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ABSTRACT 
In the present paper, we introduce fuzzy pre open (closed) sets, fuzzy pre-closure (interior) operators and fuzzy pre-
continuity in Sostak fuzzy topological space.  Also we investigate their significant characteristic properties. 
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1. INTRODUCTION 
 
The concept of fuzzy sets was introduced by Zadeh [9] and later Chang [1] defined fuzzy topological spaces. Sostak [8] 
introduced a new fuzzy topological space exploiting the idea of partial openness of fuzzy sets. This generalized fuzzy 
topological space was later rephrased by Chattopadhyay et.al. [2], Ramadan [6] etc. 
 
The concepts of fuzzy strong preopen sets and strong pre continuity (see [4]), fuzzy preopen sets and fuzzy 
precontinuity (see [7]) etc. have been introduced in case of classical fuzzy topological spaces introduced by Chang [1]. 
In the present paper, we introduce fuzzy preopen (closed) sets, fuzzy 𝜌-pre closure and 𝜌-pre interior operators and 
fuzzy pre continuity in the Sostak fuzzy topological space redefined by Chattopdhyay [2]. We denote this generalized 
fuzzy topological space as So-fuzzy topological space for brevity of notation. We investigate significant characteristic 
properties of fuzzy pre open (closed) sets and also the 𝜌-pre closure (interior) operators. Further we establish interesting 
properties of fuzzy-𝜌-pre continuous mappings. 
 
2. PRELIMINARIES 
 
Let 𝑋 be a non-empty set and 𝐼 ≡ [0, 1] be the unit closed interval of real line. Let  𝐼𝑋 denote the set of all fuzzy sets on 
𝑋.  A fuzzy set 𝐴 on 𝑋 is a mapping 𝐴:𝑋 → 𝐼, where for any 𝑥 ∈ 𝑋, 𝐴(𝑥) denotes the degree of membership of element 
𝑥 in fuzzy set 𝐴. The null fuzzy set 0 and whole fuzzy set 1 are the constant mappings from 𝑋 to {0} and {1} 
respectively. 
 
A family 𝜏 of fuzzy sets on 𝑋 is called a fuzzy topology (see [1]) on 𝑋 if (i) 0 and 1 belong to 𝜏, (ii) Any union of 
members of 𝜏 is in 𝜏, (iii) a finite intersection of members of 𝜏 is in 𝜏. The system consisting of 𝑋 equipped with fuzzy 
topology 𝜏 defined on it is called a fuzzy topological space and is denoted as (𝑋, 𝜏). Now we define the So-fuzzy 
topological space (see [2], [8]). 
 
A So-fuzzy topology on a non-empty set 𝑋 is a family 𝜏 of fuzzy sets on 𝑋 satisfying the following axioms with respect 
to a mapping 𝜏: 𝐼𝑋 → 𝐼, 

(i) 𝜏(0) = 𝜏(1) = 1; 
(ii) 𝜏(𝐴 ∩ 𝐵) ≥ 𝜏(𝐴) ∧ 𝜏(𝐵); for any 𝐴,𝐵 ∈ 𝐼𝑋; 
(iii)  𝜏�∪𝑖∈𝐽  𝐴� ≥  ∧𝑖∈𝐽  𝜏(𝐴𝑖), for any arbitrary family {𝐴𝑖 ∶ 𝑖 ∈ 𝐽} ⊆ 𝐼𝑋. 

 
The system (𝑋, 𝜏) is called So-fuzzy topological space and the real number 𝜏(𝐴) is called the degree (or grade) of 
openness of fuzzy set  𝐴. We note that 
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Proposition 2.1: Let 𝑋 be a non-empty set. Then the map 𝜏 ∶  𝐼𝑋 → 𝐼 given by 𝜏(0) = 1 and 
 𝜏(𝐴) = 𝑖𝑛𝑓  {𝐴(𝑥) ∶ 𝑥 ∈ 𝑠𝑢𝑝𝑝 𝐴} if 𝐴 ≠ 0, satisfies the axioms of gradation of openness. 
 
If (𝑋, 𝜏) is a So-fuzzy topological space, then we observe that (see [2]) for any 𝜌 ∈ [0, 1], the family 𝜏𝜌 ≡ { 𝐴 ∈ 𝐼𝑋 ∶
𝜏(𝐴) ≥ 𝜌} is actually a fuzzy topology in sense of Chang [1] and it is called 𝜌-level fuzzy topology on 𝑋 with respect 
to the gradation of openness 𝜏. All fuzzy sets belonging to 𝜏𝜌 are called fuzzy-𝜌-open sets and their complements are 
called fuzzy-𝜌-closed sets. 
 
For any fuzzy set 𝐴, the interior and closure of 𝐴 with respect to 𝜏𝜌 are defined as follows: 

𝐼𝑛𝑡𝜌(𝐴) =∪ {𝐺 ∈ 𝐼𝑋: 𝐺 ⊆ 𝐴 𝑎𝑛𝑑 𝐺 ∈ 𝜏𝜌} 
𝐶𝑙𝜌(𝐴) = ∩ {𝐾 ∈ 𝐼𝑋: 𝐴 ⊆  𝐾 𝑎𝑛𝑑 𝐾𝑐 ∈ 𝜏𝜌} 

 
Proposition 2.2:  Clearly we observe that 

(i) 𝐼𝑛𝑡𝜌(𝐴) = 𝐴 iff 𝐴 is fuzzy-𝜌-open set; and 
(ii) 𝐶𝑙𝜌(𝐴) = 𝐴 iff 𝐴 is fuzzy-𝜌-closed set. 

 
3. Fuzzy-𝝆-Pre open (Closed) Sets 
 
In this section, we define fuzzy-𝜌-pre open sets and fuzzy-𝜌-pre closed sets in So-fuzzy topological space and 
investigate their properties. 
 
Definition 3.1: Let (𝑋, 𝜏) be a So-fuzzy topological space and 𝐴 ∈ 𝐼𝑋 be a fuzzy set. Then for any 𝜌 ∈ 𝐼, a fuzzy set 𝐴 
is said to be a 

(i) Fuzzy-𝜌-pre open set in 𝑋 iff 𝐴 ⊆ 𝐼𝑛𝑡𝜌(𝐶𝑙𝜌 (𝐴)) 
(ii) Fuzzy-𝜌-pre closed set in 𝑋 iff 𝐴 ⊇ 𝐶𝑙𝜌(𝐼𝑛𝑡𝜌 (𝐴)) 

 
Clearly fuzzy sets 0 and 1 are both trivially fuzzy 𝜌-pre open as well as fuzzy 𝜌-pre closed sets in X. 
 
Proposition 3.1: In a So-fuzzy topological space, for any 𝜌 ∈ 𝐼, 

(i) Every fuzzy-𝜌-open set is a fuzzy-𝜌-pre open set; 
(ii) Every fuzzy-𝜌-closed set is a fuzzy-𝜌-pre closed set. 

But converse of these may not be true in general. 
 
Proof:   
(i) Let (𝑋, 𝜏) be a So-fuzzy topological space and 𝐴 be a fuzzy-𝜌-open set on 𝑋, so that 𝜏(𝐴) ≥ 𝜌. Since 𝐼𝑛𝑡𝜌(𝐴) = 𝐴 

(Proposition 2.1) and 𝐴 ⊆ 𝐶𝑙𝜌(𝐴), we have  𝐼𝑛𝑡𝜌(𝐴) ⊆ 𝐼𝑛𝑡𝜌 �𝐶𝑙𝜌 (𝐴)�, so that 𝐼𝑛𝑡𝜌(𝐴) = 𝐴 ⊆ 𝐼𝑛𝑡𝜌 �𝐶𝑙𝜌 (𝐴)�. 

Hence 𝐴 ⊆ 𝐼𝑛𝑡𝜌  �𝐶𝑙𝜌 (𝐴)�. 
Thus 𝐴 is a fuzzy-𝜌-pre open set in 𝑋.   

(ii) Let 𝐴 be a fuzzy-𝜌-closed set in So-fuzzy topological space (𝑋, 𝜏), so that 𝜏(𝐴𝑐) ≥ 𝜌 and  𝐴 = 𝐶𝑙𝜌(𝐴). Also 
𝐼𝑛𝑡𝜌 (𝐴) ⊆ 𝐴, it follows  𝐶𝑙𝜌 �𝐼𝑛𝑡𝜌(𝐴)� ⊆ 𝐶𝑙𝜌(𝐴) = 𝐴. Hence 𝐴 is a fuzzy-𝜌-pre closed set. 

 
The fact that converse of (i) and (ii) may not be true in general can be shown through the following example. 
 
Example 3.1: Let 𝑋 = {𝑎, 𝑏} and 𝐴,𝐵,𝐶,𝐷,𝐸,𝐹 ∈ 𝐼𝑋 be fuzzy sets defined as follows: 
𝐴 = {(𝑎, 0.6), (𝑏, 0.3)}  𝐵 = {(𝑎, 0.4), (𝑏, 0.5)}  𝐶 = {(𝑎, 0.6), (𝑏, 0.5)} 
𝐷 = {(𝑎, 0.4), (𝑏, 0.3)}  𝐸 = {(𝑎, 0.5), (𝑏, 0.4)}  𝐹 = {(𝑎, 0.5), (𝑏, 0.6)} 
 
Define a map 𝜏 ∶ 𝐼𝑋 → 𝐼 as follows: 

𝜏(𝐹) =

⎩
⎪
⎨

⎪
⎧

1,             𝑖𝑓 𝐹 = 0, 1
0.3,         𝑖𝑓 𝐹 = 𝐴,𝐷
0.4,             𝑖𝑓 𝐹 = 𝐵
0.5              𝑖𝑓 𝐹 = 𝐶
0,             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

�   

Suppose 𝜌 = 0.1. We see that fuzzy set E is a fuzzy-𝜌-pre open set because 𝐶𝑙𝜌(𝐸) = 𝐵𝑐 and 𝐼𝑛𝑡𝜌(𝐵𝑐) = 𝐶. Hence 
𝐼𝑛𝑡𝜌 �𝐶𝑙𝜌(𝐸)� = 𝐶 ⊇ 𝐸. Thus 𝐸 is a fuzzy-𝜌-pre open set, but it is not a fuzzy-𝜌-open set (because 𝜏(𝐸) = 0 ≯ 0.1). 
 
Similarly we observe that fuzzy set F is a fuzzy-𝜌-pre closed set because 𝐶𝑙𝜌 �𝐼𝑛𝑡𝜌(𝐹)� = 𝐶𝑙𝜌(𝐵) = 𝐶𝑐 ⊆ 𝐹. Thus 𝐹 
is a fuzzy-𝜌-pre closed set. But it is not a fuzzy-𝜌-closed set.  
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Theorem 3.1: Let (𝑋, 𝜏) be a So-fuzzy topological space. Then for any 𝜌 ∈ 𝐼, 

a) Any union of fuzzy-𝜌-pre open sets is a fuzzy-𝜌-pre open set; 
b) Any intersection of fuzzy-𝜌-pre closed sets is a fuzzy-𝜌-pre closed set. 

 
Proof:  
(a) Let {𝐴𝑖 ∶ 𝑖 ∈ 𝐽} be an arbitrary collection of fuzzy-𝜌-pre open sets in So-fuzzy topological space (𝑋, 𝜏). Then for 

each 𝑖 ∈ 𝐽, we have 𝐴𝑖 ⊆ 𝐼𝑛𝑡𝜌(𝐶𝑙𝜌(𝐴𝑖)). Hence  
∪𝑖∈𝐽 𝐴𝑖 ⊆ ∪𝑖∈𝐽 𝐼𝑛𝑡𝜌 �𝐶𝑙𝜌(𝐴𝑖)� ⊆ 𝐼𝑛𝑡𝜌(∪𝑖∈𝐽 𝐶𝑙𝜌(𝐴𝑖)) ⊆ 𝐼𝑛𝑡𝜌(𝐶𝑙𝜌(∪𝑖∈𝐽 𝐴𝑖)) 
Thus ∪𝑖∈𝐽 𝐴𝑖  is a fuzzy-𝜌-pre open set.  

(b) Let {𝐴𝑖 ∶ 𝑖 ∈ 𝐽} be an arbitrary collection of fuzzy-𝜌-pre closed sets in So-fuzzy topological space (𝑋, 𝜏). Then for 
each 𝑖 ∈ 𝐽, we have 𝐴𝑖 ⊇ 𝐶𝑙𝜌(𝐼𝑛𝑡𝜌(𝐴𝑖)).  
Hence  ∩𝑖∈𝐽 𝐴𝑖 ⊇∩𝑖∈𝐽 𝐶𝑙𝜌 �𝐼𝑛𝑡𝜌(𝐴𝑖)� ⊇ 𝐶𝑙𝜌(𝐼𝑛𝑡𝜌(∩𝑖∈𝐽 𝐴𝑖))  
Thus    ∩𝑖∈𝐽 𝐴𝑖∈𝐽 is a fuzzy-𝜌-pre closed set. 

 
Definition 3.2: Let (𝑋, 𝜏) be a So-fuzzy topological space and 𝐴 ∈ 𝐼𝑋 be a fuzzy set. Then for any 𝜌 ∈ 𝐼, fuzzy-𝜌-pre 
interior and fuzzy-𝜌-pre closure of fuzzy set 𝐴 denoted as 𝑃-𝑖𝑛𝑡𝜌(𝐴) and 𝑃-𝑐𝑙𝜌(𝐴) are defined as follows: 

𝑃-𝑖𝑛𝑡𝜌(𝐴) = ∪ {𝐺 ∈ 𝐼𝑋:𝐺 ⊆ 𝐴 𝑎𝑛𝑑 𝐺 𝑖𝑠 𝑎 𝑓𝑢𝑧𝑧𝑦-𝜌-𝑝𝑟𝑒 𝑜𝑝𝑒𝑛 𝑠𝑒𝑡 𝑖𝑛 𝑋} 
𝑃-𝑐𝑙𝜌(𝐴) = ∩ {𝐾 ∈ 𝐼𝑋:𝐾 ⊇ 𝐴 𝑎𝑛𝑑 𝐾 𝑖𝑠 𝑎 𝑓𝑢𝑧𝑧𝑦-𝜌-𝑝𝑟𝑒 𝑐𝑙𝑜𝑠𝑒𝑑 𝑠𝑒𝑡 𝑖𝑛 𝑋} 

 
Theorem 3.2: Let (𝑋, 𝜏) be a So-fuzzy topological space and 𝐴 ∈ 𝐼𝑋 be a fuzzy set. Then for any 𝜌 ∈ 𝐼, 

(i) 𝑃-𝑐𝑙𝜌(1 − 𝐴) = 1 − 𝑃-𝑖𝑛𝑡𝜌(𝐴) 
(ii) 𝑃-𝑖𝑛𝑡𝜌(1 − 𝐴) = 1 − 𝑃-𝑐𝑙𝜌(𝐴) 

 
Proof:  
(i) Suppose {𝐺𝑖}𝑖∈𝐽  is the family of all fuzzy-𝜌-preopen sets in 𝑋 contained in A. Then 

𝑃-𝑖𝑛𝑡𝜌(𝐴) = ∪𝑖∈𝐽 𝐺𝑖 = 1 −∩𝑖∈𝐽 𝐺𝑖𝑐 
 
Since 𝐺𝑖 ⊆ 𝐴, we have 𝐺𝑖𝑐 ⊇ 𝐴𝑐,∀ 𝑖 ∈ 𝐽. Thus {𝐺𝑖𝑐}𝑖∈𝐽 is the collection of all fuzzy-𝜌-preclosed sets containing 𝐴𝑐.  
 
Hence ∩𝑖∈𝐽 𝐺𝑖𝑐 = 𝑃-𝑐𝑙𝜌(𝐴𝑐) = 𝑃-𝑐𝑙𝜌(1 − 𝐴). 
 
Thus 𝑃-𝑖𝑛𝑡𝜌(𝐴) = 1 − 𝑃-𝑐𝑙𝜌(1 − 𝐴) 
 
Hence 𝑃-𝑐𝑙𝜌(1 − 𝐴) = 1 − 𝑃-𝑖𝑛𝑡𝜌(𝐴). This proves (i). 

(ii) can be proved in a similar manner. 
 
Theorem 3.3:  Let (𝑋, 𝜏) be a So-fuzzy topological space. Then for any 𝜌 ∈ 𝐼, a fuzzy set 𝐴 ∈ 𝐼𝑋 is a 

a) Fuzzy-𝜌-pre open set iff 𝑃-𝑖𝑛𝑡𝜌(𝐴) = 𝐴; 
b) Fuzzy-𝜌-pre closed set iff 𝑃-𝑐𝑙𝜌(𝐴) = 𝐴. 

 
Proof:  
(a) Let 𝐴 be fuzzy-𝜌-pre open set in 𝑋. Let {𝐺𝑖}𝑖∈𝐽 be the family of all fuzzy 𝜌-pre open sets which are contained in A. 

Since each 𝐺𝑖 ⊆ 𝐴, 𝑖 ∈ 𝐽, we have ∪𝑖∈𝐽 𝐺𝑖 ⊆ 𝐴. Therefore 
𝑃-𝑖𝑛𝑡𝜌 = ∪𝑖∈𝐽 {𝐺𝑖 ∈ 𝐼𝑋  ∶ 𝐺𝑖 ⊆ 𝐴 𝑎𝑛𝑑 𝐺𝑖   𝑖𝑠 𝑎 𝑓𝑢𝑧𝑧𝑦-𝜌-𝑝𝑟𝑒𝑜𝑝𝑒𝑛 𝑠𝑒𝑡 } ⊆ 𝐴                                                    (3.3.1) 
 
Since 𝐴 ⊆ 𝐴 and 𝐴 is a fuzzy-𝜌-preopen set in 𝑋, hence 𝐴 ∈ {𝐺𝑖}𝑖∈𝐽. Therefore 
𝐴 ⊆ ∪𝑖∈𝐽 𝐺𝑖 ≡ 𝑃-𝑖𝑛𝑡𝜌(𝐴)                                                                                    (3.3.2) 
 
From equations (3.3.1) and (3.3.2), 𝐴 = 𝑃-𝑖𝑛𝑡𝜌(𝐴). 
 
Conversely; suppose 𝐴 is a fuzzy set in So-fuzzy topological space (𝑋, 𝜏) such that 𝐴 = 𝑃-𝑖𝑛𝑡𝜌(𝐴). Then 
𝐴 = 𝑃-𝑖𝑛𝑡𝜌(𝐴) = ∪  {𝐺𝑖 ∈ 𝐼𝑋 ∶ 𝐺𝑖 ⊆ 𝐴 𝑎𝑛𝑑 𝐺𝑖  𝑖𝑠 𝑎 𝑓𝑢𝑧𝑧𝑦-𝜌-𝑝𝑟𝑒 𝑜𝑝𝑒𝑛 𝑠𝑒𝑡 }                                      (3.3.3) 
 
Since any union of fuzzy-𝜌-preopen sets is a fuzzy-𝜌-preopen set, in view of (3.3.3), set 𝐴 is a fuzzy-𝜌-pre open 
set in 𝑋. 

(b) This can be proved in a similar manner. 
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Theorem 3.4:  Let (𝑋, 𝜏) be a So-fuzzy topological space. Then for any 𝜌 ∈ 𝐼, the following properties hold for fuzzy-
𝜌-pre closure: 

(i) 𝑃-𝑐𝑙𝜌(0) = 0 
(ii) 𝑃-𝑐𝑙𝜌(𝐴) is a fuzzy-𝜌-pre closed set in X 
(iii) 𝑃-𝑐𝑙𝜌(𝐴) ⊆ 𝑃-𝑐𝑙𝜌(𝐵), 𝑖𝑓 𝐴 ⊆ 𝐵 
(iv) 𝑃-𝑐𝑙𝜌(𝑃-𝑐𝑙𝜌(𝐴)) = 𝑃-𝑐𝑙𝜌(𝐴) 
(v) 𝑃-𝑐𝑙𝜌(𝐴 ∪ 𝐵) ⊇ 𝑃-𝑐𝑙𝜌(𝐴) ∪ 𝑃-𝑐𝑙𝜌(𝐵) 
(vi) 𝑃-𝑐𝑙𝜌(𝐴 ∩ 𝐵) ≤ 𝑃-𝑐𝑙𝜌(𝐴) ∩ 𝑃-𝑐𝑙𝜌(𝐵) 

 
Proof: Let (𝑋, 𝜏) be a So-fuzzy topological space and 𝐴,𝐵 be fuzzy sets on X. Let 𝜌 ∈ 𝐼. 
(i) In view of Definition 3.2,  

𝑃-𝑐𝑙𝜌(0) = ∩  {𝐾𝑖 ∈ 𝐼𝑋 ∶ 𝐾𝑖 ⊇ 0 𝑎𝑛𝑑 𝐾𝑖  𝑖𝑠 𝑎 𝑓𝑢𝑧𝑧𝑦-𝜌-𝑝𝑟𝑒 𝑐𝑙𝑜𝑠𝑒𝑑 𝑠𝑒𝑡 𝑖𝑛 𝑋 } 
We know 0 is a fuzzy-𝜌-pre closed set. Thus 0 is a fuzzy-𝜌-pre closed set containing 0. Hence 0 ∈ {𝐾𝑖}𝑖∈𝐽. 
Therefore ∩𝑖∈𝐽 𝐾𝑖 = 0. Thus 𝑃-𝑐𝑙𝜌(0) = 0. 

(ii) By definition, 𝑃-𝑐𝑙𝜌(𝐴) is the intersection of all fuzzy-𝜌-pre closed sets containing A and in view of Theorem 3.1, 
any intersection of fuzzy-𝜌-pre closed sets is a fuzzy-𝜌-pre closed set. Thus 𝑃-𝑐𝑙𝜌(𝐴) is a fuzzy-𝜌-pre closed set in 
𝑋. 

(iii) Let 𝐴 and 𝐵 be two fuzzy sets in 𝑋 such that 𝐴 ⊆ 𝐵. Consider the collection {𝐾𝑖}𝑖∈𝐽 such that 𝐾𝑖 is a fuzzy 𝜌-pre 
closed set and contains A for each 𝑖 ∈ 𝐽; so that 𝑃-𝑐𝑙𝜌(𝐴) =∩𝑖∈𝐽 {𝐾𝑖}. Now consider 𝑃-𝑐𝑙𝜌(𝐵). We know that 

       𝑃-𝑐𝑙𝜌(𝐵) = ∩𝑙∈𝐿 {𝐹𝑙 ∶ 𝐹𝑙 ⊇ 𝐵 𝑎𝑛𝑑 𝐹𝑙  𝑖𝑠 𝑎 𝑓𝑢𝑧𝑧𝑦-𝜌-𝑝𝑟𝑒 𝑐𝑙𝑜𝑠𝑒𝑑 𝑠𝑒𝑡 𝑖𝑛 𝑋} 
Since 𝐵 ⊇ 𝐴,𝐹𝑙 ⊇ 𝐴,∀ 𝑙 ∈ 𝐿. Therefore ∩𝑙∈𝐿 𝐹𝑙 ⊇ 𝐵 ⊇ 𝐴. Thus 𝑃-𝑐𝑙𝜌(𝐵) is a fuzzy 𝜌-pre closed set in 𝑋, which 
contains 𝐴. Therefore 𝑃-𝑐𝑙𝜌(𝐵) ∈ {𝐾𝑖}𝑖∈𝐽.  
Hence ∩𝑖∈𝐽 𝐾𝑖 ⊆ 𝑃-𝑐𝑙𝜌(𝐵). 
Thus 𝑃-𝑐𝑙𝜌(𝐴) ⊆ 𝑃-𝑐𝑙𝜌(𝐵). This proves (iii). 

(iv) We know by (ii) that for every 𝐴 in 𝐼𝑋, 𝑃-𝑐𝑙𝜌(𝐴) is a fuzzy 𝜌-preclosed set in 𝑋. Therefore in view of Theorem 3.3 
(b), we conclude that 𝑃-𝑐𝑙𝜌(𝑃-𝑐𝑙𝜌(𝐴)) =  𝑃-𝑐𝑙𝜌(𝐴). 

(v) In view of (iii), we know that if 𝑃 ⊆ 𝑄 in X, then 𝑃-𝑐𝑙𝜌(𝑃) ⊆ 𝑃-𝑐𝑙𝜌(𝑄). Now 𝐴 ⊆ 𝐴 ∪ 𝐵 and 𝐵 ⊆ 𝐴 ∪ 𝐵.  
Therefore  𝑃-𝑐𝑙𝜌(𝐴 ∪ 𝐵) ⊇ 𝑃-𝑐𝑙𝜌(𝐴) and 𝑃-𝑐𝑙𝜌(𝐴 ∪ 𝐵) ⊇ 𝑃-𝑐𝑙𝜌(𝐵). 
Hence  𝑃-𝑐𝑙𝜌(𝐴 ∪ 𝐵) ⊇ 𝑃-𝑐𝑙𝜌(𝐴) ∪ 𝑃-𝑐𝑙𝜌(𝐵) 

(vi) Since 𝐴 ∩ 𝐵 ⊆ 𝐴 and 𝐴 ∩ 𝐵 ⊆ 𝐵. We have 
𝑃-𝑐𝑙𝜌(𝐴 ∩ 𝐵) ⊆ 𝑃-𝑐𝑙𝜌(𝐴)  and  𝑃-𝑐𝑙𝜌(𝐴 ∩ 𝐵) ⊆ 𝑃-𝑐𝑙𝜌(𝐵) 
Therefore,  𝑃-𝑐𝑙𝜌(𝐴 ∩ 𝐵) ⊆ 𝑃-𝑐𝑙𝜌(𝐴) ∩ 𝑃-𝑐𝑙𝜌(𝐵). 

 
Similarly we have the following: 
 
Theorem 3.5: Let (𝑋, 𝜏) be a So-fuzzy topological space and 𝐴,𝐵 ∈ 𝐼𝑋 be fuzzy sets. Then for any 𝜌 ∈ 𝐼, 

(i) 𝑃-𝑖𝑛𝑡𝜌(1) = 1 
(ii) 𝑃-𝑖𝑛𝑡𝜌(𝐴) is a fuzzy-𝜌-pre open set in X 
(iii) 𝑃-𝑖𝑛𝑡𝜌(𝐴) ⊆ 𝑃-𝑖𝑛𝑡𝜌(𝐵), 𝑖𝑓 𝐴 ⊆ 𝐵  
(iv) 𝑃-𝑖𝑛𝑡𝜌(𝑃-𝑖𝑛𝑡𝜌 (𝐴)) = 𝑃-𝑖𝑛𝑡𝜌(𝐴) 
(v) 𝑃-𝑖𝑛𝑡𝜌(𝐴 ∪ 𝐵) ⊇ 𝑃-𝑖𝑛𝑡𝜌(𝐴) ∪ 𝑃-𝑖𝑛𝑡𝜌(𝐵) 
(vi) 𝑃-𝑖𝑛𝑡𝜌(𝐴 ∩ 𝐵) ⊆ 𝑃-𝑖𝑛𝑡𝜌(𝐴) ∩ 𝑃-𝑖𝑛𝑡𝜌(𝐵) 

 
4. Fuzzy-𝝆-Pre Continuous Map 
 
In this section, we define a fuzzy-𝜌-pre continuous map from one So-fuzzy topological space to another and investigate 
its characteristic properties. We know fuzzy-𝜌-continuous map is defined (see [2]) as follows: 
 
Definition 4.1: Let (𝑋, 𝜏) and (𝑌,𝜎) be two So-fuzzy topological spaces. A map 𝑓:𝑋 → 𝑌 is said to fuzzy-𝜌-
continuous map if 𝜏�𝑓−1(𝐵)� ≥ 𝜎(𝐵), for each fuzzy set 𝐵 ∈ 𝐼𝑌 such that 𝜎(𝐵) ≥ 𝜌. 
 
Now we define fuzzy-𝜌-pre continuous map as follow: 
 
Definition 4.2: Let (𝑋, 𝜏) and (𝑌,𝜎) be two So-fuzzy topological spaces. A map 𝑓 from 𝑋 to 𝑌 is called a fuzzy-𝜌-pre 
continuous map iff 𝑓−1(𝐵) is a fuzzy-𝜌-pre open set for any fuzzy set 𝐵 ∈ 𝐼𝑌 such that 𝜎(𝐵) ≥ 𝜌. 
 
Proposition 4.1: Every fuzzy-𝜌-continuous map is a fuzzy-𝜌-pre continuous map, but converse may not be true. 
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Proof: Let (𝑋, 𝜏) and (𝑌,𝜎) be two So-fuzzy topological spaces and 𝑓:𝑋 → 𝑌 be a fuzzy-𝜌-continuous map. Suppose 
𝐵 ∈ 𝐼𝑌 is a fuzzy-𝜌-open set in 𝑌, so that 𝜎(𝐵) ≥ 𝜌. Then 𝜏�𝑓−1(𝐵)� ≥ 𝜎(𝐵) ≥ 𝜌. Hence 𝑓−1(𝐵) is a fuzzy-𝜌-open 
set in 𝑋. Since every fuzzy-𝜌-open set is a fuzzy-𝜌-pre open set, 𝑓−1(𝐵) is a fuzzy-𝜌-pre open set in 𝑋. Thus 𝑓 is a 
fuzzy-𝜌-pre continuous map. 
But converse of this may not be true in general. This can be exemplified as follows: 
 
Example 4.1: Let 𝑋 = {𝑎, 𝑏}, 𝑌 = {𝑢, 𝑣} and 𝐴,𝐵,𝐶,𝐷 ∈ 𝐼𝑋 ,∈ 𝐼𝑌 be fuzzy sets defined as follows: 

𝐴 = {(𝑎, 0.7), (𝑏, 0.2)}  𝐵 = {(𝑎, 0.5), (𝑏, 0.6)}  𝐶 = {(𝑎, 0.7), (𝑏, 0.6)} 
𝐷 = {(𝑎, 0.5), (𝑏, 0.2)}  𝐸 = {(𝑢, 0.8), (𝑣, 0.7)} 

 
We define fuzzy topologies  𝜏 ∶ 𝐼𝑋 → 𝐼 and 𝜎: 𝐼𝑌 → 𝐼 as follows: 

𝜏(𝐹) =

⎩
⎪
⎨

⎪
⎧

1,              𝑖𝑓 𝐹 = 0, 1
0.2,         𝑖𝑓 𝐹 = 𝐴,𝐷
0.5,              𝑖𝑓 𝐹 = 𝐵
0.6               𝑖𝑓 𝐹 = 𝐶
0,             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

� 

 

𝜎(𝐹) = �
1,            𝑖𝑓 𝐹 = 0, 1
0.7,           𝑖𝑓 𝐹 = 𝐸
0,          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

� 

Consider a map 𝑓: (𝑋, 𝜏) → (𝑌,𝜎) defined as 𝑓(𝑎) = 𝑢, 𝑓(𝑏) = 𝑣. Suppose 𝜌 = 0.1. We see that 𝐶𝑙𝜌�𝑓−1(𝐸)� = 1 
and 𝐼𝑛𝑡𝜌 �𝐶𝑙𝜌�𝑓−1(𝐸)�� = 1. Thus 𝑓−1(𝐸) ⊆ 𝐼𝑛𝑡𝜌(𝐶𝑙𝜌(𝑓−1(𝐸))). Hence 𝑓−1(𝐸) is a fuzzy-𝜌-pre open set. Similarly 
𝑓−1(0) ≡ 0 and 𝑓−1(1) ≡ 1 are also fuzzy-𝜌-pre open sets. Thus 𝑓 is a fuzzy-𝜌-pre continuous map. But 𝑓 is not a 
fuzzy-𝜌-continuous map because we observe that 𝑓−1(𝐸) = {(𝑎, 0.8), (𝑏, 0.7)} and 𝜏�𝑓−1(𝐸)� = 0 ≱ 𝜎(𝐸) ≡ 0.7.   
 
Theorem 4.2:  Let (𝑋, 𝜏) and (𝑌,𝜎) be two So-fuzzy topological spaces and 𝜌 ∈ 𝐼 be a real number. If 𝑓:𝑋 → 𝑌 be a 
mapping such that 𝜏∗�𝑓−1(𝐵)� ≥ 𝜌, for each 𝐵 ∈ 𝐼𝑌 with 𝜎∗(𝐵) ≥ 𝜌, then 𝑓 is a fuzzy-𝜌-pre continuous map. 
 
Proof: Let 𝑓: (𝑋, 𝜏) → (𝑌,𝜎) be a map such that 𝜏∗�𝑓−1(𝐵)� ≥ 𝜌, for each 𝐵 ∈ 𝐼𝑌 for which 𝜎∗(𝐵) ≥ 𝜌. Since 
𝑓−1(𝐵) ∈ 𝐼𝑋 and 𝜏∗�𝑓−1(𝐵)� = 𝜏��𝑓−1(𝐵)�𝑐� = 𝜏�𝑓−1(𝐵𝑐)� ≥ 𝜌, we conclude that 𝑓−1(𝐵𝑐) is a fuzzy-𝜌-open set in 
𝑋. Since every fuzzy 𝜌-open set is a fuzzy 𝜌-pre open set, 𝑓−1(𝐵𝑐) is a fuzzy-𝜌-pre open set in 𝑋. Further 𝜎(𝐵𝑐) =
𝜎∗(𝐵) ≥ 𝜌. Thus 𝑓−1(𝐵𝑐) is a fuzzy-𝜌-pre open set in 𝑋 for each 𝐵𝑐 ∈ 𝐼𝑌 such that  𝜎(𝐵𝑐) ≥ 𝜌. Therefore 𝑓 is a 
fuzzy-𝜌-pre continuous map. 
 
Theorem 4.3:   Let 𝑓: (𝑋. 𝜏) → (𝑌,𝜎) be a map from one So-fuzzy topological space to another. Then for any 𝜌 ∈ 𝐼, 
following statements are equivalent: 

a) 𝑓 is a fuzzy-𝜌-pre continuous map; 
b) 𝑓−1(𝐵) is a fuzzy-𝜌-pre closed set for each fuzzy-𝜌-closed set B in Y; 
c) 𝐶𝑙𝜌 �𝐼𝑛𝑡𝜌�𝑓−1(𝐵)�� ⊆ 𝑓−1(𝐶𝑙𝜌(𝐵)), for each fuzzy set B in Y; 

d) 𝑓 �𝐶𝑙𝜌 �𝐼𝑛𝑡𝜌(𝐴)�� ⊆ 𝐶𝑙𝜌(𝑓(𝐴)), for each fuzzy set 𝐴 in X. 
 
Proof: Let (𝑋, 𝜏) and (𝑌,𝜎) be two So-fuzzy topological spaces. We will prove this theorem in following steps: 
(i) (𝑎) ⇒ (𝑏): Let 𝑓:𝑋 → 𝑌 be a fuzzy-𝜌-pre continuous map for any 𝜌 ∈ 𝐼. Let 𝐵 be a fuzzy-𝜌-closed set in 𝑌. 

Then 𝐵𝑐  is a fuzzy-𝜌-open set in 𝑌 so that 𝜎(𝐵𝑐) ≥ 𝜌. Since 𝑓 is a fuzzy 𝜌-continuous map, we find that 𝑓−1(𝐵𝑐) 
is a fuzzy-𝜌-pre open set in 𝑋. Therefore �𝑓−1(𝐵𝑐)�𝑐 = 𝑓−1(𝐵) is a fuzzy-𝜌-pre closed set in 𝑋 for each 𝐵 ∈ 𝐼𝑌 
which is a fuzzy 𝜌-closed set.  
Thus (a)⇒(b). 

(ii) (𝑏) ⇒ (𝑎): Let 𝑓:𝑋 → 𝑌 be a map such that 𝑓−1(𝐵) is a fuzzy 𝜌-pre closed set in 𝑋 if 𝐵 is a fuzzy 𝜌-closed set 
in 𝑌. Let 𝐶 be any fuzzy 𝜌-open in 𝑌. Then 𝐶𝑐 is a fuzzy 𝜌-closed set in 𝑌. Therefore by (b), 𝑓−1(𝐶𝑐) is a fuzzy 
𝜌-pre closed set in 𝑋. Therefore (𝑓−1(𝐶𝑐))𝑐 ≡ 𝑓−1(𝐶) is fuzzy 𝜌-pre open set in 𝑋. Thus if 𝐶 is fuzzy 𝜌-open set 
in 𝑌, then 𝑓−1(𝐶) is fuzzy 𝜌-pre open set in 𝑋. Hence map 𝑓:𝑋 → 𝑌 is fuzzy 𝜌-pre continuous map. 

(iii) (𝑏) ⇒ (𝑐): Let 𝐵 be a fuzzy set in 𝑌, then 𝐶𝑙𝜌(𝐵) is a fuzzy-𝜌-closed set in 𝑌 and hence by (b), 𝑓−1(𝐶𝑙𝜌(𝐵)) is a 

fuzzy-𝜌-pre closed set in 𝑋. Therefore by definition, 𝑓−1 �𝐶𝑙𝜌(𝐵)� ⊇ 𝐶𝑙𝜌 �𝐼𝑛𝑡𝜌 �𝑓−1 �𝐶𝑙𝜌(𝐵)��� ⊇

𝐶𝑙𝜌(𝐼𝑛𝑡𝜌(𝑓−1(𝐵))), because 𝐵 ⊆ 𝐶𝑙𝜌(𝐵). Thus 𝐶𝑙𝜌 �𝐼𝑛𝑡𝜌�𝑓−1(𝐵)�� ⊆ 𝑓−1(𝐶𝑙𝜌(𝐵)). 
(iv) (𝑐) ⇒ (𝑑):  Let 𝐴 ∈ 𝐼𝑋 be any fuzzy set, then 𝑓(𝐴) ∈ 𝐼𝑌. Now by (c),  

𝐶𝑙𝜌 �𝐼𝑛𝑡𝜌�𝑓−1(𝑓(𝐴))�� ⊆ 𝑓−1(𝐶𝑙𝜌(𝑓(𝐴))) 
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It implies             𝐶𝑙𝜌 �𝐼𝑛𝑡𝜌(𝐴)� ⊆ 𝑓−1(𝐶𝑙𝜌(𝑓(𝐴))).  

Now              𝐶𝑙𝜌�𝑓(𝐴)� ⊇ 𝑓 �𝑓−1 �𝐶𝑙𝜌�𝑓(𝐴)���  

Therefore            𝑓 �𝐶𝑙𝜌 �𝐼𝑛𝑡𝜌(𝐴)�� ⊆ 𝑓 �𝑓−1 �𝐶𝑙𝜌�𝑓(𝐴)��� ⊆ 𝐶𝑙𝜌(𝑓(𝐴)) 

Hence                  𝑓 �𝐶𝑙𝜌 �𝐼𝑛𝑡𝜌(𝐴)�� ⊆ 𝐶𝑙𝜌(𝑓(𝐴)) for each 𝐴 in 𝑋. 

(v) (𝑑) ⇒ (𝑏): Let 𝐵 ∈ 𝐼𝑌 be a fuzzy-𝜌-closed set, then 𝑓−1(𝐵) ∈ 𝐼𝑋. Now from (d) we have  

𝑓 �𝐶𝑙𝜌 �𝐼𝑛𝑡𝜌(𝑓−1(𝐵))�� ⊆ 𝐶𝑙𝜌 �𝑓�𝑓−1 (𝐵)�� ⊆ 𝐶𝑙𝜌(𝐵) = 𝐵.  

Thus   𝑓 �𝐶𝑙𝜌 �𝐼𝑛𝑡𝜌(𝑓−1(𝐵))�� ⊆ 𝐵 

Therefore  𝑓−1(𝑓 �𝐶𝑙𝜌 �𝐼𝑛𝑡𝜌�𝑓−1(𝐵)��� ⊆ 𝑓−1(𝐵)  

It implies  𝐶𝑙𝜌 �𝐼𝑛𝑡𝜌�𝑓−1(𝐵)�� ⊆ 𝑓−1(𝐵).  
 
Thus 𝑓−1(𝐵) is a fuzzy-𝜌-pre closed set in X for each fuzzy-𝜌-closed set 𝐵 in 𝑌. 
 
This completes the proof of the theorem. 
 
Theorem 4.4: Let (𝑋, 𝜏), (𝑌,𝜎) and (𝑍, 𝛿) be three So-fuzzy topological spaces and let 𝜌 ∈ 𝐼 be any real number. If 
𝑓:𝑋 → 𝑌 is a fuzzy-𝜌-pre continuous map and 𝑔:𝑌 → 𝑍 is a fuzzy-𝜌-continuous map, then 𝑔 ∘ 𝑓:𝑋 → 𝑍 is a fuzzy-𝜌-
pre continuous map. 
 
Proof: Suppose (𝑋, 𝜏), (𝑌,𝜎) and (𝑍, 𝛿) are So-fuzzy topological spaces and supoose 𝑓:𝑋 → 𝑌 is a fuzzy-𝜌-pre 
continuous map and 𝑔:𝑌 → 𝑍 is a fuzzy-𝜌-continuous map. Let 𝐶 be a fuzzy-𝜌-open set in 𝑍 so that 𝛿(𝐶) ≥ 𝜌, then 
𝜎�𝑔−1(𝐶)� ≥ 𝛿(𝐶) ≥ 𝜌, because 𝑔 is a fuzzy-𝜌-continuous mapping. Thus 𝑔−1(𝐶) is a fuzzy-𝜌-open set in 𝑌.  
 
Since 𝑓 is a fuzzy-𝜌-pre continuous map, we get that 𝑓−1(𝑔−1(𝐶)) is a fuzzy-𝜌-pre open set in 𝑋. Now 
𝑓−1�𝑔−1(𝐶)� = (𝑔 ∘ 𝑓)−1(𝐶). Hence (𝑔 ∘ 𝑓)−1(𝐶) is a fuzzy-𝜌-pre open set in 𝑋,  
 
Now 𝑔 ∘ 𝑓: (𝑋, 𝜏) → (𝑍, 𝛿) is a map and we have derived that for any fuzzy𝜌-open set 𝐶 in 𝑍, fuzzy set (𝑔 ∘ 𝑓)−1(𝐶) is 
a fuzzy-𝜌-pre open set in 𝑋. Hence (𝑔 ∘ 𝑓) is a fuzzy-𝜌-pre continuous map. 
 
CONCLUSION 
 
In the present paper, we have defined fuzzy pre open (closed) sets, fuzzy pre-closure (interior) operators and fuzzy pre-
continuity in Sostak fuzzy topological space. The concepts is introduced as extensions of concepts of fuzzy preopen 
sets introduced in [7]. Several significant results have been obtained.  
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