(k,1)-CONTRA HARMONIC MEAN LABELING OF GRAPHS
 S. S. SANDHYA ${ }^{1}$, S. SOMASUNDARAM ${ }^{2}$ AND J. RAJESHNI GOLDA ${ }^{3}$

${ }^{1}$ Department of Mathematics, Sree Ayyappa College for Women, Nagercoil, India.

${ }^{2}$ Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli, India.
${ }^{3}$ Department of Mathematics, Women's Christian College, Nagercoil, India.

E-mail: sssandhya2009@gmail.com ${ }^{1}$, somutvl@gmail.com ${ }^{2}$ and rajeshnigolda3@gmail.com ${ }^{3}$

Abstract

Let $G=(V, E)$ be a graph with p vertices and q edges. Let $f: V(G) \rightarrow\{0,1,2, \ldots, k+(q-1)\}$ be an injective function such that the induced edge labeling $f(e=u v)$ is defined by $f(e)=\left\lceil\frac{f(u)^{2}+f(v)^{2}}{f(u)+f(v)}\right\rceil$ or $\left\lfloor\frac{f(u)^{2}+f(v)^{2}}{f(u)+f(v)}\right\rceil$ is a bijection from E to $\{k$, $k+1, k+2, \ldots, k+(q-1)\}$.Then f has a (k,1)- contra harmonic mean labeling. Any graph which admits a (k,1)- contra harmonic mean labeling is called a ($k, 1$)-contra harmonic mean graph. In this paper we investigate the $(k, 1)$ - Contra Harmonic mean labeling for some path related graphs.

Keywords: Contra Harmonic mean labeling, (k, 1) - Contra Harmonic mean labeling.

1. INTRODUCTION

Let $G=(V, E)$ be a finite, simple, undirected graph with p vertices and q edges. For all detailed survey of graph labeling we refer to Gallian [1]. For all other standard terminology and notation we follow Harray [4].We will give a brief summary of definition and other information which are useful for the present investigation.

A graph $G=(V, E)$ with p vertices and q edges is called a Contra Harmonic mean graph if it is possible to label the vertices $x \in \mathrm{~V}$ with distinct elements $\mathrm{f}(\mathrm{x})$ from $0,1, \ldots, \mathrm{q}$ in such a way that when each edge $\mathrm{e}=\mathrm{uv}$ is labeled with $\mathrm{f}(\mathrm{e}=\mathrm{uv})=\left\lceil\frac{f(u)^{2}+f(v)^{2}}{f(u)+f(v)}\right\rceil$ or $\left\lfloor\frac{f(u)^{2}+f(v)^{2}}{f(u)+f(v)}\right\rceil$ with distinct edge labels. Here f is called a Contra Harmonic mean labeling of G.
S. Somasundaram and R. Ponraj introduced mean labeling of graphs and investigated mean labeling for some standard graph in [6]. These labeling patterns motivated us to introduced Contra Harmonic mean labeling [5]. In this paper we prove that some path related graphs admits ($\mathrm{k}, 1$)-Contra Harmonic mean labeling where k is any positive integer greater than or equal to 1 .

Definition 1.1: Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph with p vertices and q edges. Let $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1,2, \ldots, \mathrm{k}+(\mathrm{q}-1)\}$ be an injective function such that the induced edge labeling $\mathrm{f}(\mathrm{e}=\mathrm{uv})$ is defined by $\mathrm{f}(\mathrm{e})=\left\lceil\frac{f(u)^{2}+f(v)^{2}}{f(u)+f(v)}\right\rceil$ or $\left\lfloor\frac{f(u)^{2}+f(v)^{2}}{f(u)+f(v)}\right\rfloor$ is a bijection from E to $\{\mathrm{k}, \mathrm{k}+1, \mathrm{k}+2, \ldots, \mathrm{k}+(\mathrm{q}-1)\}$. Then f has a $(\mathrm{k}, 1)$ - contra harmonic mean labeling. Any graph which admits a ($k, 1$)- contra harmonic mean labeling is called a ($k, 1$)-contra harmonic mean graph. Here k is a positive integer greater than or equal to 1 .

Definition 1.2: A Triangular snake T_{n} is obtained from a path $u_{1} \ldots . u_{n}$ by joining u_{i} and to a vertex v_{i} for $1 \leq i \leq n-1$.

Definition 1.3: A Quadrilateral snake Q_{n} is obtained from a path $u_{1} \ldots . u_{n}$ by joining u_{i} and u_{i+1} to new vertices v_{i}, w_{i}, $1 \leq i \leq n-1$.

Definition 1.4: A middle graph $M(G)$ of a graph G is the graph whose vertex set is $V(G) \cup E(G)$ and in which two vertices are adjacent if and only if either they are adjacent edges of G or one is a vertex of G and the other is an edge incident on it.

2. MAIN RESULTS

Theorem 2.1: A path has a $(k, 1)$-Contra Harmonic mean labeling for all k.
Proof: Let $u_{1} \ldots . . u_{n}$ be the vertices of the path P_{n}.
We define an injective function $\mathrm{f}: \mathrm{V}\left(\mathrm{P}_{\mathrm{n}}\right) \rightarrow\{0,1,2, \ldots, \mathrm{k}+(\mathrm{q}-1)\}$ as follows

$$
\mathrm{f}\left(\mathrm{u}_{1}\right)=\mathrm{k}-1, \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{k}+\mathrm{i}-2,2 \leq i \leq \mathrm{n}
$$

The distinct edge labeling are as follows

$$
\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)=\mathrm{i}-1+\mathrm{k}, 1 \leq i \leq \mathrm{n}-1
$$

Hence, f is a $(k, 1)$-Contra Harmonic mean labeling of G.
Thus, the path admits a ($\mathrm{k}, 1$)-Contra Harmonic mean graph for all k .

Figure-1: $(17,1)$ Contra Harmonic mean labeling of P_{5}
Theorem 2.2: A comb is a $(k, 1)$ - Contra Harmonic mean graph for all k.
Proof: Let $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ be the vertices of the path and let v_{i} be the pendant vertices attached to each $u_{i}, 1 \leq i \leq n$.
Let G be a comb graph $\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1}$.
We define $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1,2, \ldots, \mathrm{k}+(\mathrm{q}-1)\}$ as follows

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=2 i-3+\mathrm{k}, 1 \leq i \leq \mathrm{n} \\
& \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=2 i-2+\mathrm{k}, 1 \leq i \leq \mathrm{n}
\end{aligned}
$$

The distinct edge labeling are as follows

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{u}_{\mathrm{u}}^{\mathrm{u}_{\mathrm{i}+1}}\right)=2 i-1+\mathrm{k}, 1 \leq i \leq \mathrm{n}-1 \\
& \mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)=2 i-2+\mathrm{k}, 1 \leq i \leq \mathrm{n}
\end{aligned}
$$

Hence, f is a $(\mathrm{k}, 1)$-Contra Harmonic mean labeling of G .
Then, the comb is a $(k, 1)$-Contra Harmonic mean graph for all k.

Figure-2: (51, 1)-Contra Harmonic mean labeling of $\mathrm{P}_{4} \odot \mathrm{~K}_{1}$

Theorem 2.3: $\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1,2}$ admits (k,1)-Contra Harmonic mean labeling for all k .
Proof: Let P_{n} be the path $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ and v_{i}, w_{i} be the vertices of $K_{1,2}$ which are attached to the vertex u_{i} of $P_{n}, 1 \leq i \leq n$

Let $\mathrm{G}=\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1,2}$

We define f: $\mathrm{V}(\mathrm{G}) \rightarrow\{0,1,2 \ldots, \mathrm{k}+(\mathrm{q}-1)\}$ as
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=3 i-3+\mathrm{k}, 1 \leq i \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=3 \mathrm{i}-4+\mathrm{k}, 1 \leq i \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)=3 \mathrm{i}-2+\mathrm{k}, 1 \leq i \leq \mathrm{n}$

The distinct edge labeling are as follows

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)=3 \mathrm{i}-1+\mathrm{k}, 1 \leq \mathrm{i} \leq \mathrm{n}-1 \\
& \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}^{\mathrm{v}} \mathrm{i}\right)=3 \mathrm{i}-3+\mathrm{k}, 1 \leq \mathrm{i} \leq \mathrm{n} \\
& \mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}\right)=3 \mathrm{i}-2+\mathrm{k}, 1 \leq \mathrm{i} \leq \mathrm{n}
\end{aligned}
$$

Hence, the function f is a $(\mathrm{k}, 1)$-Contra Harmonic mean labeling of G .
Thus, $\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1,2}$ is a ($\mathrm{k}-1$)-Contra Harmonic mean graph for all k .

Figure-3: $(34,1)$-Contra Harmonic mean labeling of $\mathrm{P}_{6} \odot \mathrm{~K}_{1,2}$
Theorem 2.4: $\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1,3}$ admits ($\mathrm{k}, 1$)-Contra Harmonic mean labeling for all k .
Proof: Let P_{n} be the path with vertices $u_{1}, u_{2}, u_{3, \ldots}, u_{n}$ and v_{i}, w_{i}, z_{i} be the vertices of $K_{1,3}$ which are joined to the vertices u_{i} of the path $\mathrm{P}_{\mathrm{n}}, 1 \leq i \leq \mathrm{n}$.

Let $\mathrm{G}=\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1,3}$.
Let $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1,2, \ldots, \mathrm{k}+(\mathrm{q}-1)\}$ be defined by

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=4 i-4+\mathrm{k}, 1 \leq \mathrm{i} \leq \mathrm{n} \\
& \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=4 i-4+\mathrm{k}-1,1 \leq i \leq \mathrm{n} \\
& \mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=4 i-3+\mathrm{k}, 1 \leq i \leq \mathrm{n} \\
& \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)=4 \mathrm{i}-2+\mathrm{k}, 1 \leq \mathrm{i} \leq \mathrm{n}
\end{aligned}
$$

The distinct edge labeling are as follows

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)=4 \mathrm{i}-1+\mathrm{k}, 1 \leq \mathrm{i} \leq \mathrm{n}-1 \\
& \mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)=4 \mathrm{i}-4+\mathrm{k}, 1 \leq \mathrm{i} \leq \mathrm{n} \\
& \mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}}\right)=4 \mathrm{i}-3+\mathrm{k}, 1 \leq i \leq \mathrm{n} \\
& \mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}\right)=4 i-2+\mathrm{k}, 1 \leq i \leq \mathrm{n}
\end{aligned}
$$

Hence, the function f is a $(k, 1)$-Contra Harmonic mean labeling of G.
Then, $\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1,3}$ is a (k-1)-Contra Harmonic mean graph.
S. S. Sandhya, S. Somasundaram and J. Rajeshni Golda / (K,1)-Contra Harmonic Mean Labeling of Graphs / IJMA- 9(4), April-2018, (Special Issue)

Figure-4: (72, 1)- Contra Harmonic mean labeling of $\mathrm{P}_{3} \odot \mathrm{~K}_{1,3}$
Theorem 2.5: A Ladder is a $(k, 1)$ - Contra Harmonic mean graph for all k.
Proof: Let $\mathrm{G}=\mathrm{P}_{2} \mathrm{xP}_{\mathrm{n}}$ be a ladder graph. Let $\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}$ and $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$ be the vertices of G .
Let us define $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1,2 \ldots, \mathrm{k}+(\mathrm{q}-1)\}$ as follows

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=3 i-3+\mathrm{k}, 1 \leq \mathrm{i} \leq \mathrm{n} \\
& \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{k}+3 \mathrm{i}-4, \text { if } \mathrm{i} \text { is odd } \\
& \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\mathrm{k}+3 \mathrm{i}-5 \text { if } i \text { is even }
\end{aligned}
$$

The distinct edge labeling are as follows

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}^{\mathrm{u}} \mathrm{u}_{\mathrm{i}}\right)=3 i-1+\mathrm{k}, 1 \leq i \leq \mathrm{n}-1 \\
& \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}^{\mathrm{i}+1}+\right. \\
&)=3 i-2+\mathrm{k}, 1 \leq i \leq \mathrm{n}-1 \\
& \mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)=3 i-3+\mathrm{k}, 1 \leq i \leq \mathrm{n}
\end{aligned}
$$

Hence, the function f is a $(\mathrm{k}, 1)$ - Contra Harmonic mean labeling of G .
Then, $\mathrm{P}_{2} \mathrm{xP}$ is a ($\mathrm{k}-1$)-Contra Harmonic mean graph for all k .

Figure-5: $(64,1)$ - Contra Harmonic mean labeling of $\mathrm{P}_{2} \times \mathrm{P}_{5}$
Theorem 2.6: $\left(\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1}\right) \odot \mathrm{K}_{1,2}$ admits (k,1)-Contra Harmonic mean graph for all k .
Proof: Let $G=\left(P_{n} \odot K_{1}\right) \odot K_{1,2}$, where P_{n} is a path with vertices $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$. Let v_{i} be a vertex adjacent to $\mathrm{u}_{\mathrm{i}}, 1 \leq i \leq \mathrm{n}$.

The resultant graph is $\left(\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1}\right)$. Let $\mathrm{x}_{\mathrm{i}}, \mathrm{w}_{\mathrm{i}}, \mathrm{z}_{\mathrm{i}}$ be the vertices of $\mathrm{i}^{\text {th }}$ copy of $\mathrm{K}_{1,2}$ with z_{i} the central vertex. Identify the vertex z_{i} with v_{i} we get the resultant graph G.

That is, G is a graph obtained by attaching the central vertex of $K_{1,2}$ at each pendent vertex of a comb.
Let us define $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1,2 \ldots \mathrm{k}+(\mathrm{q}-1)\}$ as
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=4 i-3+\mathrm{k}, 1 \leq i \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=4 i-4+\mathrm{k}, 1 \leq i \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=4 i-5+\mathrm{k}, 1 \leq i \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)=4 i-2+\mathrm{k}, 1 \leq i \leq \mathrm{n}$

Then the distinct edge labeling are
$f\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)=4 i-1+\mathrm{k}, 1 \leq i \leq \mathrm{n}-1$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)=4 i-3+\mathrm{k}, 1 \leq i \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}}\right)=4 \mathrm{i}-4+\mathrm{k}, 1 \leq \mathrm{i} \leq \mathrm{n}$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}\right)=4 \mathrm{i}-2+\mathrm{k}, 1 \leq i \leq \mathrm{n}$

Then f provides a $(\mathrm{k}, 1)$ - Contra Harmonic mean labeling of G.
Hence $\left(\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1}\right) \odot \mathrm{K}_{1,2}$ is a (k-1) Contra Harmonic mean graph.

Figure-6: $(31,1)$ - Contra Harmonic mean labeling of $\left(\mathrm{P}_{4} \odot \mathrm{~K}_{1}\right) \odot \mathrm{K}_{1,2}$
Theorem: 2.7: Any Triangular snake is a ($k, 1$)-Contra Harmonic mean graph for all k.
Proof: Let $G=T_{n}$, where T_{n} is a Triangular snake obtained from a path $u_{1}, u_{2}, u_{3} \ldots, u_{n}$ by joining u_{i} to v_{i+1} to a new vertex v_{i} for $1 \leq i \leq \mathrm{n}-1$.

Let us define $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1,2 \ldots, \mathrm{k}+(\mathrm{q}-1)\}$ as follows

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=3 \mathrm{i}-4+\mathrm{k}, 1 \leq \mathrm{i} \leq \mathrm{n} \\
& \left.\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)\right)=3 \mathrm{i}-2+\mathrm{k}, 1 \leq \mathrm{i} \leq \mathrm{n}-1
\end{aligned}
$$

The distinct edge labeling are as follows

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i} 1}\right)=3 i-2+\mathrm{k}, 1 \leq \mathrm{i} \leq \mathrm{n}-1 \\
& \mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}=3 i-3+\mathrm{k}, 1 \leq \mathrm{i}-1\right. \\
& \mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)=3 i-1+\mathrm{k}, 1 \leq i \leq \mathrm{n}-1
\end{aligned}
$$

Then f is a $(\mathrm{k}, 1)$ - Contra Harmonic mean labeling of G .
Hence, any Triangular snake is a (k, 1)-Contra Harmonic mean Graph.

Figure-7: $(22,1)$ - Contra Harmonic mean labeling of T_{4}
Theorem 2.1:8: Any Quadrilateral Snake is a ($k, 1$) - Contra Harmonic mean graph for all k.
Proof: Let G be a Quadrilateral snake obtained from a path $u_{1}, u_{2}, u_{3}, \ldots, u_{n}$ by joining u_{i} and u_{i+1} to new vertices v_{i} and w_{i} respectively and joining the vertices v_{i} and $\mathrm{w}_{\mathrm{i}} 1 \leq i \leq n-1$

Let us define $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1,2 \ldots, \mathrm{k}+(\mathrm{q}-1)\}$ as follows

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=4 i-5+\mathrm{k}, 1 \leq \mathrm{i} \leq \mathrm{n} \\
& \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=4 i-4+\mathrm{k}, 1 \leq i \leq \mathrm{n}-1 \\
& \mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=4 i-3+\mathrm{k}, 1 \leq \mathrm{i} \leq \mathrm{n}-1
\end{aligned}
$$

Then the distinct edge labeling are as follows
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)=4 i-2+\mathrm{k}, 1 \leq i \leq \mathrm{n}-1$
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)=4 i-4+\mathrm{k}, 1 \leq i \leq \mathrm{n}-1$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}}\right)=4 i-3+\mathrm{k}, 1 \leq i \leq \mathrm{n}-1$
$\mathrm{f}\left(\mathrm{w}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}\right)=4 \mathrm{i}-1+\mathrm{k}, 1 \leq \mathrm{i} \leq \mathrm{n}-1$
Hence, f is a ($k, 1$)-Contra Harmonic mean labeling for G.
Thus any Quadrilateral snake is a $(\mathrm{k}, 1)$ - Contra Harmonic mean graph.

Figure-8: $(41,1)$ - Contra Harmonic mean labeling of Q_{3}
Theorem: 2.9: The middle graph of path $P_{n}(n \geq 3)$ is a $(k, 1)$ - Contra Harmonic mean graph for all k.
Proof: Let $V\left(P_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E\left(P_{n}\right)=\left\{e_{i}=v_{i} v_{i+1}, 1 \leq i \leq n-1\right\}$ be the vertex set and edge set of the path P_{n}. Then $\mathrm{V}(\mathrm{G})=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}, \mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}, \ldots, \mathrm{e}_{\mathrm{n}}\right\}$ and $\mathrm{E}(\mathrm{G})=\left\{\mathrm{v}_{\mathrm{i}} \mathrm{e}_{\mathrm{i}}, \mathrm{e}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}, 1 \leq i \leq \mathrm{n}-1\right\} U\left\{\mathrm{e}_{\mathrm{i}} \mathrm{e}_{\mathrm{i}+1}, 1 \leq i \leq \mathrm{n}-2\right\}$.

Let us define $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1,2 \ldots, \mathrm{k}+(\mathrm{q}-1)\}$ by

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{e}_{\mathrm{i}}\right)=3 \mathrm{i}-3+\mathrm{k}, 1 \leq \mathrm{i} \leq \mathrm{n} \\
& \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=3 \mathrm{i}-5+\mathrm{k}, 1 \leq \mathrm{i} \leq \mathrm{n}+1
\end{aligned}
$$

Then the distinct edge labels are

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{e}_{\mathrm{i}} \mathrm{i}_{\mathrm{i}+1}\right)=3 i-1+\mathrm{k}, 1 \leq i \leq \mathrm{n}-1 \\
& \mathrm{f}\left(\mathrm{e}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)=3 i-3+\mathrm{k}, 1 \leq i \leq \mathrm{n}, \mathrm{f}\left(\mathrm{e}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}+1}\right)=3 i-2+\mathrm{k}, 1 \leq \mathrm{i} \leq \mathrm{n}
\end{aligned}
$$

Clearly, f provides a (k,1)- contra Harmonic mean labeling for G.

Figure-9: $(25,1)$ - Contra Harmonic mean labeling of $M\left(P_{5}\right)$

REFERENCES

1. J.A. Gallian 2017, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics.
2. Gayathri B and Sulochana V (k, d)-mean labeling of some family of trees, International Journal of Science and Research, vol.5, Issue1, Jan 2016, 62-68.
3. Gayathri.B and Sulochana.V, Some new families of (k, 1)-mean graphs, Aryabhatta Journal of Mathematics and Informatics, vol.8, Issue2, July -Dec 2016, 201-206.
4. Harary.F, 1988, Graph theory, Narosa Publication House reading, New Delhi.
5. SandhyaS.S, Somasundram.S and Rajeshni Golda.J "Contra Harmonic Mean Labeling of Graphs' Communicated to Journal of Discrete Mathematics and Cryptography.
6. Somasundram.S and Ponraj.R 'Mean Labeling Graphs', National Academy of Science letter, volume 26, p210-213 (2003).
[^0]
[^0]: Source of support: Proceedings of National Conference January 11-13, 2018, on Discrete \& Computational Mathematics (NCDCM-2018), Organized by Department of Mathematics, University of Kerala, Kariavattom Thiruvanathapuram-695581.

