

π sg-CLOSED SETS IN BITOPOLOGICAL SPACES

K. Mohana* and I. Arockiarani

Department of Mathematics, Nirmala College for Women, Coimbatore-641 018, India

E-mail: mohanamaths@yahoo.co.in

(Received on: 05-08-11; Accepted on: 17-08-11)

ABSTRACT

In this paper the concept of π sg-closed sets in bitopological spaces is introduced. Properties of these sets are investigated and we introduce new bitopological spaces (τ_i , τ_j)- π sg $-T^2 I_{/2}$ as applications. Further we discuss and study π sg-continuity in bitopological spaces.

Key Words: (τ_i, τ_j) - πsg closed sets, (τ_i, τ_j) - πsg – $T^2 l_{/2}$ spaces, (τ_i, τ_j) - πsg continuous maps.

1. INTRODUCTION

A triple (X,τ_1,τ_2) where X is a non-empty set and τ_1 and τ_2 are topologies on X is called a bitopological space and Kelly[8] initiated the study of such spaces. In 1985, Fukutake [7] introduced the concepts of g-closed sets in bitopological spaces and after that [2, 3, 10, 11, 12, 13, 14] several authors turned their attention towards generalizations of various concepts of topology by considering bitopological spaces. Dontchev. J, Noiri. T [6] introduced and studied the concepts of πg closed set in topological spaces.

The purpose of this paper is to introduce the concepts of π sg closed sets, π sg $-T^2 1_{/2}$ spaces, π sg continuity in bitopological spaces and investigate some of their properties.

2. PRELIMINARIES

If A is a subset of X with a topology τ , then the closure of A is denoted by τ -cl(A) or cl(A), the interior of A is denoted by τ -int(A) or int (A) and the complement of A in X is denoted by A^c. When A is a subset of X, cl(A), int(A) denote the closure, the interior of A respectively. A subset A of a topological space X is called regular open if A=int(cl(A)). The finite union of regular open sets is said to be π - open. The complement of π - open is said to be π - closed.

Throughout this paper (X,τ_1,τ_2) and (Y,σ_1,σ_2) means a bitopological space on which no separation axioms are assumed unless explicitly mentioned and the integers $i,j \in \{1,2\}$. For a subset A of X τ_i -cl(A)(resp. τ_i -int(A))denote the closure (resp.interior)of A with respect to the topology τ_i . We denote the family of all π -open sets of X with respect to the topology τ_i by π -O, the family of all τ_j -closed sets is denoted by F_j . We denote the family of all (τ_i, τ_j) -g closed sets is denoted by the symbol D(τ_i, τ_j).

we recall the following known definitions and results which are useful for our paper.

Definition: 2.1-A subset A of a bitopological space(X, τ_1 , τ_2) is called (i). (τ_i , τ_j)-g closed [7] if τ_j -cl(A) \subseteq U when ever A \subseteq U and U \in τ_i . (ii). (τ_i , τ_j)-sg closed [4] if τ_j -scl(A) \subseteq U when ever A \subseteq U and U is semi open in (X, τ_i).

Definition: 2.2 [5] A space (X, τ_i) is called a sub maximal space if every dense subset of X is open in X.

Definition: 2.3 [6] A subset A of a space (X, τ_i) is said to be πg -closed if $cl(A) \subseteq U$ when ever $A \subseteq U$ and U is π -open in (X, τ_i) .

Definition: 2.4[1] A subset A of a space (X, τ_i, τ_j) is said to be (τ_i, τ_j) - π g-closed if τ_j -cl $(A) \subseteq U$ when ever $A \subseteq U$ and U is π -open in (X, τ_i) .

K. Mohana* and I. Arockiarani/mg-CLOSED SETS IN BITOPOLOGICAL SPACES/IJMA- 2(9), Sept.-2011, Page: 1734-1741

Definition: 2.5[9] A function f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called generalized -bi-continuous (briefly g-bicontinuous) if f is $D(\tau_i, \tau_j)$ - σ_k -continuous if the inverse image of every σ_k -closed set is (τ_i, τ_j) - g-closed.

Definition: 2.6[9] A function f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called generalized –strongly-bi-continuous (briefly g-sbi -continuous) if f is g-bi-continuous, $D(\tau_i, \tau_i)$ - σ_k -continuous and $D(\tau_i, \tau_i)$ - σ_k -continuous.

3. (τ_i, τ_j) - π sg CLOSED SETS

Definition: 3.1 Let $i, j \in \{1, 2\}$ be fixed integers. A subset A of a bitopological space (X, τ_1, τ_2) is said to be (τ_i, τ_j) - π sg closed if τ_j -scl(A) \subseteq U whenever A \subseteq U and U is π -open in τ_i .

Remark: 3.2 By setting $\tau_1 = \tau_2$ in definition 3.1, a (τ_i, τ_i)- π sg closed is a π sg closed.

Theorem: 3.3

- 1. Every τ_i -closed set is (τ_i, τ_j) - π sg closed .
- 2. Every τ_i -semi closed set is (τ_i, τ_i) - π sg closed.
- 3. Every (τ_i, τ_j) - πg closed set is (τ_i, τ_j) - πsg closed set.
- 4. Every (τ_i, τ_j) -sg closed set is (τ_i, τ_j) π sg closed set.

5. Every (τ_i, τ_i) - g closed set is (τ_i, τ_i) - π sg closed set.

The converses of the above are not true may be seen by the following examples.

Example:3.4 Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}, \tau_2 = \{\phi, X, \{a\}, \{a, b\}, \{a, c\}\}$. Then the subset $\{a, c\}$ is $(\tau_1, \tau_2) = \pi_{sg}$ closed set, but not τ_2 -closed.

Example: 3.5 Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}, \{a, b\}\}, \tau_2 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$. Then the subset $\{a, b\}$ is $(\tau_1, \tau_2), \pi_{SB}$ closed sets ,but not τ_2 - semi closed sets.

Example :3.6 Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}, \tau_2 = \{\phi, X, \{a\}, \{a, b\}\}$. Then the subsets $\{a\}, \{b\}$ are (τ_1, τ_2) - π sg closed set, but not (τ_1, τ_2) - π sg closed set.

Example :3.7 Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}, \{a, b\}\}, \tau_2 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$. Then the subset $\{a, b\}$ is (τ_1, τ_2) - π sg closed set, but not (τ_1, τ_2) - π sg closed set.

Example: 3.8 Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}, \{c\}, \{a, c\}\}, \tau_2 = \{\phi, X, \{a\}, \{b, c\}\}$. Here $\{c\}$ is (τ_1, τ_2) - π sg closed set, but not (τ_1, τ_2) - g closed set.

From the above results and examples, we have the following implications

Theorem: 3.9 If A is an (τ_i, τ_j) - π sg closed set of X such that A \subseteq B \subseteq τ_j -scl(A), then B is also an (τ_i, τ_j) - π sg closed set of (X, τ_1, τ_2).

Proof: Let $B \subseteq U$, where U is π -open in τ_i , then $A \subseteq B$ implies $A \subseteq U$. Since A is an (τ_i, τ_j) - π sg closed set=> τ_j -scl (A) $\subseteq U$, given $B \subseteq \tau_j$ -scl (A) => τ_j -scl(B) $\subseteq \tau_j$ -scl(scl(A)) $\subseteq \tau_j$ -scl(A) $\subseteq U$

 $\Rightarrow \tau_i \operatorname{-scl}(B) \subseteq G$. Therefore B is $(\tau_i, \tau_i) \operatorname{-} \pi \operatorname{sg}$ closed set.

© 2011, IJMA. All Rights Reserved

K. Mohana* and I. Arockiarani/mg-CLOSED SETS IN BITOPOLOGICAL SPACES/IJMA- 2(9), Sept.-2011, Page: 1734-1741 **Theorem: 3.10** If A is (τ_i, τ_i) - π sg closed set then τ_i -scl(A) – A contains no non-empty τ_i - π -closed set.

Proof: Let A be an (τ_i, τ_i) - π sg closed set and F be a τ_i - π closed set such that $F \subseteq \tau_i$ - scl(A) - A. Then $F \subseteq X$ - A, since A is (τ_i, τ_i) - π sg closed set and X – F is τ_i - π -open. Therefore τ_i -scl(A) \subseteq X – F (i.e)., $F \subseteq X$ - τ_i -scl(A). Hence $F \subseteq \tau_i$ $-scl(A) \cap (X - \tau_i - scl(A)) = \phi$

The converse of the above theorem is not true as seen from the following example.

Example: 3.11 Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}, \tau_2 = \{\phi, X, \{a\}, \{a, b\}, \{a, c\}\}$. If $A = \{c\}$ then τ_2 -scl(A) - A= X - {c}={a, b} does not contain any non-empty τ_1 , π -closed set. But A = {a, b} is not (τ_i , τ_i)- π sg closed set.

Corollary: 3.12Let A be (τ_i, τ_i) - π sg closed set in X then A is τ_i -closed iff τ_i -scl(A) – A is $\tau_i \pi$ -closed.

Proof: Necessity: Let A be τ_i closed then τ_i -cl(A) = A=> τ_i - scl(A) – A = ϕ . by theorem 3.10., Which is τ_i - π -closed.

Sufficiency: If τ_i -scl(A) – A is τ_i π -closed by theorem **3.10**. τ_i -scl(A) – A = ϕ , since A is (τ_i , τ_i)- π sc closed set. Therefore A is τ_i –closed set.

Theorem: 3.13 If D [E] \subset D_S [E] for each subset E of a Bitopological space X then the union of two (τ_i , τ_j)- π sg closed set is (τ_i, τ_i) - π sg closed set.

Proof: Let A,B be (τ_i, τ_j) - π sg-closed subsets of X and let U be a π -open set in τ_i such that $A \cup B \subset U$. Given A and B are (τ_i, τ_i) - π sg closed sets then τ_i -scl(A) $\subseteq U$, τ_i -scl(B) $\subseteq U$, since D[A] \subset D_S[A] and D[B] \subset D_S[B] τ_i -cl(A) = τ_i -scl(A) and τ_i -cl(B) = τ_i -scl(B)

Therefore $\tau_i - cl(A \cup B) = \tau_i - cl(A) \cup \tau_i - cl(B)$

 $= \tau_i - scl(A \cup B) = \tau_i - scl(A) \cup \tau_i - scl(B) \subseteq U = \tau_i - scl(A \cup B) \subseteq U$

 \Rightarrow A \cup B is (τ_i, τ_i)- π sg closed set.

Proposition: 3.14 If $A, B \in (\tau_i, \tau_i)$ - π sg closed set in X and (X, τ_i) is sub maximal, then $A \cup B \in (\tau_i, \tau_i)$ - π sg closed set

Proof: Suppose $A \cup B \subseteq G$, where G is π -open, since $A, B \in (\tau_i, \tau_j)$ - π sg closed set, τ_j -scl $(A) \subseteq G, \tau_j$ -scl $(B) \subseteq G$. Hence τ_i -scl(A) $\cup \tau_i$ -scl(B) \subseteq G. As (X, τ_i) is sub maximal, finite union of semi closed set is semi closed.

So, it follows that τ_i -scl (A \cup B) \subseteq G. =>A \cup B \in (τ_i, τ_i) - π sg-closed set.

Definition: 3.15 A subset A \subseteq X is called (τ_i, τ_i)- π sg open set iff its complement is (τ_i, τ_i)- π sg closed set.

Theorem : 3.16 A subset A of a Bitopological space X is (τ_i, τ_i) - π sg open set iff F $\subseteq \tau_i$ -Sint A whenever F is π -closed set in τ_i and $F \subseteq A$.

Proof: Necessity: Let A be (τ_i, τ_i) - π sg open set. Let F be π -closed set in τ_i and $F \subseteq A$. Then X-A \subseteq X-F, where X – F is $\pi\text{-open in }\tau_i.(\tau_i, \tau_i)\text{-}\pi\text{sg closeness of }X - A \Rightarrow X - A \text{ is }(\tau_i, \tau_i)\text{-}\pi\text{sg closed} \Rightarrow \tau_i - \text{scl}(X - A) \subseteq X - F \Rightarrow X - \tau_i - \text{Sint }A \subseteq X - F.$

Hence $F \subseteq \tau_i$ -Sint A.

Sufficiency: Suppose F is π -closed set in τ_i and $F \subseteq A => F \subseteq T_i$ -Sint A. Let X-A $\subseteq U$, where U is π -open in τ_i . Then X-U \subseteq A, where X – U is π -closed in τ_i . By hypothesis, X-U $\subseteq \tau_i$ -Sint A=> X- τ_i -Sint A \subseteq U => τ_i -scl(X-A) \subseteq U. => X-A is (τ_i, τ_i) - π sg closed set. Therefore A is (τ_i, τ_i) - π sg open set.

Theorem: 3.17 If τ_i -sint A \subseteq B \subseteq A and A is (τ_i, τ_i) - π sg open set then B is (τ_i, τ_i) - π sg open set.

Proof: T_i -Sint A \subseteq B \subseteq A =>X-A \subseteq X-B \subseteq X- T_i -Sint A (i. e)., X-A \subseteq X-B \subseteq T_i -scl(X-A), since X –A is (τ_i , τ_i)- π sg closed set. by theorem :3.9., X-B is (τ_i, τ_i) - π sg closed set => B is (τ_i, τ_i) - π sg open set.

Remark: 3.18 For any $A \subseteq X$, τ_i -Sint(τ_i -scl (A)-A) = ϕ .

Theorem: 3.19 If A \subseteq X is (τ_i, τ_j) - π sg closed set, then τ_i -scl(A)–A is (τ_i, τ_j) - π sg open set.

Proof: Let A be (τ_i, τ_i) - π sg closed. Let F be π -closed set in τ_i such that $F \subseteq \tau_i$ -scl(A) – A. Then by theorem 3.10., F= ϕ .So © 2011, IJMA. All Rights Reserved

K. Mohana* and I. Arockiarani/ π sg-CLOSED SETS IN BITOPOLOGICAL SPACES/IJMA- 2(9), Sept.-2011, Page: 1734-1741 $F \subseteq \tau_j$ -Sint(τ_j -scl(A) – A).

 $\Rightarrow \tau_j \operatorname{-scl}(A) - A \text{ is } (\tau_i, \tau_j) \operatorname{-} \pi \operatorname{sg} \text{ closed set.}$

The reverse implication does not hold.

Example:3.20 Let $X = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}, \tau_2 = \{\phi, X, \{a\}, \{a, b\}\}$. Let $A = \{a, b\}$, which is (τ_1, τ_2) - π sg open sets, but not (τ_1, τ_2) - π sg closed sets.

4. (τ_i, τ_j) - $\pi sg - T^2 1_{/2}$ space

Definition: 4.1 A Bitopological space (X, τ_1, τ_2) is called (τ_i, τ_j) - π sg $-T^2 \mathbf{1}_{/2}$ if every (τ_i, τ_j) - π sg closed set is τ_j -semi closed.

Definition: 4.2 For a subset A of (X, τ_1, τ_2) , we define the (τ_i, τ_j) - π sg closure of A and (τ_i, τ_j) - π sg interior of A as follows:

 $\begin{array}{l} (\tau_i, \tau_j) - \pi sg \ \text{-cl}(A) = \cap \{ F: F \ \text{is} \ (\tau_i, \tau_j) - \pi sg \ \text{closed} \ \text{in} \ X, A \subset F \} \\ (\tau_i, \tau_j) - \pi sg \ \text{-int}(A) = \cup \{ F: F \ \text{is} \ (\tau_i, \tau_j) - \pi sg \ \text{open} \ \text{in} \ X, F \subset A \} \end{array}$

Theorem:4.3 Let A be a subset of (X, τ_i, τ_j) and $x \in X$. Then (a). X- $((\tau_i, \tau_j) - \pi sg - cl(A)) = (\tau_i, \tau_j) - \pi sg - int(X-A)$. (b). X- $((\tau_i, \tau_j) - \pi sg - int(A)) = (\tau_i, \tau_j) - \pi sg - cl(X-A)$.

Proof: (a) We have $(\tau_i, \tau_j) - \pi \text{sg} - \text{cl}(A) = \bigcap \{ F: F \text{ is } (\tau_i, \tau_j) - \pi \text{sg} - \text{closed in } X, A \subset F \}$ Taking complement on both the sides, we have X- $((\tau_i, \tau_j) - \pi \text{sg} - \text{cl}(A)) = \bigcup \{ F^c: F^c \text{ is } (\tau_i, \tau_j) - \pi \text{sg} - \text{open in } X, F^c \subset A^c \} = \bigcup \{ U: U \text{ is } (\tau_i, \tau_j) - \pi \text{sg} - \text{open in } X, U \subset A^c \}$. Where U = F^c is $(\tau_i, \tau_j) - \pi \text{sg}$ -open = $(\tau_i, \tau_j) - \pi \text{sg} - \text{int}(A^c) = (\tau_i, \tau_j) - \pi \text{sg} - \text{int}(X-A)$.

(b) (τ_i, τ_j) - π sg -int(A) = \cup { F: F is (τ_i, τ_j) - π sg -open in X, F \subset A} Taking complement on both the sides, we have X- $((\tau_i, \tau_j)$ - π sg -int(A)) = \cap { F^c: F^c is (τ_i, τ_j) - π sg closed in X, A^c \subset F^c}= \cap { U: U is (τ_i, τ_j) - π sg - closed in X, U \supset A^c}, where U = F^c is (τ_i, τ_j) - π sg closed = (τ_i, τ_j) - π sg cl(A^C) = (τ_i, τ_j) - π sg cl(X-A).

Lemma:4.4 Let A be a subset of (X, τ_i, τ_j) and $x \in X$. Then $x \in (\tau_i, \tau_j)$ - πsg -cl(A) iff $V \cap A \neq \phi$ for every (τ_i, τ_j) - πsg open set V containing x.

Proof: Let A be a subset of X and $x \in X$, suppose there exists, a (τ_i, τ_j) - π sg –open set V containing x such that $V \cap A = \phi$, since $A \subset X / V$, (τ_i, τ_j) - π sg –cl(A) $\subset X / V$ and then $x \notin (\tau_i, \tau_j)$ - π sg –cl(A), which is a contradiction, therefore $V \cap A \neq \phi$.

Conversely, suppose that $x \notin (\tau_i, \tau_j)$ - π sg cl(A), then there exists a (τ_i, τ_j) - π sg closed set F containing A such that $x \notin F$, since $x \in X / F$ and X/F is (τ_i, τ_j) - π sg open. Therefore (X/F) $\cap A = \phi$, which is a contradiction.

Therefore $x \in (\tau_i, \tau_j)$ - $\pi sg cl(A)$.

Lemma: 4.5 Let A and B be subsets of (X, τ_i, τ_j) . Then we have, (a). (τ_i, τ_j) - π sg $-cl(\phi)=\phi$ and (τ_i, τ_j) - π sg -cl(X)=X. (b).If $A \subseteq B$, then (τ_i, τ_j) - π sg $-cl(A) \subseteq (\tau_i, \tau_j)$ - π sg -cl(B)(c). (τ_i, τ_j) - π sg $-cl(A) = (\tau_i, \tau_j)$ - π sg $-cl((\tau_i, \tau_j)$ - π sg -cl(A))(d). (τ_i, τ_j) - π sg $-cl(A \cup B) \supset (\tau_i, \tau_j)$ - π sg $-cl(A) \cup (\tau_i, \tau_j)$ - π sg -cl(B)(e). (τ_i, τ_j) - π sg $-cl(A \cap B) \subset (\tau_i, \tau_j)$ - π sg $-cl(A) \cap (\tau_i, \tau_i)$ - π sg -cl(B)

Remark: 4.6

(1) If A is (τ_i, τ_j) - π sg closed in (X, τ_i, τ_j) then (τ_i, τ_j) - π sg-cl(A)=A.

(2) If π SGC(X, τ_i, τ_j) is closed under finite unions, then (τ_i, τ_j) - π sg-cl(A \cup B) = (τ_i, τ_j) - π sg-cl(A) $\cup (\tau_i, \tau_j)$ - π sg-cl(B).

Proof: Since π SGC(X, τ_i , τ_j) is closed,=> (τ_i , τ_j)- π sg-cl(A) = A and (τ_i , τ_j)- π sg-cl(B) = B.(τ_i , τ_j)- π sg-cl(A \cup B) \subset A \cup B = (τ_i , τ_j)- π sg-cl(A) \cup (τ_i , τ_j)- π sg-cl(B).Hence,(τ_i , τ_j)- π sg-cl(A \cup B) = (τ_i , τ_j)- π sg-cl(A) \cup (τ_i , τ_j)- π sg-cl(B).

(3) If sc(X, τ_i, τ_j) is closed under finite union, then π SGC(X, τ_i, τ_j) is closed under finite unions. Since sc(X, τ_i, τ_j) is closed => τ_j -scl(A) =A. Since every semi closed set is (τ_i, τ_j)- π sg-closed.=> π SGC(X, τ_i, τ_j) is closed under finite unions.

K. Mohana and I. Arockiarani/* π *g-CLOSED SETS IN BITOPOLOGICAL SPACES/IJMA- 2(9), Sept.-2011, Page: 1734-1741* **Definition :4.7 [4]** For a subset A of (X, τ_i, τ_j), (τ_i, τ_j)-g closure of A is defined by (τ_i, τ_j)C*(A) = \cap { F : F is (τ_i, τ_j)-g closed ; A \subset F}

Definition :4.8[4] For a subset A of (X, τ_i, τ_j) , (τ_i, τ_j) -sg closure of A is defined by (τ_i, τ_j) scl*(A) = $\cap \{F : F \text{ is } (\tau_i, \tau_j)$ -sg closed ; A $\subset F\}$

Definition: 4.9 For a subset A of (X, τ_i, τ_j) , (τ_i, τ_j) - πg closure of A is defined by (τ_i, τ_j) - πg -cl(A) = $\cap \{F : F \text{ is } (\tau_i, \tau_j) - \pi g \text{ closed } ; A \subset F\}$

Definition: 4.10

(a).For a bitopological space $(X, \tau_i, \tau_j), (\tau_i, \tau_j) \circ \tau^* = \{U \subset X; (\tau_i, \tau_j) \circ cl^* (X / U) = X / U\}$ (b) For a bitopological space $(X, \tau_i, \tau_j), (\tau_i, \tau_j) \tau^*_{\pi g} = \{U \subset X; (\tau_i, \tau_j) - \pi g \circ cl^* (X / U) = X / U\}$ (c) For a bitopological space $(X, \tau_i, \tau_j), (\tau_i, \tau_j) \tau^*_{\pi sg} = \{U \subset X; (\tau_i, \tau_j) - \pi sg \circ cl^* (X / U) = X / U\}$

Theorem: 4.11 If SO (X, τ_i , τ_j) is closed under finite intersections, then (τ_i , τ_i) $\tau^*_{\pi sg}$ is a bitopology for X.

Theorem: 4.12 For a subset A of (X, τ_i, τ_j) , the following statements hold : (a)A \subset (τ_i, τ_j) - π sg -cl(A) \subset (τ_i, τ_j) - π g-cl(A) (b)A \subset (τ_i, τ_j) - π sg -cl(A) \subset (τ_i, τ_j) -scl^{*}(A) (c) $(\tau_i, \tau_j) \tau^*_{\pi g} \subset (\tau_i, \tau_j) \tau^*_{\pi sg}$ (d) $(\tau_i, \tau_j) s\tau^* \subset (\tau_i, \tau_j) \tau^*_{\pi sg}$

Theorem: 4.13 Let (X, τ_i, τ_j) be a bitopological space. Then every (τ_i, τ_j) - π sg closed set is τ_j -semi closed (ie. (X, τ_i, τ_j)) is (τ_i, τ_j) - π sg T²_{1/2}) iff (τ_i, τ_j) - $\tau^*_{\pi sg} = \tau_j$ -so (X, τ_i, τ_j)

Proof: Let $A \in (\tau_i, \tau_j) \tau_{\pi sg}^*$, then (τ_i, τ_j) - πsg -cl (X / A) = X / A. By hypothesis, τ_j -scl $(X / A) = (\tau_i, \tau_j)$ - πsg -cl(X / A) = X / A. By hypothesis, τ_j -scl $(X / A) = (\tau_i, \tau_j)$ - πsg -cl(X / A) = X / A. By hypothesis, τ_j -scl $(X / A) = (\tau_i, \tau_j)$ - πsg -cl(X / A) = X / A.

Converse: Let A be a (τ_i, τ_j) - π sg -closed set. Then (τ_i, τ_j) - π sg -cl(A) = A. Hence X / A $\in (\tau_i, \tau_j) \tau_{\pi sg}^* = \tau_j$ -so (X, τ_i, τ_j) => X / A $\in \tau_j$ - so (X, τ_i, τ_j) , So A is τ_j -semi closed.

Theorem: 4.14 Let (X, τ_i, τ_j) be a bitopological space. Then every (τ_i, τ_j) - π sg closed set is τ_j -closed iff $(\tau_i, \tau_j) \tau^*_{\pi sg} = \tau_j$

Theorem:4.15 Let (X, τ_i, τ_j) be a bitopological space. Then every (τ_i, τ_j) - π sg closed set is (τ_i, τ_j) -sg closed then (τ_i, τ_j) $\tau^*_{\pi sg} = (\tau_i, \tau_j) s \tau^*$

Proof: Obvious.

Theorem: 4.16 Let (X, τ_i, τ_j) be a bitopological space. Then every (τ_i, τ_j) - π sg closed set is (τ_i, τ_j) - π g closed then (τ_i, τ_j) $\tau^*_{\pi sg} = (\tau_i, \tau_j) \tau^*_{\pi sg}$

Proof: Obvious.

5. π sg CONTINUOUS FUNCTIONS IN BITOPOLOGICAL SPACE

Definition: 5.1 A function $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$ is called $(\tau_i,\tau_j)-\sigma_k$ - π sg-continuous if the inverse image of every σ_k -closed set in Y is (τ_i,τ_j) - π sg-closed in (X,τ_i,τ_j) .

Remark: 5.2

(i) Suppose that $\tau_1 = \tau_2 = \tau$ and $\sigma_1 = \sigma_2 = \sigma$, then the above definition of (τ_i, τ_j) - σ_k - π sg-continuous function coincides with the π sg- continuous function.

(ii) It follows from the definition of $(\tau_i, \tau_j) - \sigma_k$ - π sg-continuous function that f is $(\tau_i, \tau_j) - \sigma_k$ - π sg-continuous iff for every σ_k .open set in Y, its inverse image is (τ_i, τ_j) - π sg open in X.

The following is an example for $(\tau_i, \tau_j) - \sigma_k$ -πsg-continuous function.

Proposition: 5.3 If a function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is $\tau_j - \sigma_k$ continuous then f is $(\tau_i, \tau_j) - \sigma_k - \pi$ sg continuous.[(i.e)., The inverse image of every σ_k –closed set is τ_j -closed]

Proof: It follows from the fact that every τ_i -closed set is (τ_i, τ_i) - π sg closed. However the converse need not hold.

K. Mohana* and I. Arockiarani/mg-CLOSED SETS IN BITOPOLOGICAL SPACES/IJMA- 2(9), Sept.-2011, Page: 1734-1741

Example:5.4 Let $X = Y = \{a, b, c\}, \tau_1 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}, \tau_2 = \{\phi, X, \{a\}, \{a, b\}, \{a, c\}\}, \sigma_1 = \{\phi, Y, \{a\}, \{b\}, \{a, b\}\}, \sigma_2 = \{\phi, Y, \{a\}\}$. Then f is (τ_1, τ_2) - σ_2 - π sg continuous. i, j, $k \in \{1, 2\}, i \neq j$. But not τ_2 - σ_1 - continuous

Definition: 5.5 A function f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called π sg-bi-continuous if f is (τ_1, τ_2) - σ_2 - π sg-continuous and (τ_2, τ_1) - σ_1 - π sg-continuous.

Definition: 5.6 A function f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called π sg-strongly -bi-continuous (briefly π sg-s-bi-continuous) if f is π sg -bi-continuous, (τ_2, τ_1) - σ_2 - π sg-continuous and (τ_1, τ_2) - σ_1 -continuous.

Remark: 5.7 Every g-bi-continuous function is π sg -bi-continuous and every g-s-bi continuous function is π sg -s-bi-continuous. But the reverse implications need not be true.

Example: 5.8 Let $X = Y = \{a, b, c\}, \tau_1 = \{\phi, X, \{c\}, \{a, b\}\}, \tau_2 = \{\phi, X, \{a, b\}\}, \sigma_1 = \{\phi, Y, \{a\}, \{b\}, \{a, b\}\}, \sigma_2 = \{\phi, Y, \{a, b\}\}, f(a) = a, f(b) = c, f(c) = b$. Then f is $(\tau_2, \tau_1) - \sigma_1$ -g-continuous, but not $(\tau_1, \tau_2) - \sigma_2$ -g-continuous.

Hence f is not g-bi-continuous. But f is both $(\tau_1, \tau_2) - \sigma_2 -\pi$ sg-continuous and $(\tau_2, \tau_1) - \sigma_1 -\pi$ sg-continuous and so it is π sg-bi-continuous. Also f is $(\tau_1, \tau_2) - \sigma_1 -\pi$ sg-continuous and $(\tau_2, \tau_1) - \sigma_2 -\pi$ sg-continuous and hence it is π sg-s-bi-continuous where as it is not g-s-bi-continuous.

Theorem: 5.9 A function $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ is called (τ_i,τ_j) - π sg- σ_k -continuous, then $f((\tau_i,\tau_j)$ - π sg- $cl(A)) \subset \sigma_k$ -cl(f(A)) holds for every subset A of X.

Proof: For every subset A of X, σ_k –cl(f(A)) is σ_k –closed in Y and A \subset f⁻¹(σ_k –cl(f(A))).Since f is (τ_i , τ_j)- σ_k - π sg -continuous,(τ_i , τ_i)- σ_k - π sg-cl(A) \subset f⁻¹(σ_k -cl(f(A)) (or)f((τ_i , τ_i) - π sg-cl(A)) \subset (σ_k –cl(f(A)).

Proposition: 5.10 The following statements are equivalent. Let f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be a function.

(i). For each point $x \in X$ and every σ_k -open set V containing f(x) there exists a (τ_i, τ_j) - π sg –open set U containing X such that $f(U) \subset V$.

(ii). For every subset A of X, $f((\tau_i, \tau_j) - \pi sg\text{-cl}(A) \subset (\sigma_k - cl(f(A)) \text{ holds.}$

Definition:5.12 A function f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called (τ_i, τ_j) - (σ_k, σ_e) - π sg-continuous if f¹(A) $\in (\tau_i, \tau_j)$ - π sg-closed set for every A $\in (\sigma_k, \sigma_e)$ - π sg-closed set. If i =j and k = e simultaneously, then f becomes a π sg-irresolute function.

Definition:5.13 A function f is (τ_i, τ_j) - (σ_k, σ_e) - π sg-continuous iff, for every (σ_k, σ_e) - π sg-open set A of Y, the inverse image f¹(A) is (τ_i, τ_j) - π sg-open in X.

Definition:5.14 A function f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called $\tau_i - \sigma_k - \pi$ open if the image of every τ_i -open set in X is $\sigma_k - \pi$ open in Y.

Definition: 5.15 A function f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called $(\tau_i, \tau_j) - \sigma_e - \pi sg$ -semi continuous if the image of every σ_e -semi closed set in Y is $(\tau_i, \tau_j) - \pi sg$ - closed in X.

Definition: 5.16 A function f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is termed as $\tau_i - \sigma_k - \pi$ -continuous if the inverse image of every σ_k -open set in Y is $\tau_i - \pi$ -open in X.

Definition: 5.17 A function f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called $\tau_i - \sigma_e^*$ semi closed function if the image of a τ_i -semi closed set in X is σ_e semi closed in Y.

K. Mohana and I. Arockiarani/* π *sg-CLOSED SETS IN BITOPOLOGICAL SPACES/IJMA- 2(9), Sept.-2011, Page: 1734-1741* **Proposition: 5.18** If a function f: (X, τ_1 , τ_2) \rightarrow (Y, σ_1 , σ_2) is bijective, τ_i - σ_k - π -open and (τ_i , τ_j) - σ_k - π sg semi-continuous, then it is (τ_i , τ_j)–(σ_k , σ_e)-continuous.

Proof: Let A be (σ_k, σ_e) - π sg-closed in Y. Let U be a τ_i - π -open set in X. Such that $f^1(A) \subset U$. Then $A \subset f(U)$, where f(U) is σ_k - π -open.As A is (σ_k, σ_e) - π sg-closed, σ_e -scl $(A) \subset f(U)$ (or) $f^1(\sigma_e$ -scl $(A)) \subset U$. Since σ_e -scl(A) is σ_e -Semiclosed in Y, τ_i -scl $(f^1(\sigma_e$ -scl $(A))) \subset U$.(i.e)., τ_i -scl $(f^1(A)) \subset U$.

Hence, $f^{-1}(A)$ is (τ_i, τ_j) - π sg closed set in X.

Proposition: 5.19 Let f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be a τ_i - σ_k - π -continuous function and τ_j - σ_e^* -semi closed function. Then for every (τ_i, τ_i) - π sg closed set B in X the image f(B) is (σ_k, σ_e) - π sg-closed in Y.

Theorem:5.20 Let f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be a function. If (X, τ_1, τ_2) is a (τ_i, τ_j) -semi π -T_{1/2} space and f is bijective, τ_i - σ_k - π -open, τ_i - σ_e -semi closed and (τ_i, τ_j) - σ_e -semi continuous, then (Y, σ_1, σ_2) is a (σ_k, σ_e) semi π -T_{1/2} space.

Proof: Let V be (σ_k, σ_e) - π sg-closed in Y. Then by proposition, $f^{-1}(V)$ is (τ_i, τ_j) - π sg closed. Since X is (τ_i, τ_j) -semi π -T $_{\frac{1}{2}}$ space, $f^{-1}(V)$ is τ_j -semi closed in X. F is bijective => $f(f^{-1}(V))$ =V and f is τ_j - σ_e^* -semi closed => V is - σ_e -semi closed in Y. In other words, (Y, σ_1, σ_2) is a (σ_k, σ_e) semi π -T $_{\frac{1}{2}}$ space.

Lemma:5.21 Suppose that $B \subset A \subset X$, B is a (τ_i, τ_j) - π sg closed set relative to A and A is τ_i -open and τ_j -semi closed subset of X. Then B is (τ_i, τ_j) - π sg closed set in X.

Theorem: 5.22 Let f: $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be a $(\tau_i, \tau_j) - \sigma_k - \pi sg$ continuous function and H be $\tau_j - open, \tau_j$ -semi closed and τ_i –clopen in X then its restriction f | H :(H, τ_1 | H, τ_2 | H) $\rightarrow (Y, \sigma_1, \sigma_2)$ is $(\tau_i, \tau_j) - \sigma_k - \pi sg$ continuous.

Proof: Let F be a σ_k – closed subset of Y. Then $f^1(F)$ is (τ_i, τ_j) - π sg-closed in (X, τ_1, τ_2) . Then $f^1(F) \cap H = (f \mid H)^{-1}(F)$ (Say H₁) is (τ_i, τ_j) - π sg-closed in X. Let H₁ \subset G₁, where G₁ is τ_i - π open in H. Then G₁ = H \cap V Where V is - π open in X. As H₁ is (τ_i, τ_j) - π sg-closed in X and H₁ \subset V, τ_j -scl(H₁) \subset V holds. As H is semi closed τ_j -scl_H(H₁) = τ_j -scl_X(H₁) \cap H. Then τ_j -scl_H(H₁) \subset V \cap H =G₁. Therefore flH is (τ_i, τ_j) - σ_k - π sg-continuous

Definition: 5.23 Let $X = A \cup B$ and let $f:A \rightarrow Y$ and $h:B \rightarrow Y$ be two functions. We say that f & h are compatible if $f \mid (A \cap B) = h \mid (A \cap B)$.

Then we define a function $f \nabla h : X \to Y$ as $(f \nabla h) (x) = f(x)$ for $x \in A$ and $(f \nabla h) (x) = h(x)$ for $x \in B$. The function $f \nabla h$ is called the combination of f and h.

Theorem: 5.24 (Pasting Lemma) Let X=A \cup B, where A & B are both τ_i -open and τ_j -semiclosed subsets of X and let f: (A, $\tau_1 \mid A$, $\tau_2 \mid A$) \rightarrow (Y, σ_1 , σ_2) and h :(B, $\tau_1 \mid B$, $\tau_2 \mid B$) \rightarrow (Y, σ_1 , σ_2) be compatible functions. If f and h are ($\tau_i \mid A$, $\tau_j \mid A$)- σ_k - π sg continuous and ($\tau_i \mid B$, $\tau_j \mid B$)- σ_k - π sg continuous respectively and (X, τ_j) is submaximal, then the combination f ∇ h :

 $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is $(\tau_i, \tau_j) - \sigma_k$ -πsg-continuous

Proof: Let F be any σ_k –closed set in Y, then $(f \nabla h)^{-1}(F) = f^1(F) \cup h^{-1}(F)$. By using Lemma[5.21], we have that $f^1(F)$ and $h^{-1}(F)$ are (τ_i, τ_j) - π sg-closed in A and B respectively. Therefore their union $(f \nabla h)^{-1}(F)$ is also (τ_i, τ_j) - π sg-closed by proposition [3.14]. Hence $(f \nabla h)$ is (τ_i, τ_j) - σ_k - π sg-continuous.

Corollary: 5.25 Let $X = A \cup B$ where A and B are τ_1 open, τ_2 open, τ_1 semi closed and τ_2 semiclosed. Let let f: $(A, \tau_1 | A, \tau_2 | A) \rightarrow (Y, \sigma_1, \sigma_2)$ and h : $(B, \tau_1 | B, \tau_2 | B) \rightarrow (Y, \sigma_1, \sigma_2)$ be compatible functions. If f and h are π sg-bi-continuous (respectively π sg-s-bi-continuous) functions and (X, τ_i) , i $\in \{1, 2\}$ are submaximal, then the combination (f ∇ h) : $(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is π sg-bi-continuous, (respectively π sg-s-bi-continuous). The proof follows from the above theorem.

References:

[1] Arockia rani and K. Mohana, π g-closed sets and π -normal spaces in bitopological settings, Accepted, Acta Ciencia Indica.

[2] S. P. Arya and T. M. Nour, Quasi semi-components in bitopological spaces, Indian J. Pure ppl.Math, 19(1988), 42-50.

[3] P. Bhattacharya and B. K. K Lahiri,"Semi generalized closed sets in topology", Indian J. Math.29(1987),375-382.

[4] R. Devi, H. Maki and K. Balachandran,"Semi-generalized closed maps and generalized semi-closed maps", Mem.

K. Mohana* and I. Arockiarani/mg-CLOSED SETS IN BITOPOLOGICAL SPACES/IJMA- 2(9), Sept.-2011, Page: 1734-1741 Fac. Sci. Kochi Univ (Math) 14(1993), 41-54.

[5] Dontchev. J,"On sub maximal spaces" J. Math 26(1995); 253-60.

[6] Dontchev. J, Noiri. T," Quasi normal spaces and π g-closed sets, Acta Math Hungar 89(3) (2000):211-9.

[7] Fukutake, On generalized closed sets in bitopological spaces, Bull. Fukuoka Univ. Ed. Part III, 35(1986), 19-28.

[8] Kelly. J. C -Bitopological spaces, Proc. London Math.soc., 13(1963), 71-99.

[9] N. Levine,"Semi-open sets and Semi-continuity in topological space", Am. Math. Monthly,70(1963)(36-41).

[10] N. Levine,"Semi-open sets and Semi-continuity in topological space", Am. Math. Monthly, 19(1963)(89-96).

[11] H. Maki, P. Sundaram and K. Balachandran, on generaized Continuous maps and Pasting lemma in bitopological spaces, Bull. Fukuoka. Univ. Ed. Part III, 40(1991), 23-31.

[12] Patty, C. W-Bitopological spaces, Duke Math.J., 34(1967), 303-307.

[13] Reilly. I. L-On bitopological separation properties, Nanta Math., 5(1972), 14-25.

[14] M. Sheik John and P. Sundaram – g^* closed sets in bitopological spaces –Indian J. Pure. Appl. Math., 35(1) (2004):71-80,
