k,1)-Contra Harmonic mean labeling of G.

Thus, $P_n \bigcirc K_{1,2}$ is a (k-1)-Contra Harmonic mean graph for all k.

Figure-3: (34, 1)-Contra Harmonic mean labeling of $P_6 \bigcirc K_{1,2}$

Theorem 2.4: $P_n \odot K_{1,3}$ admits (k,1)-Contra Harmonic mean labeling for all k.

Proof: Let P_n be the path with vertices $u_{1,} u_{2,} u_{3,}...,u_n$ and v_i , w_i , z_i be the vertices of $K_{1,3}$ which are joined to the vertices u_i of the path $P_n, 1 \le i \le n$.

Let $G = P_n \bigcirc K_{1,3}$.

Let f: V(G) $\rightarrow \{0, 1, 2, ..., k+(q-1)\}$ be defined by $f(u_i)=4i-4+k, 1 \le i \le n$ $f(v_i)=4i-4+k-1, 1 \le i \le n$ $f(w_i)=4i-3+k, 1 \le i \le n$ $f(x_i)=4i-2+k, 1 \le i \le n$

The distinct edge labeling are as follows $\begin{array}{l} f(u_iu_{i+1}){=}4i{-}1{+}k, \ 1{\leq}i{\leq}n{-}1 \\ f(u_iv_i){=}4i{-}4{+}k, \ 1{\leq}i{\leq}n \\ f(u_iw_i){=}4i{-}3{+}k, \ 1{\leq}i{\leq}n \\ f(u_ix_i)=4i{-}2{+}k, \ 1{\leq}i{\leq}n \end{array}$

Hence, the function f is a (k, 1)-Contra Harmonic mean labeling of G.

Then, $P_n \odot K_{1,3}$ is a (k-1)-Contra Harmonic mean graph.

© 2018, IJMA. All Rights Reserved

CONFERENCE PAPER

National Conference January 11-13, 2018, on Discrete & Computational Mathematics (NCDCM - 2018), Organized by Department of Mathematics, University of Kerala, Kariavattom Thiruvanathapuram-695581.

Figure-4: (72, 1)- Contra Harmonic mean labeling of $P_3 \bigcirc K_{1,3}$

Theorem 2.5: A Ladder is a (k, 1) - Contra Harmonic mean graph for all k.

Proof: Let $G = P_2 x P_n$ be a ladder graph. Let u_1, u_2, \dots, u_n and v_1, v_2, \dots, v_n be the vertices of G.

Let us define f: V(G) \rightarrow {0, 1, 2...,k+(q-1)} as follows f(u_i)=3*i*-3+k, 1≤*i*≤n f(v_i) = k+3*i*-4, if *i* is odd f(v_i) = k+3*i*-5 if *i* is even The distinct edge labeling are as follows f(u_iu_{i+1})=3*i*-1+k, 1≤*i*≤n-1 f(v_iv_{i+1})=3*i*-2+k, 1≤*i*≤n-1 f(u_iv_i)=3*i*-3+k, 1≤*i*≤n

Hence, the function f is a (k, 1)- Contra Harmonic mean labeling of G.

Then, P₂xP_n is a (k-1)-Contra Harmonic mean graph for all k.

Figure-5: (64,1) – Contra Harmonic mean labeling of P_2xP_5

Theorem 2.6: $(P_n \odot K_1) \odot K_{1,2}$ admits (k,1)-Contra Harmonic mean graph for all k.

Proof: Let $G = (P_n \odot K_1) \odot K_{1,2}$, where P_n is a path with vertices $u_1, u_2, u_3, ..., u_n$. Let v_i be a vertex adjacent to $u_i, 1 \le i \le n$.

The resultant graph is $(P_n \odot K_1)$. Let x_i , w_i , z_i be the vertices of i^{th} copy of $K_{1,2}$ with z_i the central vertex. Identify the vertex z_i with v_i we get the resultant graph G.

That is, G is a graph obtained by attaching the central vertex of $K_{1,2}$ at each pendent vertex of a comb.

Let us define f: V (G) \rightarrow {0, 1, 2....k+(q-1)} as f(u_i)=4*i*-3+k, 1≤*i*≤n f(v_i)=4*i*-4+k, 1≤*i*≤n f(w_i)=4*i*-5+k, 1≤*i*≤n f(x_i)=4*i*-2+k, 1≤*i*≤n Then the distinct edge labeling are f(u_iu_{i+1})=4*i*-1+k, 1≤*i*≤n-1 f(u_iv_i)=4*i*-3+k, 1≤*i*≤n f(v_iw_i)=4*i*-4+k, 1≤*i*≤n f(v_ix_i)=4*i*-2+k, 1≤*i*≤n f(v_ix_i)=4*i*-2+k, 1≤*i*≤n f(v_ix_i)=4*i*-2+k, 1≤*i*≤n

CONFERENCE PAPER

National Conference January 11-13, 2018, on Discrete & Computational Mathematics (NCDCM - 2018), Organized by Department of Mathematics, University of Kerala, Kariavattom Thiruvanathapuram-695581.

4

Then f provides a (k, 1) – Contra Harmonic mean labeling of G.

Hence $(P_n \odot K_1) \odot K_{1,2}$ is a (k-1) Contra Harmonic mean graph.

Figure-6: (31,1)- Contra Harmonic mean labeling of $(P_4 \odot K_1) \odot K_{1,2}$

Theorem: 2.7: Any Triangular snake is a (k, 1)-Contra Harmonic mean graph for all k.

Proof: Let $G = T_n$, where T_n is a Triangular snake obtained from a path $u_{1,u_2,u_3,...,u_n}$ by joining u_i to v_{i+1} to a new vertex v_i for $1 \le i \le n-1$.

Let us define f: V(G) \rightarrow {0, 1, 2..., k+(q-1)} as follows f(u_i) = 3*i*-4+k, 1≤*i*≤n f(v_i))=3*i*-2+k, 1≤*i*≤n-1 The distinct edge labeling are as follows f(u_iu_{i+1})=3*i*-2+k, 1≤*i*≤n-1 f(u_iv_i)=3*i*-3+k, 1≤*i*≤n-1 f(v_iu_{i+1})=3*i*-1+k, 1≤*i*≤n-1 Then f is a (k, 1)- Contra Harmonic mean labeling of G.

Hence, any Triangular snake is a (k, 1)-Contra Harmonic mean Graph.

Figure-7: (22, 1) – Contra Harmonic mean labeling of T_4

Theorem 2.1:8: Any Quadrilateral Snake is a (k, 1) – Contra Harmonic mean graph for all k.

Proof: Let G be a Quadrilateral snake obtained from a path $u_{1,u_2}, u_{3,...,u_n}$ by joining u_i and u_{i+1} to new vertices v_i and w_i respectively and joining the vertices v_i and w_i $1 \le i \le n-1$

Let us define f: V(G) \rightarrow {0, 1, 2...,k+(q-1) } as follows f(u_i) =4*i*-5+k, 1≤*i*≤n f(v_i)= 4*i*-4+k, 1≤*i*≤n-1 f(w_i)= 4*i*-3+k, 1≤*i*≤n-1 Then the distinct edge labeling are as follows f(u_iu_{i+1})=4*i*-2+k, 1≤*i*≤n-1 f(u_iv_i)=4*i*-4+k, 1≤*i*≤n-1 f(v_iw_i)=4*i*-3+k, 1≤*i*≤n-1 f(w_iu_{i+1})=4*i*-1+k, 1≤*i*≤n-1

Hence, f is a (k, 1)-Contra Harmonic mean labeling for G.

Thus any Quadrilateral snake is a (k, 1) - Contra Harmonic mean graph.

© 2018, IJMA. All Rights Reserved

CONFERENCE PAPER

National Conference January 11-13, 2018, on Discrete & Computational Mathematics (NCDCM - 2018), Organized by Department of Mathematics, University of Kerala, Kariavattom Thiruvanathapuram-695581.

5

Theorem: 2.9: The middle graph of path P_n ($n \ge 3$) is a (k, 1) – Contra Harmonic mean graph for all k.

Proof: Let $V(P_n) = \{v_1, v_2, ..., v_n\}$ and $E(P_n) = \{e_i = v_i v_{i+1}, 1 \le i \le n-1\}$ be the vertex set and edge set of the path P_n . Then $V(G) = \{v_1, v_2, ..., v_n, e_1, e_2, e_3, ..., e_n\}$ and $E(G) = \{v_i e_i, e_i v_{i+1}, 1 \le i \le n-1\}$ $U\{e_i e_{i+1}, 1 \le i \le n-2\}$.

Let us define f: V(G) \rightarrow {0, 1, 2 ...,k+(q-1)} by f(e_i) =3*i*-3+k, 1≤*i*≤n f(v_i) =3*i*-5+k, 1≤*i*≤n+1 Then the distinct edge labels are f(e_ie_{i+1}) =3*i*-1+k, 1≤*i*≤n-1 f(e_iv_i) =3*i*-3+k, 1≤*i*≤n, f(e_iv_{i+1}) =3*i*-2+k, 1≤*i*≤n

Clearly, f provides a (k,1)- contra Harmonic mean labeling for G.

Figure-9: (25, 1) – Contra Harmonic mean labeling of M(P₅)

REFERENCES

- 1. J.A. Gallian 2017, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics.
- 2. Gayathri B and Sulochana V (k, d)-mean labeling of some family of trees, International Journal of Science and Research, vol.5, Issue1, Jan 2016, 62-68.
- 3. Gayathri.B and Sulochana.V, Some new families of (k, 1)-mean graphs, Aryabhatta Journal of Mathematics and Informatics, vol.8, Issue2, July –Dec 2016, 201-206.
- 4. Harary.F, 1988, Graph theory, Narosa Publication House reading, New Delhi.
- 5. SandhyaS.S, Somasundram.S and Rajeshni Golda.J "Contra Harmonic Mean Labeling of Graphs' Communicated to Journal of Discrete Mathematics and Cryptography.
- 6. Somasundram.S and Ponraj.R 'Mean Labeling Graphs', National Academy of Science letter, volume 26, p210-213 (2003).

Source of support: Proceedings of National Conference January 11-13, 2018, on Discrete & Computational Mathematics (NCDCM - 2018), Organized by Department of Mathematics, University of Kerala, Kariavattom Thiruvanathapuram-695581.

© 2018, IJMA. All Rights Reserved

CONFERENCE PAPER

National Conference January 11-13, 2018, on Discrete & Computational Mathematics (NCDCM - 2018), Organized by Department of Mathematics, University of Kerala, Kariavattom Thiruvanathapuram-695581.