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ABSTRACT 
The present paper mathematically establishes that ‘the principle of the exchange of stabilities’ for rotatory 
hydrodynamic triply diffusive convection analogous to Stern (Tellus, 12, (1960), pp. 172-175) type in a densely packed 
porous medium is valid in the regime |𝑅|𝐴𝜎

2𝜋4
+ 𝑇𝑎𝑃12 ≤ 1,  where 𝑅 is the thermal Rayleigh number, 𝐴 is a porous 

parameter, 𝑇𝑎 is the Taylor number, 𝑃1 is a constant and 𝜎 is the thermal Prandtl number. It is further proved that the 
above result is uniformly valid for any combination of rigid and free boundaries. 
 
Keywords: Triply diffusive convection; Principle of the exchange of stabilities; Rayleigh number; Taylor number; 
Porous medium; Darcy Model. 
 
 
INTRODUCTION 
 
Research on convective fluid motion in porous media has been an area of great activity due to its importance in the 
predication of ground water movement in aquifers, in engineering geology, in assessing the effectiveness of fibrous 
materials, in nuclear engineering, in chemical process industry, food processing industry, solidification and centrifugal 
costing of metals and rotating machinery, geophysics, petroleum industry and biomechanics. Double diffusive 
convection in porous medium has been extensively studied. For a broad view of the subject one may be referred to 
Nield and Bezan [11], Murray and Chen [9], Nield [10], Taunton et al. [25], Kuznetsov and Nield [6], Vafai [30] and 
Kellner and Tilgner [5], Vadasz [29], Nield and Bezan [11], Tagare et al. [24], Malashetty and Begum [8].   
 
Only double diffusive convection has been investigated by these researchers. However, it has been recognized later that 
there are many fluid systems, in which more than two components are present. The oceans contain many salts having 
concentrations less than a few percent of the sodium chloride concentration. Multi-component concentrations can also 
be found in magmas and substratum of water reservoirs. The subject with more than two components (in porous and 
non porous medium) has attracted the attention of many researchers Griffiths [2, 3], Poulikakos [14], Pearlstein and 
Harris [12], Terrones and Pearlstein [26], Rudraiah and Vortmeyer [20], Lopez et al. [7], Tracey [27, 28], Straughan 
and Tracey [23] and Prakash et al. [16, 18, 19]. The essence of the works of these researchers is that small salinity of a 
third component with a smaller mass diffusivity can have a significant effect upon the nature of convection; and 
‘oscillatory’ and direct ‘salt finger’ modes are simultaneous possible under a wide range of conditions.  
 
The establishment of the nonoccurrence of any slow oscillatory motions which may be neutral or unstable implies the 
validity of the principle of the exchange of stabilities (PES). The validity of this principle in stability problems 
eliminates the unsteady terms from the linearized perturbation equations which results in notable mathematical 
simplicity since the transition from stability to instability occurs via a marginal state which is characterized by the 
vanishing of both real and imaginary parts of the complex time eigenvalue associated with the perturbation. Pellew and 
Southwell [13] proved the validity of PES (i.e. occurrence of stationary convection) for the classical Rayleigh-Benard 
instability problem. However no such results existed for other more general hydrodynamic configurations. Banerjee     
et al. [1] established such a criterion for magnetohydrodynamic Rayleigh-Benard convection problem which has further 
been extended by Gupta et al. [4] for thermohaline convection problems. Recently Prakash et al. [15] extended these 
results to some triply diffusive configurations. 
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The aim of the present paper is to establish criteria for characterizing non oscillatory motions which may be neutral or 
unstable for rotatory hydrodynamic triply diffusive configuration in a densely packed porous medium analogous to 
Stern [22] type. It is proved that for rotatory hydrodynamic triply diffusive convection analogous to Stern [22] in 
densely packed porous medium, if  |𝑅|𝐴𝜎

2𝜋4
+ 𝑇𝑎𝑃12 ≤ 1, then an arbitrary neutral or unstable mode of the system is 

definitely non oscillatory in character and in particular PES is valid where  𝑅 is thermal Rayleigh number, 𝐴 is a porous 
parameter, 𝑇𝑎 is the Taylor number and 𝜎 is the Prandtl number. It is further proved that the above result is uniformly 
valid for all the combinations of rigid and free boundaries. 
 
MATHEMATICAL FORMULATION OF THE PROBLEM 
 
An infinite horizontal porous layer filled with a viscous and Boussinesq fluid, statically confined between two 
horizontal boundaries 𝑧 = 0 and 𝑧 = 𝑑, respectively maintained at uniform constant temperatures 𝑇0 and 𝑇1 (> 𝑇0) and 
uniform concentrations 𝑆10 ,  𝑆20 and 𝑆11(> 𝑆10),  𝑆21(> 𝑆20) is kept rotating at a constant rate 𝛺�⃗  about the vertical (see 
fig. 1). It is further assumed that the cross-diffusion effects of the stratifying agencies can be neglected. The Darcy 
model has been used to investigate the triply diffusive convection in a densely packed porous medium. 

 
Figure-1: Geometrical Configuration 

 
The equations that govern the motion of triply diffusive fluid layer in a densely packed porous medium (Darcy Model) 
under the action of a uniform vertical rotation, in the non-dimensional form, are as follows (Prakash et al. [17], with 
𝑅 < 0,𝑅1 < 0 and 𝑅2 < 0): 

�𝑝
𝜎

+ 1
𝑃1
� (𝐷2 − 𝑎2)𝑤 = |𝑅|𝑎2𝜃 − |𝑅1|𝑎2𝜙1 − |𝑅2|𝑎2𝜙2 − 𝑇𝑎𝐷𝜁,                                                          (1) 

(𝐷2 − 𝑎2 − 𝐴𝑝)𝜃 = −𝑤,                                                               (2) 
�𝐷2 − 𝑎2 − 𝑝

𝜏1
� 𝜙1 = − 𝑤

𝜏1
,                                                                             (3) 

�𝐷2 − 𝑎2 − 𝑝
𝜏2
� 𝜙2 = − 𝑤

𝜏2
,                                                  (4) 

and         �𝑝
𝜎

+ 1
𝑃1
� 𝜁 = 𝐷𝑤.                                                   (5) 

Eqs. (1) - (5) are to be solved using the following boundary conditions: 
 𝑤 = 0 = 𝜃 = 𝜙1 = 𝜙2 = 𝐷2𝑤 = 𝐷𝜁 at 𝑧 = 0 and 𝑧 = 1,                                                           (6) 
(Both the boundaries are dynamically free) 
Or          𝑤 = 0 = 𝜃 = 𝜙1 = 𝜙2 = 𝐷𝑤 = 𝜁 at 𝑧 = 0 and 𝑧 = 1,                                              (7) 
(Both the boundaries are rigid) 
 𝑤 = 0 = 𝜃 = 𝜙1 = 𝜙2 = 𝐷2𝑤 = 𝐷𝜁 at 𝑧 = 0,                                                             (8) 
(lower boundary is dynamically free) 
and         𝑤 = 0 = 𝜃 = 𝜙1 = 𝜙2 = 𝐷𝑤 = 𝜁 at 𝑧 = 1,                                  (9) 
(upper boundary is rigid) 
Eqs. (1) – (5) together with the boundary conditions (6) – (9) present an eigenvalue problem for 𝑝 for the given values 
of the other parameters and govern rotatory triply diffusive convection in a porous medium. 
 
The meaning of the symbols involved in equations (1)-(9) from the physical point of view are as follows : 𝑧 is the 
vertical coordinate, 𝐷 is the differentiation w.r.t. 𝑧 , 𝑎2 is square of the wave number, 𝜎 > 0 is the Prandtl number, 
𝜏1 > 0 and 𝜏2 > 0 are the Lewis numbers for the two concentration components with mass diffusivity 𝜅1, 𝜅2 
respectively, 𝑅 < 0 is the thermal Rayleigh number, 𝑅1 < 0 and 𝑅2 < 0 are the two concentration Rayleigh numbers, 
𝑇𝑎 > 0 is Taylor number, 𝑝 =  𝑝𝑟 + 𝑖 𝑝𝑖  is the complex growth rate where 𝑝𝑟 and 𝑝𝑖  are real constants, 𝑤 is the vertical 
velocity, 𝜃 is the temperature and 𝜙1 and 𝜙2  are the two concentrations. The governing equations also involve two 
more positive constants namely 𝑃1 = 𝑘1

𝜖𝑑2
 and 𝐴 =  1 +  �𝜌𝑠0𝑐𝑠0

𝜌0𝑐0
� 1−𝜖

𝜖
, where  𝑘1 is the permeability, 𝜖 is the porosity of 

the medium, 𝑑 is the depth of the fluid layer, 𝜌𝑠0is the solid density, 𝑐𝑠0  is the heat capacity of the solid. The suffix ‘0’ 
denotes the values of various parameters involved in the governing equations at some properly chosen temperature 𝑇0 . 
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We prove the following theorem: 
 
Theorem: If (𝑤,𝜃,𝜙1,𝜙2, 𝑝, 𝜁), 𝑝𝑟 ≥ 0 is a solution of Eqs. (1)– (9) with < 0, 𝑅1 < 0, 𝑅2 < 0,𝑇𝑎 > 0 and      |𝑅|𝐴𝜎

2𝜋4
+

𝑇𝑎𝑃12 ≤ 1, then 𝑝𝑖 = 0. In particular 𝑝𝑟 = 0 implies 𝑝𝑖 = 0, if  
|𝑅|𝐴𝜎

2𝜋4
+ 𝑇𝑎𝑃12 ≤ 1. 

 
Proof: Multiplying Eq. (1) by 𝑤∗ (the complex conjugate of 𝑤) and integrating the resulting equation over the vertical 
range of z, we obtain 
�𝑝
𝜎

+ 1
𝑃1
� ∫ 𝑤∗(𝐷2 − 𝑎2)𝑤𝑑𝑧 =1

0 |𝑅|𝑎2 ∫ 𝑤∗𝜃 𝑑𝑧 −1
0 |𝑅1|𝑎2 ∫ 𝑤∗𝜙1 𝑑𝑧1

0 − |𝑅2|𝑎2 ∫ 𝑤∗𝜙2 𝑑𝑧 − 𝑇𝑎 ∫ 𝑤∗𝐷𝜁 𝑑𝑧1
0 .1

0      (10) 
 
Making use of Eqs. (2) – (5) and the fact that 𝑤(0) = 0 = 𝑤(1), we can write 

|𝑅|𝑎2 ∫ 𝑤∗𝜃 𝑑𝑧 =1
0 − |𝑅 |𝑎2 ∫ 𝜃 (𝐷2 − 𝑎2 − 𝐴𝑝∗)𝜃∗ 𝑑𝑧1

0 ,                                                         (11) 

−|𝑅1|𝑎2 ∫ 𝑤∗𝜙1 𝑑𝑧 =1
0 |𝑅1|𝑎2𝜏1 ∫ 𝜙1 �𝐷2 − 𝑎2 − 𝑝∗

𝜏1
� 𝜙1∗ 𝑑𝑧,1

0                                                                        (12) 

−|𝑅2|𝑎2 ∫ 𝑤∗𝜙2 𝑑𝑧 =1
0 |𝑅2|𝑎2𝜏2 ∫ 𝜙2 (𝐷2 − 𝑎2 − 𝑝∗

𝜏2
)𝜙2∗  𝑑𝑧1

0 ,                                                                        (13) 

−𝑇𝑎 ∫ 𝑤∗𝐷𝜁 𝑑𝑧1
0 = 𝑇𝑎 �

𝑝∗

𝜎
+ 1

𝑃1
� ∫ |𝜁|2 𝑑𝑧1

0 .                                                                         (14) 
 
Combining Eqs. (10) – (14), we get  
�𝑝
𝜎

+ 1
𝑃1
� ∫ 𝑤∗(𝐷2 − 𝑎2)𝑤𝑑𝑧 = −|𝑅|1

0 𝑎2 ∫ 𝜃 (𝐷2 − 𝑎2 − 𝐴𝑝∗)𝜃∗ 𝑑𝑧1
0 + |𝑅1|𝑎2𝜏1  

∫ 𝜙1 �𝐷2 − 𝑎2 − 𝑝∗

𝜏1
� 𝜙1∗ 𝑑𝑧 + |𝑅2|𝑎2𝜏2 ∫ 𝜙2 (𝐷2 − 𝑎2 − 𝑝∗

𝜏2
)𝜙2∗𝑑𝑧

1
0

1
0  +𝑇𝑎 �

𝑝∗

𝜎
+ 1

𝑃1
� ∫ |𝜁|2 𝑑𝑧.1

0                            (15) 
 
Integrating the various terms of Eq. (15), by parts, for a suitable number of times and utilizing the boundary conditions 
(6) - (9), we obtain 

�
𝑝
𝜎

+
1
𝑃1
�� (|𝐷𝑤|2 + 𝑎2|𝑤|2)𝑑𝑧 =

1

0
− |𝑅| 𝑎2 

∫ (|𝐷𝜃|2 + 𝑎2|𝜃|2 + 𝐴𝑝∗|𝜃|2)𝑑𝑧 + |𝑅1|𝑎2𝜏1 ∫ �|𝐷𝜙1|2 + 𝑎2|𝜙1|2 + 𝑝∗

𝜏1
|𝜙1|2� 𝑑𝑧 + |𝑅2|𝑎2𝜏2

1
0 ∫ �|𝐷𝜙2|2 +1

0
1
0

𝑎2𝜙22+𝑝∗𝜏2𝜙22𝑑𝑧−𝑇𝑎𝑝∗𝜎+1𝑃101𝜁2 𝑑𝑧.                                                                                                           (16) 

 
Equating the imaginary parts of both sides of Eq. (16) and cancelling 𝑝𝑖 (≠ 0) throughout from the resulting equation, 
we have 
1
𝜎 ∫ (|𝐷𝑤|2 + 𝑎2|𝑤|2)𝑑𝑧 =1

0 |𝑅|𝐴𝑎2 ∫ |𝜃|2𝑑𝑧 −1
0 |𝑅1|𝑎2 ∫ |𝜙1|2𝑑𝑧1

0 − |𝑅2|𝑎2 ∫ |𝜙2|2𝑑𝑧1
0  + 𝑇𝑎

𝜎 ∫ |𝜁|2 𝑑𝑧.1
0              (17)                                                                       

 
Now, multiplying Eq. (2) by its complex conjugate and integrating the various terms of resulting equation, by parts, for 
an appropriate number of times and making use of the boundary conditions on 𝜃, it follows that  
∫ (|𝐷2𝜃|2 + 2𝑎2|𝐷𝜃|2 + 𝑎4|𝜃|2)𝑑𝑧1
0 + 2𝐴𝑝𝑟 ∫ (|𝐷𝜃|2 + 𝑎2|𝜃|2)𝑑𝑧1

0 + 𝐴2|𝑝|2 ∫ |𝜃|21
0 𝑑𝑧 = ∫ |𝑤|21

0 𝑑𝑧.                     (18)                                                                                          
 
Since 𝑝𝑟 ≥ 0, it follows from Eq. (18), that 

2𝑎2 ∫ |𝐷𝜃|2𝑑𝑧1
0 < ∫ |𝑤|21

0 𝑑𝑧.                                              (19) 
 
Now, since 𝜃 and 𝑤 satisfy the boundary conditions, namely, 𝜃(0) = 0 = 𝜃(1), 𝑤(0) = 0 = 𝑤(1) respectively, we 
have by Rayleigh-Ritz inequality (Schultz [21]) 

∫ |𝐷𝜃|2𝑑𝑧1
0 ≥ 𝜋2 ∫ |𝜃|2𝑑𝑧,1

0                                                            (20) 
and         ∫ |𝐷𝑤|2𝑑𝑧1

0 ≥ 𝜋2 ∫ |𝑤|2𝑑𝑧.1
0                                                                                                                              (21) 

 
Utilizing inequalities (20) and (21) in inequality (19), we get 

𝑎2 ∫ |𝜃|2𝑑𝑧1
0 ≤ 1

2𝜋4 ∫ |𝐷𝑤|2𝑑𝑧1
0 .                                                                                                                         (22) 

 
Multiplying Eq. (5) by 𝜁∗ on both sides and equating real parts on both sides, we obtain 

𝑝𝑟
𝜎 ∫ |𝜁|2 𝑑𝑧 + 1

𝑃1

1
0 ∫ |𝜁|2 𝑑𝑧 = real part of �∫ 𝜁∗𝐷𝑤1

0 𝑑𝑧�1
0   

 ≤ �∫ 𝜁∗𝐷𝑤𝑑𝑧1
0 � ≤ ∫ |𝜁∗𝐷𝑤|𝑑𝑧1

0   

 ≤ �∫ |𝐷𝑤|2𝑑𝑧1
0 �

1/2
�∫ |𝜁|2𝑑𝑧1

0 �
1/2

.              (using Schwartz inequality) 
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Since 𝑝𝑟 ≥ 0, above inequality implies that             

1
𝑃1
�∫ |𝜁|2𝑑𝑧1

0 �
1/2

≤ �∫ |𝐷𝑤|2𝑑𝑧1
0 �

1/2
,                                                                                                              (23)  

 
which gives 

∫ |𝜁|2𝑑𝑧1
0 ≤ 𝑃12 ∫ |𝐷𝑤|2𝑑𝑧1

0 .                                                            (24) 
 
Using inequalities (22) and (24) in Eq. (17), we get 

�1
𝜎
− �|𝑅|𝐴

2𝜋4
+ 𝑇𝑎𝑃1

2

𝜎
�� ∫ |𝐷𝑤|2𝑑𝑧 + 𝑎2

𝜎 ∫ |𝑤|2𝑑𝑧1
0 + |𝑅1|𝑎2 ∫ |𝜙1|2𝑑𝑧1

0 +1
0 |𝑅2|𝑎2 ∫ |𝜙2|2𝑑𝑧1

0 < 0,                      (25) 
 
which clearly implies (for 𝑝𝑖 ≠ 0) that 

|𝑅|𝐴𝜎
2𝜋4

+ 𝑇𝑎𝑃12 > 1.                                                                       (26) 
 
Hence if  |𝑅|𝐴𝜎

2𝜋4
+ 𝑇𝑎𝑃12 ≤ 1, then we must have 𝑝𝑖 = 0. 

 
This establishes the desired result. 
 
The essential content of the theorem from the physical point of view are that for the problem of rotatory hydrodynamic 
triply diffusive convection in a porous medium analogous to Stern [22] type of an arbitrary neutral or unstable mode of 
the system is definitely nonoscillatory in character if  |𝑅|𝐴𝜎

2𝜋4
+ 𝑇𝑎𝑃12 ≤ 1 and in particular PES is valid if  

 |𝑅|𝐴𝜎
2𝜋4

+ 𝑇𝑎𝑃12 ≤ 1. 
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