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ABSTRACT 
The purpose of this paper is to study a common fixed point theorem on 2-metric space using weak C-contraction and 
weakly compatibility. We mainly generalize the result of Dung and Hang [6], which is unifies and generalizes many 
results in the literature. 
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INTRODUCTION  
 
The concept of 2-metric space is a natural generalization of a metric space. It has been investigated initially by Gahler 
[7]. Then many researchers like Iseki [8], Rhoades [13], Simoniya [14] etc. prove many fixed points in this space. 
Gahler [7] introduce 2-metric space as 
 
Let X be a non-empty set and let d: X×X×X[0,∞) be such that  

(i) For every pair of distinct point x, y in X with x ≠ y there exists a point z in X such that d(x, y, z) ≠ 0. 
(ii) d(x, y, z) = 0 when at least two of the three points are equal. 
(iii) For any x, y, z in X, d(x, y, z) = d(x, z, y) = d(y, z, x). 
(iv) For any x, y, z, w in X , d(x, y, z) ≤ d(x, y, w) + d(x, w, z) + d(w, y, z), 
       Then d is called a 2-metric [4] and (X, d) is called a 2-metric space [4].         

    A sequence {xn} in X is called a Cauchy sequence [7] when d(xn, xm, a)→0   as n, m →∞  
    A sequence {xn} in X is said to be converge [7] to an element x in X when d(xn, x, a)→0 as n→∞ 
    A 2-metric space (X, d) is said to be complete if every Cauchy sequence in X converges to a point of X. 
 
Naidu and Prasad [12] proved that every convergent sequence need not be a Cauchy sequence in 2-metric space. 
Chaterjea [2] introduced the notion of a C-contraction.  
 
Definition: [2] Let (X, d) be a metric space and T: X→X be a map. Then T is called a C -contraction if there exists       
α ∈ (0,1/2)  such that for all x, y ∈X, 

d(Tx, Ty) ≤ α[d(x, Ty) + d(y, Tx)]. 
C-contraction was generalized to weak C-contraction by Choudhury [4] as 
 
Definition: [4] Let (X, d) be a metric space and T: X→X be a map. Then T is called a weak C -contraction if there 
exists ψ:[0,∞)2→[0,∞) which is continuous and ψ(s, t) = 0 if and only if s = t = 0  such that  

d(Tx, Ty) ≤  1
2
[d(x, Ty) + d(y, Tx)] – ψ(d(x, Ty),d(y, Tx)) for all x, y  X. 

 
Choudhury [4] proved that if X is a complete metric space, then every weak C-contraction has a fixed point. Dung and 
Hang [6] proved a fixed point theorem for weak C-contraction in partially ordered 2-metric space for one mapping.  
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In this paper, we will prove common fixed point theorem for four mappings in 2-metric space with the help of weak C-
contraction and weakly compatible mappings by using ψ(a, b) = ½ min{a, b}. 
 
MAIN RESULTS 
 
Theorem: Let, (X, d) be a complete 2-metric space, and F, G, S, and T be self maps of X satisfying S(X) ⊆ F(X),   
T(X)   G(X) and weak C contraction such that  

d(Sx, Ty, u) ≤  1
2
 [d(Gx, Ty, u) + d(Fy, Sx, u)] – ψ(d(Gx, Ty, u), d(Fy, Sx, u))                                                (1) 

for all x, y in X and ψ:[0,∞) 2→[0,∞) which is continuous and ψ(s,t) =0 if and only if s = t = 0 and F(X) and G(X) are 
closed subsets of X. (T,F) and (S,G) are weakly compatible. Then, F, G, S and T have a unique common fixed point in 
X. 
 
Proof: Let x0 be any point in X and as  S(X)  F(X), T(X)  G(X) then there exists x1,x2 in X  such that Sx0=Fx1, 
Tx1=Gx2 
 
Inductively, we can construct sequences {xn} and {yn} in X such that yn=Sxn=Fxn+1 and yn+1=Txn+1=Gxn+2, n=0, 1, 2,….          
 
Now,   
d(yn,yn+1,u) = d(Sxn,Txn+1,u) ≤ 1

2
[d(Gxn, Txn+1, u) +d(Fxn+1, Sxn, u)] – ψ (d(Gxn, Txn+1, u), d(Fxn+1, Sxn, u))       

                                              =  1
2
 [d(yn-1, yn+1, u) + d(yn, yn, u) ]  – ψ(d(yn-1, yn+1, u), d(yn, yn, u))   

                                              =  1
2
 d(yn-1,yn+1,u) – ψ (d(yn-1, yn+1, u), 0)                                                                             (2)                   

                                              ≤  1
2
 d(yn-1, yn+1, u)                                                                                                                (3) 

 
Now, if we put u = yn-1 in (3) then we get, d(yn, yn+1, yn-1 ) ≤ 0.                                                                                        (4) 
 
Now, from (3) and (4) we get,  
d(yn, yn+1, u) ≤  1

2
 d(yn-1, yn+1, u)  ≤  1

2
 [d(yn-1, yn+1, yn) + d(yn-1, yn, u) + d(yn, yn+1, u)] 

                                                    =  1
2
 [d(yn-1, yn, u) + d(yn, yn+1, u)].                                                                                 (5) 

Which gives that, d(yn, yn+1, u) ≤ d(yn-1, yn, u)                                                                                                                  (6) 
 
So, {d(yn,yn+1,u)} is a non-negative decreasing sequence and hence it is convergent.                                
 
Let,          d(yn,yn+1,u) = r                                                                                                                                                   (7) 
 
Taking  𝑙𝑖𝑚𝑛→∞ in (4) and using (6) we get, r ≤  1

2
 d(yn-1,yn+1,u)  ≤ 1

2
(r+r) = r 

i.e.,          d(yn-1,yn+1,u) = 2r                                                                                                                                               (8) 
 
Taking 𝑙𝑖𝑚𝑛→∞ in (2) and using (7) and (8) we get, r ≤  1

2
. 2r – ψ(0,2r) 

 i.e., ψ(0,2r) ≤ 0 which shows that r = 0 
 
So, from (7) we get, 𝑙𝑖𝑚𝑛→∞ d(yn,yn+1,u)= 0                                                                                                                     (9) 
 
Now, we will prove that {yn} is a Cauchy sequence.  
 
Now,  d(yn,yn+2,u)  ≤ d(yn,yn+2,yn+1) + d(yn,yn+1,u) + d(yn+1,yn+2,u) 
                               = d(yn,yn+2,yn+1) + ∑  1

𝑟=0 d(yn+r ,yn+r+1,u).                                                                                       (10) 
 
Now, d(yn,yn+2,yn+1) = d(yn+1,yn+2,yn) = d(Sxn+1, Txn+2, yn)   

 ≤ 1
2
 [d(Gxn+1,Txn+2,yn) +d(Fxn+2,Sxn+1, yn)] – ψ(d(Gxn+1,Txn+2,yn), d(Fxn+2,Sxn+1,yn)) 

 = 1
2
 [d(yn,yn+2,yn) + d(yn+1,yn+1,yn) ] – ψ(d(yn,yn+2,yn) , d(yn+1,yn+1, yn)) 

 = 1
2
 [0+0] – ψ(0,0)  = 0                                                                                                                    (11) 

 
Putting the value of (11) in (10) we get, d(yn, yn+2, u) ≤ ∑  1

𝑟=0  d(yn+r , yn+r+1, u)   
 
Similarly proceeding as above we will get,  

d(yn, yn+p, u)  ≤  ∑  𝑝−1
𝑟=0  d(yn+r, yn+r+1, u) 
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Taking 𝑙𝑖𝑚𝑛→∞ on the above inequality we get, 𝑙𝑖𝑚𝑛→∞  d(yn, yn+p, u)  = 0 (by (9)) 
 
Which shows that {yn} is a Cauchy sequence in X. 
 
Since, G(X) is complete then {yn} converges to a point z in G(X). i.e., 𝑙𝑖𝑚𝑛→∞ yn = z. 
 
Since, T(X)  G(X), then there exists a poinjt q in X such that Gq = z                                                                         (12) 
 
Now, d(Sq,yn+1,u) = d(Sq,Txn+1,u))  
                              ≤  1

2
 [d(Gq,Txn+1,u) + d(Fxn+1Sq, u)] – ψ(d(Gq, T xn+1, u), d(Fxn+1, Sq, u)) 

 
Taking 𝑙𝑖𝑚𝑛→∞ on the above inequality and using (12) we get, 
d( Sq, z, u) =d(Sq, z, u) ) ≤ 1

2
 [d(z, z, u) +d(z, Sq, u)] – ψ (d(z, z, u), d(z, Sq, u)) 

                                         = 1
2
 d(z, Sq, u)] – ψ(0, d(z, Sq, u) ) ≤  1

2
 d(z, Sq, u) 

i.e, d(z, Sq, u) ≤ 0 i.e., d(z, Sq, u) = 0  
 
So, Sq = z.                                                                                                                                                                       (13) 
 
From (12) & (13) we get, Gq = z = Sq                                                                                                                            (14) 
 
Again, (S, G) are weakly compatible so SGq = GSq i.e., Sz = Gz (by (14))                                                                  (15) 
 
Now, d(Sz,yn+1, u) = d(Sz,Txn+1, u))  
                               ≤ 1

2
 [d(Gz,Txn+1, u) + d(F xn+1Sz, u)] – ψ(d(Gz,Txn+1, u), d(F xn+1, Sz,u) ) 

 
Taking 𝑙𝑖𝑚𝑛→∞ on the above inequality and using (15) we get, 
d(Sz, z, u) ≤ 1

2
  [d(Sz, z, u) + d(z, Sz, u)] – ψ(d(Sz, z, u), d(z, Sz, u)) (by (15) 

                  = d(Sz, z, u) - ψ (d(Sz, z, u), d(z, Sz, u)) 
i.e, ψ(d(Sz, z, u), d(z, Sz, u)) ≤ 0 
 
So, Sz = z 
 
From (15) we get, Sz = z = Gz                                                                                                                                        (16) 
 
Since, S(X)  F(X), then there exists a poinjt p in X such that Fp=z.                                                                            (17) 
 
Now, d(yn, Tp, u) = d(Sxn, Tp, u)  
                             ≤ 1

2
 [d(Gxn, Tp, u) + d(Fp, Sxn, u)] – ψ(d(Gxn, Tp, u), d(Fp, Sxn, u)) 

 
Taking 𝑙𝑖𝑚𝑛→∞ on the above inequality and using (12) we get, 
d(z, Tp, u) ≤ 1

2
 [d(z, Tp, u) + d(z, z, u)] – ψ(d(z, Tp, u), d(z, z, u)) 

                   =1
2
 d(z, Tp, u) – ψ(d(z, Tp, u), 0) ≤ 1

2
 d(z, Tp, u) 

 
i.e, d(z, Tp, u) ≤ 0 i.e., d(z, Tp, u) = 0  
 
So, Tp = z                                                                                                                                                                        (18) 
 
From (17) and (18) we get, Fp = z = Tp                                                                                                                          (19) 
As (T, F) are weakly compatible then, TFp = FTp i.e., Tz = Fz (by (19))                                              …                    (20) 
 
Now, d( yn, Tz, u) = d(Sxn, Tz, u) )  
                              ≤ 1

2
 [d(Gxn, T z, u) + d(Fz, Sxn, u)] – ψ(d(Gxn, T z, u), d(Fz, Sxn, u))    

 
Taking 𝑙𝑖𝑚𝑛→∞ on the above inequality and using (20) we get, 
d(z, Tz, u) ≤ 1

2
 [d(z, Tz, u) + d(Tz, z, u)] – ψ(d(z, Tz, u), d(Tz, z, u)) (by (20) 

                  = d(z, Tz, u) – ψ(d(z, Tz, u), d(Tz, z, u)) 
i.e.,  ψ (d(z, Tz, u), d(Tz, z, u)) ≤ 0 
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By the property of ψ it is only possible when, d(Tz, z, u) = 0 i.e., Tz = z  
So, from (20) we get, Tz = z = Fz                                                                                                                                   (21)  
 
From (16) & (20) we get, Tz = Fz = z = Sz = Gz                                                                                                            (22)  
So, z is a common fixed point of S, F, G and T. 
 
Now, we will prove that z is a unique fixed point. 
If possible late, w(≠z) is also a fixed point of S, G, F and T. 
 
Now, d(z, w, u) = d(Sz, Tw, u) 
                          ≤ 1

2
  [d(Gz, Tw, u) + d(Fw, Sz, u)] – ψ(d(Gz, Tw, u), d(Fw, Sz, u))  

                          = 1
2
 [d(z, w, u) + d(w, z, u)] – ψ(d(z, w, u), d(w, z, u))  

                          =   d(z, w, u) – ψ(d(z, w, u), d(w, z, u))  
i.e.,  ψ(d(z, w, u), d(w, z, u)) ≤ 0 
 
By the property of ψ it is only possible when, d(z, w, u) = 0 i.e., z = w 
 
So, z is a unique fixed point of S, G, F and T.     
 
CONCLUSION 
 
In this paper we prove the main theorem for four mappings with the help of weak C-contraction and weakly comtible 
mappings. Dung and Hang [6] prove their main theorem for only one mapping with the help of weak C-contraction. So, 
this paper is a generalization of [6]. Changing the condition of ψ(a, b) we will get many generalization of this result. 
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