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ABSTRACT 
In this paper, I Dr N V Nagendram as an author introduce the Gamma-semi normal sub near-field spaces  in Γ-near-
field space over a near-field PART IV, Dr. N V Nagendram together investigate the related properties of generalization 
of a Gamma-semi normal sub near-field spaces  in Γ-near-field space over a near-field. 
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SECTION-1: INTRODUCTION 
 
In this paper, Part IV consisting important sections I introduce the Γ-semi normal sub near-field spaces in Γ-near-field 
space over a near-field, and Dr. N V Nagendram being an author investigate the related properties of generalization of a 
Γ-semi normal sub near-field spaces in Γ-near-field space over a near-field. 
 
As a generalization of a Γ-semi normal sub near-field spaces  in Γ-near-field space over a near-field, introduced the 
notion of Γ-semi normal sub near-field spaces in Γ-near-field space over a near-field, extended many classical notions 
of Γ-semi normal sub near-field spaces  in Γ-near-field space over a near-field.  In this paper, I develop the algebraic 
theory of Γ-semi normal sub near-field spaces in Γ-near-field space over a near-field. 
 
The notion of a Γ- semi normal sub near-field spaces in Γ-near-field space over a near-field is introduced and some 
examples are given. Further the terms; commutative Γ-semi normal sub near-field spaces  in Γ-near-field space, quasi 
commutative Γ-semi normal sub near-field spaces  in Γ-near-field space, normal Γ-semi normal sub near-field spaces  
in Γ-near-field space, left pseudo commutative Γ-semi normal sub near-field spaces  in Γ-near-field space, right pseudo 
commutative Γ-semi normal sub near-field spaces  in Γ-near-field space are introduced. It is proved that (1) if S is a 
commutative Γ-semi normal sub near-field spaces  in Γ-near-field space then S is a quasi commutative Γ-semi normal 
sub near-field spaces  in Γ-near-field space, (2) if S is a quasi commutative Γ-semi normal sub near-field spaces  in      
Γ-near-field space then S is a normal Gamma-semi normal sub near-field spaces  in Γ-near-field space, (3) if S is a 
commutative Γ-semi normal sub near-field spaces  in Γ-near-field space, then S is both a left pseudo commutative and 
a right pseudo commutative Γ-semi normal sub near-field spaces  in Γ-near-field space over a near-field. Further the 
terms; left identity, right identity, identity, left zero, right zero, zero of a Gamma-semi normal sub near-field spaces  in 
Γ-near-field space over a near-field are introduced. It is proved that if a is a left identity and b is a right identity of a     
Γ-semi normal sub near-field spaces in Γ-near-field space, then a = b. It is also proved that any Γ-semi normal sub 
near-field spaces  in Γ-near-field space has at most one identity. It is proved that if a is a left zero and b is a right zero 
of a Γ-semi normal sub near-field spaces  in Γ-near-field space, then a = b and also it is proved that any Γ-semi normal 
sub near-field spaces  in Γ-near-field space over a near-field  has at most one zero element. 
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SECTION-2: MAIN RESULTS ON SEMI NORMAL SUB NEAR-FIELD SPACES IN Γ-NEAR-FIELD SPACE 
OVER A NEAR-FIELD 
 
Semi normal sub near-field spaces have greater importance in the theory of Γ-semi normal sub near-field spaces. In this 
section, the terms left Γ- semi normal sub near-field space, right Γ- semi normal sub near-field space, Γ- semi normal 
sub near-field space, proper Γ- semi normal sub near-field space, trivial Γ- semi normal sub near-field space, maximal 
left Γ- semi normal sub near-field space, maximal right Γ- semi normal sub near-field space, maximal Γ- semi normal 
sub near-field space, left Γ- semi normal sub near-field space generated by a sub near field space, right Γ- semi normal 
sub near-field space generated by a sub near-field space, Γ- semi normal sub near-field space generated by a sub near-
field space, principal left Γ- semi normal sub near-field space, principal right Γ- semi normal sub near-field space, 
principal Γ- semi normal sub near-field space of a Γ-semi normal sub near-field space are introduced. Also left duo      
Γ- semi normal sub near-field space, right duo Γ- semi normal sub near-field space, duo Γ- semi normal sub near-field 
space, left simple Γ- semi normal sub near-field space, right simple Γ- semi normal sub near-field space, simple Γ- semi 
normal sub near-field space are introduced. It is proved that (1) the nonempty intersection of any two left Γ- semi 
normal sub near-field spaces of a Γ- semi normal sub near-field space S is a left Γ- semi normal sub near-field space of 
S, (2) the nonempty intersection of any family of left Γ- semi normal sub near-field spaces of a Γ- semi normal sub 
near-field space S is a left Γ- semi normal sub near-field space of S, (3) the union of any two left Γ- semi normal sub 
near-field spaces of a Γ- semi normal sub near-field space S is a left Γ- semi normal sub near-field space of S and (4) 
the union of any family of left Γ- semi normal sub near-field spaces of a Γ- semi normal sub near-field space S is a left 
Γ- semi normal sub near-field space of S.  
 
It is also proved that (1) the nonempty intersection of any two right Γ- semi normal sub near-field spaces of a Γ- semi 
normal sub near-field space S is a right Γ- semi normal sub near-field space of S, (2) the nonempty intersection of any 
family of right Γ- semi normal sub near-field space of a Γ- semi normal sub near-field space S is a right Γ- semi normal 
sub near-field space of S, (3) the union of any two right Γ- semi normal sub near-field spaces of a Γ- semi normal sub 
near-field space S is a right Γ- semi normal sub near-field space of S and (4) the union of any family of right Γ- semi 
normal sub near-field spaces of a Γ- semi normal sub near-field space S is a right Γ- semi normal sub near-field space 
of S. Further it is proved that (1) the nonempty intersection of any two Γ-ideals of a Γ- semi normal sub near-field 
space S is a Γ- semi normal sub near-field space of S, (2) the nonempty intersection of any family of Γ- semi normal 
sub near-field spaces of a Γ- semi normal sub near-field space S is a Γ- semi normal sub near-field space of S, (3) the 
union of any two Γ- semi normal sub near-field spaces of a Γ- semi normal sub near-field space S is a semi normal sub 
near-field space l of S and (4) the union of any family of Γ- semi normal sub near-field spaces of a Γ- semi normal sub 
near-field space S is a Γ- semi normal sub near-field space of S. It is proved that if S is a Γ- semi normal sub near-field 
space and a ∈ S then (i) L(a) = a∪SΓa, (ii) R(a) = a∪aΓS, (iii) J(a) = a ∪ aΓS ∪ SΓa ∪ SΓaΓS.  
 
It is proved that a Γ- semi normal sub near-field space S is a duo Γ- semi normal sub near-field space if and only if 
xΓS1 = S1Γx for all x ∈ S. Further it is also proved that every normal Γ- semi normal sub near-field space is a duo        
Γ- semi normal sub near-field space. It is proved that (1) a Γ- semi normal sub near-field space S is a left simple          
Γ- semi normal sub near-field space if and only if SΓa = S for all Γ- semi normal sub near-field spaces 47 a ∈ S, (2) a 
Γ- semi normal sub near-field space S is right a simple Γ- semi normal sub near-field space if and only if aΓS = S for 
all a ∈ S, (3) a Γ- semi normal sub near-field space S is a simple Γ- semi normal sub near-field space if and only if 
SΓaΓS = S for all a ∈ S.  
 
We now introduce the term of a right Γ-semi normal sub near-field space in a Γ-semi normal sub near-field space. 
 
Definition 1.2.1: A nonempty sub near-field space A of a Γ- semi normal sub near-field space S is said to be a right     
Γ- semi normal sub near-field space of S if s∈S, a∈A,α ∈Γ ⇒ aαs ∈A . 
 
Note 1.2.2: A nonempty sub near-field space A of a Γ- semi normal sub near-field space S is a left Γ-semi normal sub 
near-field space of S ⇔  AΓS ⊆A. 
 
Theorem 1.2.9: The nonempty intersection of any two right Γ- semi normal sub near-field spaces of a Γ- semi normal 
sub near-field space S is a right Γ- semi normal sub near-field space of S. 
 
Proof: Let A, B be two right Γ-ideals of S. Let a ∈ A∩B, s ∈ S and γ ∈ Γ. 
a ∈ A∩B ⇒ a ∈ A and a ∈ B. 
a ∈ A, s ∈ S, γ ∈ Γ, A is a right Γ-ideal of S ⇒ a γ s ∈ A. 
a ∈ B, s ∈ S, γ ∈ Γ, B is a right Γ-ideal of S ⇒ a γ s ∈ B. 
a γ s ∈ A, a γ s ∈ B ⇒ a γ s ∈ A∩B and hence A∩B is a right Γ-ideal of S. 
 
Theorem 1.2.10: The nonempty intersection of any family of right Γ- semi normal sub near-field spaces of a Γ- semi 
normal sub near-field space S is a right Γ- semi normal sub near-field space of S. 
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Proof: Let {Aα } α∈∆ be a family of right Γ- semi normal sub near-field spaces of S and let A = 



∆∈α
αA  

Let a ∈ A, s ∈ S, γ ∈ Γ. 
a ∈ A ⇒ a ∈ 



∆∈α
αA  ⇒ a ∈ Aα ∀ α ∈ ∆. 

a ∈ Aα, s ∈ S, γ ∈ Γ, ∈ Aα  is a right Γ-semi normal sub near-field space of S ⇒ aγs ∈ Aα . 
aγs ∈ Aα for all α ∈ Δ ⇒ aγs ∈ 



∆∈α
αA  ⇒ a γ s ∈ A. Therefore A is a right Γ- semi normal sub near-field space of S. 

 
Theorem 1.2.11: The union of any two right Γ- semi normal sub near-field spaces of a Γ- semi normal sub near-field 
space S is a right Γ- semi normal sub near-field space of S. 
 
Proof: Let A1, A2 be two right Γ- semi normal sub near-field spaces of a Γ- semi normal sub near-field space S. Let A 
= A1∪A2. 
 
Clearly A is a nonempty sub near-field space of S. Let a ∈ A, s ∈ S, γ ∈ Γ. 
a ∈ A ⇒ a ∈ A1∪A2 ⇒ a ∈ A1 or a ∈ A2. 
 
If a ∈ A1 then a ∈ A1, s ∈ S, γ ∈ Γ, A1 is a right Γ-ideal of S 
⇒ aγs ∈ A1 ⊆ A1∪A2 = A ⇒ aγs ∈ A. 
 
If a ∈ A2 then a ∈ A2, s ∈ S, γ ∈ Γ, A2 is a right Γ-ideal of S 
⇒ aγs ∈ A2 ⊆ A1∪A2 = A ⇒ aγs ∈ A. 
∴ a ∈ A, s ∈ S, γ ∈ Γ then aγs ∈ A. Therefore A is a right Γ- semi normal sub near-field space of S. This completes the 
proof of the theorem. 
 
Theorem 1.2.12: The union of any family of right Γ- semi normal sub near-field spaces of a Γ- semi normal sub near-
field space S is a right Γ- semi normal sub near-field space of S. 
 
Proof: Let {Aα } α∈∆ be a family of right Γ- semi normal sub near-field spaces of S and let A = 



∆∈α
αA . 

Clearly A is a nonempty subset of S. Let a ∈ A, s ∈ S, α ∈ Γ. 
a ∈ A ⇒ a ∈ 



∆∈α
αA ⇒ a ∈ Aα for some α ∈ Δ. 

a ∈ Aα, s ∈ S, γ ∈ Γ, Aα is a right Γ-semi normal sub near-field space of S ⇒ aγs ∈ Aα ⊆ 


∆∈α
αA = A ⇒ aγs ∈ A. 

Therefore A is a right Γ- semi normal sub near-field space of S. 
 
This completes the proof of the theorem. 
 
We now introduce the notion of a Γ- semi normal sub near-field space of a Γ- semi normal sub near-field space. 
 
Definition 1.2.13: A nonempty subset A of a Γ- semi normal sub near-field space S is said to be a two sided Γ- semi 
normal sub near-field space or simply a Γ- semi normal sub near-field space of S if s ∈ S, a ∈ A, α ∈ Γ ⇒ sαa ∈ A,  
aαs ∈ A. 
 
Note 1.2.14: A nonempty subset A of a Γ- semi normal sub near-field space S is a two sided Γ- semi normal sub near-
field space iff it is both a left Γ- semi normal sub near-field space and a right Γ- semi normal sub near-field space of S. 
 
Example 1.2.15: Let N be the set of natural numbers and Γ = 2N. Then N is a Γ- semi normal sub near-field space and 
A = 3N is a Γ- ideal of the Γ- semi normal sub near-field space N. 
 
Theorem 1.2.16: The nonempty intersection of any two Γ- semi normal sub near-field spaces of a Γ- semi normal sub 
near-field space S is a Γ- semi normal sub near-field space of S. 
 
Proof: Let A, B be two Γ- semi normal sub near-field spaces of S. Let a ∈ A∩B and s ∈ S, γ ∈ Γ. 
a ∈ A∩B ⇒ a ∈ A and a ∈ B. 
a ∈ A, s ∈ S, γ ∈ Γ, A is a Γ-semi normal sub near-field space of S ⇒ s γ a, a γ s ∈ A. 
a ∈ B, s ∈ S, γ ∈ Γ, B is a Γ-semi normal sub near-field space of S ⇒ s γ a, a γ s ∈ B. 
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∴ s γ a, a γ s ∈ A, s γ a, a γ s ∈ B ⇒ s γ a, a γ s ∈ A∩B. 
 
Therefore A∩B is a Γ- semi normal sub near-field space of S. 
 
Theorem 1.2.17: The nonempty intersection of any family of Γ-semi normal sub near-field spaces of a Γ -semi normal 
sub near-field space S is a Γ -semi normal sub near-field space of S. 
 
Proof: Let {Aα } α∈∆ be a family of Γ-ideals of S and let A = ∩ Aα ,∀ α ∈ Γ. 
 
Let a ∈ A, s ∈ S, γ ∈ Γ. 
a ∈ A ⇒ a ∈ ∩ Aα ,∀ α ∈ Γ ⇒ a ∈ Aα ,∀ α ∈ Γ, for each α ∈ Δ. 
a ∈ Aα, s ∈ S, γ ∈ Γ, Aα is a Γ- semi normal sub near-field space of S ⇒ s γ a, a γ s ∈ Aα. 
s γ a, a γ s ∈ Aα for all α ∈ Δ ⇒ s Aαa, a Aαs ∈ ∩ Aα ,∀ α ∈ Γ ⇒ s γ a, a γ s ∈ A. 
 
Therefore A is a Γ- semi normal sub near-field space of S. This completes the proof of the theorem. 
 
Theorem 1.2.18: The union of any two Γ- semi normal sub near-field spaces of a Γ-semi normal sub near-field space S 
is a Γ-semi normal sub near-field space of S. 
 
Proof: Let A1, A2 be two Γ- semi normal sub near-field spaces of a Γ- semi normal sub near-field space S. Let             
A = A1∪A2. 
 
Clearly A is a nonempty sub near-field space of S. Let a ∈ A, s ∈ S, γ ∈ Γ. 
a ∈ A ⇒ a ∈ A1∪A2 ⇒ a ∈ A1 or a ∈ A2. 
 
If a ∈ A1 then a ∈ A1, s ∈ S, γ ∈ Γ, A1 is a Γ-semi normal sub near-field space of S ⇒ s γ a, a γ s ∈ A1 ⊆ A1∪A2 = A 
⇒ s γ a, a γ s ∈ A. 
 
If a ∈ A2 then a ∈ A2, s ∈ S, γ ∈ Γ, A2 is a Γ- semi normal sub near-field space of S ⇒ s γ a, a γ s ∈ A2 ⊆ A1∪A2 = A 
⇒ s γ a, a γ s ∈ A. 
 
Thus, a ∈ A, s ∈ S, γ ∈ Γ ⇒ s γ a, a γ s ∈ A. Therefore A is a Γ- semi normal sub near-field space of S. This completes 
the proof of the theorem. 
 
Theorem 1.2.19: The union of any family of Γ - semi normal sub near-field spaces of a Γ - semi normal sub near-field 
space S is a Γ - semi normal sub near-field space of S. 
 
Proof: Let {Aα } α∈∆ be a family of Γ-ideals of S and let A = ∪ Aα,∀ α ∈ Γ.Clearly A is a nonempty subset of S. Let 
a ∈ A, s ∈ S, ∈ Γ. 
 
Let a ∈ A, s ∈ S, γ ∈ Γ. 
a ∈ A ⇒ a ∈ ∪  Aα ,∀ α ∈ Γ ⇒ a ∈ Aα ,∀ α ∈ Γ, for each α ∈ Δ. 
a ∈ Aα, s ∈ S, γ ∈ Γ, Aα is a Γ- semi normal sub near-field space of S ⇒ s γ a, a γ s ∈ Aα. 
 
s γ a, a γ s ∈ Aα for all α ∈ Δ ⇒ s Aαa, a Aαs ∈ ∪  Aα ,∀ α ∈ Γ ⇒ s γ a, a γ s ∈ A. 
 
Therefore A is a Γ- semi normal sub near-field space of S. This completes the proof of the theorem. 
 
We now introduce a proper Γ- semi normal sub near-field space, trivial Γ- semi normal sub near-field space, maximal 
left Γ- semi normal sub near-field space, maximal right Γ- semi normal sub near-field space, maximal Γ- semi normal 
sub near-field space and globally idempotent Γ- semi normal sub near-field space of a Γ- semi normal sub near-field 
space. 
 
Definition 1.2.20: A Γ- semi sub near-field space A of a Γ- semi normal sub near-field space S is said to be a proper   
Γ- semi normal sub near-field space of S if A is different from S. 
 
Definition 1.2.21: A Γ- semi sub near-field space A of a Γ- semi normal sub near-field space S is said to be a trivial    
Γ- semi sub near-field space provided S\A is singleton. 
 
Definition 1.2.22: A Γ- semi sub near-field space A of a Γ- semi normal sub near-field space S is said to be a maximal 
left Γ-semi sub near-field space provided A is a proper left Γ-semi sub near-field space of S and is not properly 
contained in any proper left Γ-semi sub near-field space of S. 
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Definition 1.2.23: A Γ-semi sub near-field space A of a Γ- semi normal sub near-field space S is said to be a maximal 
right Γ-semi sub near-field space provided A is a proper right Γ-semi sub near-field space of S and is not properly 
contained in any proper right Γ-semi sub near-field space of S. 
 
Definition 1.2.24: A Γ-semi sub near-field space A of a Γ- semi normal sub near-field space S is said to be a maximal 
Γ-semi sub near-field space provided A is a proper Γ-semi sub near-field space of S and is not properly contained in 
any proper Γ-semi sub near-field space of S. 
 
Definition 1.2.25: A Γ-semi sub near-field space A of a Γ- semi normal sub near-field space S is said to be globally 
idempotent if AΓA = A. 
 
Theorem 1.2.26: If A is a Γ-semi sub near-field space of a Γ- semi normal sub near-field space S with unity 1 and        
1 ∈ A then A = S. 
 
Proof: Clearly A ⊆ S. Let s ∈ S. 
1 ∈ A, s ∈ S, A is a Γ-semi sub near-field space of S ⇒ 1Γs ⊆ A ⇒ s ∈ A. Thus S ⊆ A. A ⊆ S, S ⊆ A ⇒ S = A. This 
completes the proof of the theorem. 
 
Theorem 1.2.27: If S is a Γ- semi normal sub near-field space with unity 1 then the union of all proper Γ-semi sub 
near-field spaces of S is the unique maximal Γ-semi sub near-field space of S. 
 
Proof: Let M be the union of all proper Γ-semi sub near-field spaces of S. Since 1 is not an element of any proper Γ-
semi sub near-field space of S, 1  ∉ M. Therefore M is a proper subset of S. By theorem 1.2.19, M is a Γ-semi sub near-
field space of S. Thus M is a proper Γ-semi sub near-field space of S. Since M contains all proper Γ-semi sub near-field 
spaces of S, 
 
M is a maximal Γ-semi sub near-field space of S. If M1 is any maximal Γ-semi sub near-field space of S, then M1 ⊆ M 
⊂ S and hence M1 = M. Therefore M is the unique maximal Γ-semi sub near-field space of S. 
 
We now introducing left Γ-semi sub near-field space generated by a subset, right Γ-semi sub near-field space generated 
by a subset, Γ-semi sub near-field space generated by a subset of a Γ-semi normal sub near-field space. 
 
Definition 1.2.28: Let S be a Γ- semi normal sub near-field space and A be a nonempty sub near-field space of S. The 
smallest left Γ-semi sub near-field space of S containing A is called left Γ-semi sub near-field space of S generated by 
A. 
 
Theorem 1.2.29: The left Γ-semi sub near-field space of a Γ-semi normal sub near-field space S generated by a 
nonempty sub near-field space  A is the intersection of all left Γ-semi sub near-field spaces of S containing A. 
 
Proof: Let Δ be the set of all left Γ-semi sub near-field spaces of S containing A. Since S itself is a left Γ-semi sub 
near-field space of S containing A, S ∈ Δ.  
 
So Δ ≠ Φ. 
 
Let 
T* = 
 ∆∈α αT . 

 
Since A ⊆ T for all T ∈ Δ, A ⊆ T*. 
 
So, T* is a left Γ-semi sub near-field space of S. 
 
Let K is a left Γ-semi sub near-field space of S containing A. 
 
Clearly A ⊆ K and K is a left Γ-semi sub near-field space of S. 
 
Therefore K ∈ Δ ⇒T* ⊆ K. 
 
Therefore T* is the left Γ-semi sub near-field space of S generated by A. This completes the proof of the theorem. 
 
Definition 1.2.30: Let S be a Γ- semi normal sub near-field space and A be a nonempty sub near-field space of S. The 
smallest right Γ-semi sub near-field space of S containing A is called right Γ-semi sub near-field space of S generated 
by A. 
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Theorem 1.2.31: The right Γ-semi sub near-field space of a Γ-semi normal sub near-field space S generated by a 
nonempty sub near-field space A is the intersection of all right Γ-semi sub near-field spaces of S containing A. 
 
Proof: Let Δ be the set of all right Γ-semi sub near-field spaces of S containing A. Since S itself is a right Γ-semi sub 
near-field space of S containing A, S ∈ Δ. So Δ ≠ Φ. 
 
Let T* = 

 ∆∈α αT . Since A ⊆ T for all T ∈ Δ, A⊆T* . 

 
By theorem 1.2.10, T* is a right Γ- semi sub near-field space of S. 
 
Let K is a right Γ- semi sub near-field space of S containing A. 
 
Clearly A ⊆ K and K is a right Γ- semi sub near-field space of S. 
 
Therefore K ∈ Δ ⇒T* ⊆ K. 
 
Therefore T* is the right Γ- semi sub near-field space of S generated by A. This completed the proof of the theorem. 
 
Definition 1.2.32: Let S be a Γ- semi normal sub near-field space and A be a nonempty sub near-field space of S. The 
smallest Γ- semi sub near-field space of S containing A is called Γ- semi sub near-field space of S generated by A. 
 
Theorem 1.2.33: The Γ- semi sub near-field space of a Γ- semi normal sub near-field space S generated by a nonempty 
sub near-field space A is the intersection of all Γ- semi sub near-field spaces of S containing A. 
 
Proof: Let Δ be the set of all Γ-semi sub near-field spaces of S containing A. 
 
Since S itself is a Γ-semi sub near-field space of S containing A, S ∈ Δ. So Δ ≠ Φ. 
 
Let T* = 

 ∆∈α αT Since A ⊆ T for all T ∈ Δ, A ⊆ T*. 

 
By theorem 1.2.17, T* is a Γ- semi sub near-field space of S. 
 
Let K is a Γ- semi sub near-field space of S containing A. 
 
Clearly A ⊆ K and K is a Γ- semi sub near-field space of S. 
 
Therefore K ∈ Δ ⇒T* ⊆ K. 
 
Therefore T* is the Γ- semi sub near-field space of S generated by A. This completes the proof of the theorem. 
 
We now introduce a principal left Γ- semi sub near-field space of a Γ- semi normal sub near-field space and 
characterize principal left Γ- semi sub near-field space. 
 
Definition 1.2.34: A left Γ- semi sub near-field space A of a Γ- semi normal sub near-field space S is said to be the 
principal left Γ- semi sub near-field space generated by a if A is a left Γ- semi sub near-field space generated by {a} for 
some a ∈ S. It is denoted by L(a). 
 
Theorem 1.2.35: If S is a Γ- semi normal sub near-field space and a ∈ S then L(a) = a ∪ SΓa. 
 
Proof: Let s ∈ S, r ∈ a ∪ SΓa and γ ∈ Γ. 
r ∈ a ∪ SΓa ⇒ r = a or r = tαa for some t ∈ S, α ∈ Γ. 
 
If r = a then s γ r = s γ a ∈ SΓa ⊆ a ∪ SΓa. 
 
If r = t α a then s γ r = s γ (tαa) = (s γ t)αa ∈ SΓa ⊆ a ∪ SΓa. 
 
Therefore s γ a ∈ a ∪ SΓa and hence a ∪ SΓa is a left Γ- semi sub near-field space of S. Let L be a left Γ- semi sub 
near-field space of S containing a. 
 
Let r ∈ a ∪ SΓa. Then r = a or r = tαa for some t ∈ S, α ∈ Γ. 
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If r = a then r = a ∈ L. If r = tαa then r = tαa ∈ L. 
 
Therefore a∪SΓa ⊆ L and hence a∪SΓa is the smallest left Γ- semi sub near-field space containing a. Therefore        
L(a) = a∪SΓa. This completes the proof of the theorem. 
 
Note 1.2.36: If S is a Γ- semi normal sub near-field space and a ∈ S then L (a) = S1Γa. 
 
We now introduce principal right Γ- semi sub near-field space of a Γ- semi normal sub near-field space and 
characterize principal right Γ- semi sub near-field space. 
 
Definition 1.2.37: A right Γ- semi sub near-field space A of a Γ- semi normal sub near-field space S is said to be the 
principal right Γ- semi sub near-field space generated by a if A is a right Γ- semi sub near-field space generated by {a} 
for some a ∈ S. It is denoted R(a). 
 
Theorem 1.2.38: If S is a Γ - semi normal sub near-field space and a ∈ S then R(a) = a ∪ aΓS. 
 
Proof: Let s ∈ S, r ∈ a ∪ aΓS. 
 
Now r ∈ a ∪ aΓS ⇒ r = a or r = aαt for some t ∈ S, α ∈ Γ. 
 
If r = a then r γ s = a γ s ∈ aΓS ⊆ a ∪ aΓS. 
 
If r = aαt then r γ s = (aαt) γ s = aα(t γ s) ∈ aΓS⊆ a ∪ aΓS. 
 
Therefore r γ s ∈ a ∪ aΓS and hence a ∪ aΓS is a right Γ- semi sub near-field space of S. Let R be a right Γ- semi sub 
near-field space of S containing a. 
 
Let r ∈ a ∪ aΓS. Then r = a or r = aαt for some t ∈ S, α ∈ Γ. 
 
If r = a then r = a ∈ R. If r = aαt then r = aαt ∈ R. 
 
Therefore a ∪ aΓS ⊆ R and hence a ∪ SΓa is the smallest right Γ- semi sub near-field space containing a. Therefore 
R(a) = a∪aΓS. This completes the proof of the theorem. 
 
Note 1.2.39: If S is a Γ- semi normal sub near-field space and a ∈ S then R (a) = aΓS1. 
 
We now introduce a principal Γ- semi sub near-field space of a Γ-semi normal sub near-field space and characterize 
principal Γ- semi sub near-field space. 
 
Definition 1.2.40: A Γ- semi sub near-field space A of a Γ- semi normal sub near-field space S is said to be a principal 
Γ- semi sub near-field space provided A is a Γ- semi sub near-field space generated by {a} for some a ∈ S. It is denoted 
by J[a] or <a>. 
 
Theorem 1.2.41: If S is a Γ- semi normal sub near-field space and a ∈ S then J(a) = a ∪ aΓS ∪ SΓa ∪ SΓaΓS. 
 
Proof: Let s ∈ S, r ∈ a ∪ aΓS ∪ SΓa ∪ SΓaΓS and γ ∈ Γ. 
r ∈ a ∪ aΓS ∪ SΓa ∪ SΓaΓS ⇒ r = a or r = aαt or r = tαa or r = tαaβu for some 
t, u ∈ S and α,  β ∈ Γ. 
 
If r = a then rγs = aγs ∈ aΓS and sγr = sγa ∈ SΓa. 
 
If r = aαt then rγs = (aαt)γs = aα(tγs) ∈ aΓS and sγr = sγ(aαt) = sγaαt ∈ SΓaΓS. 
 
If r = tαa then rγs = (tαa)γs = tαaγs ∈ SΓaΓS or sγr = sγ(tαa) = (sγt)αa ∈ SΓa. 
 
If r = tαaβu then rγs = (tαaβu)γs = tαaβ(uγs) ∈ SΓaΓS 
and sγr = sγ(tαaβu) = (sγt)αaβu ∈ SΓaΓS. 
 
But aΓS, SΓa, SΓaΓS are all sub near-field spaces of aΓS ∪ SΓa ∪ SΓaΓS. 
 
Therefore rγs, sγr ∈ a ∪ aΓS ∪ SΓa ∪ SΓaΓS and hence a ∪ aΓS ∪ SΓa ∪ SΓaΓS is a Γ- semi sub near-field space of 
S. 
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Let J be a Γ- semi sub near-field space of S containing a. Let r ∈ a ∪ aΓS ∪ SΓa ∪ SΓaΓS. 
 
Then r = a or r = aαt or r = tαa or r = tαaβu for some t, u ∈ S and α, β ∈ Γ. 
 
If r = a then r = a ∈ J. If r = aαt then r = aαt ∈ J. 
 
If r = tαa then r = tαa ∈ J. If r = tαaβu then r = tαaβu ∈ J. 
 
Therefore, a ∪ aΓS ∪ SΓa ∪ SΓaΓS ⊆ J. 
 
Hence a ∪ aΓS ∪ SΓa ∪ SΓaΓS is the smallest Γ- semi sub near-field space of S containing a. Therefore  
J(a) = a ∪ aΓS ∪ SΓa ∪ SΓaΓS. This completes the proof of the theorem. 
 
Note 1.2.42: If S is a Γ- semi normal sub near-field space and a ∈ S, then <a> = a ∪ aΓS ∪ SΓa ∪ SΓaΓS = S1Γa 
ΓS1. 
 
Theorem 1.2.43: In any Γ- semi normal sub near-field space S, the following are equivalent. (1) Principal Γ-semi sub 
near-field spaces of S form a chain. (2) Γ-semi sub near-field spaces of S form a chain. 
 
Proof: To prove (1) ⇒ (2): Suppose that principal Γ- semi sub near-field spaces of S form a chain. 
 
Let A, B be two Γ- semi sub near-field spaces of S. Suppose if possible A  ⊄ B, B ⊄ A. 
Then there exists a ∈ A\B and b ∈ B\A. 
a ∈ A ⇒ < a > ⊆ A and b ∈ B ⇒ < b > ⊆ B. 
 
Since principal Γ- semi sub near-field spaces form a chain, either < a > ⊆ < b > or < b > ⊆ < a >. 
 
If < a > ⊆ < b >, then a ∈ < b > ⊆ B. It is a contradiction. 
 
If < b > ⊆ < a >, then b ∈ < a > ⊆ A. It is also a contradiction. 
 
Therefore, either A ⊆ B or B ⊆ A and hence Γ- semi sub near-field spaces from a chain. 
 
To prove (2) ⇒ (1): Suppose that Γ-semi sub near-field spaces of S form a chain. 
 
Then clearly principal Γ-semi sub near-field space of S forms a chain. 
 
Duo semi normal sub near-field spaces played an important role in the theory of semi normal sub near-field spaces. 
This completes the proof of the theorem. 
 
We now introduce a left duo Γ-semi normal sub near-field space, a right duo Γ-semi normal sub near-field space and a 
duo Γ-semi normal sub near-field space. 
 
Definition 1.2.44: A Γ- semi normal sub near-field space S is said to be a left duo Γ- semi normal sub near-field space 
provided every left Γ- semi sub near-field space of S is a two sided Γ- semi sub near-field space of S. 
 
Definition 1.2.45: A Γ- semi normal sub near-field space S is said to be a right duo Γ- semi normal sub near-field space 
provided every right Γ-semi sub near-field space of S is a two sided Γ- semi sub near-field space of S. 
 
Definition 1.2.46: A Γ- semi normal sub near-field space S is said to be a duo Γ- semi normal sub near-field space 
provided it is both a left duo Γ- semi normal sub near-field space and a right duo Γ- semi normal sub near-field space. 
 
We now characterize duo Γ-semi normal sub near-field spaces. 
 
Theorem 1.2.47: A Γ-semi normal sub near-field space S is a duo Γ- semi normal sub near-field space if and only if 
xΓS1 = S1Γx for all x ∈ S. 
 
Proof: Suppose that S is a duo Γ-semi normal sub near-field space and x ∈ S. 
 
Let t ∈ xΓS1. Then t=xγs for some s ∈ S1, γ ∈ Γ. 
 
Since S1Γx is a left Γ-semi sub near-field space of S, S1Γx is a Γ-semi sub near-field space of S. 
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So x∈S1Γx, γ ∈Γ, s∈S, S1Γx is a Γ-semi sub near-field space  
⇒ x γ s∈S1Γx⇒t ∈S1Γx . 
 
Therefore, xΓS1⊆ S1Γx. Similarly we can prove that S1Γx ⊆ xΓS1 .Therefore S1Γx = xΓS1. 
 
Conversely suppose that S1Γx = xΓS1 for all x ∈ S. Let A be a left Γ-semi sub near-field space of S. 
 
Let x ∈ A, s ∈ S and α ∈ Γ. Then xαs ∈ xΓS1 = S1Γx ⇒ xαs = tβx for some t ∈S1, β ∈Γ. 
x∈ A, t∈S, β∈Γ, A is a left Γ-semi sub near-field space of S⇒ tβx∈A⇒ xα s∈A. 
 
Therefore A is a right Γ-semi sub near-field space of S and hence A is a Γ-semi sub near-field space of S. 
 
Therefore S is left duo Γ-semi normal sub near-field space. 
 
Similarly we can prove that S is a right duo Γ-semi normal sub near-field space. Hence S is duo Γ-semi normal sub 
near-field space. This completes the proof of the theorem. 
 
Theorem 1.2.48: Every normal Γ- semi normal sub near-field space is a duo Γ- semi normal sub near-field space. 
 
Proof: Suppose that S is normal Γ-semi normal sub near-field space. 
Then aΓS=SΓa for all a ∈ S⇒aΓS1 = S1Γa for all a ∈S. By theorem 1.2.47, S is a duo Γ-semi normal sub near-field 
space. This completes the proof of the theorem. 
 
We now introduce a left simple Γ-semi normal sub near-field space and characterize left simple Γ-semi normal sub 
near-field spaces. 
 
Definition 1.2.49: A Γ-semi normal sub near-field space S is said to be a left simple Γ-semi normal sub near-field 
space if S is its only left Γ-semi sub near-field space. 
 
Theorem 1.2.50: A Γ-semi normal sub near-field space S is a left simple Γ -semi normal sub near-field space if and 
only if S Γ a = S for all a ∈ S. 
 
Proof: Suppose that S is a left simple Γ-semi normal sub near-field space and a ∈ S. 
 
Let t ∈ SΓa, s ∈ S,  γ  ∈ Γ. 
t ∈ SΓa ⇒ t =s1αa where s1 ∈S and α ∈ Γ. 
 
Now sγt = sγ( s1αa ) =  (sΓs1 )αa ∈SΓa ⇒ SΓa is a left Γ-semi sub near-field space of S. 
 
Since S is a left simple Γ-semi normal sub near-field space, SΓa = S. 
 
Therefore SΓa = S for all a ∈ S. 
 
Conversely suppose that SΓa = S for all a ∈ S. Let L be a left Γ-semi sub near-field space of S. 
 
Let l ∈ L. Then l ∈ S. By assumption SΓl = S. 
 
Let s ∈ S. Then s ∈ SΓl ⇒ s = tαl for some t ∈ S, α ∈ Γ. 
l ∈ L, t ∈ S, α ∈ Γ and L is a left Γ-semi  sub near-field space ⇒ tαl ∈ L ⇒ s ∈ L. 
 
Therefore, S ⊆ L. Clearly L ⊆ S and hence S = L. 
 
Therefore S is the only left Γ-semi sub near-field space of S. Hence S is left simple Γ-semi normal sub near-field space. 
 
We now introduce a right simple Γ-semi normal sub near-field space and characterize right simple Γ-semi normal sub 
near-field spaces. 
 
Definition 1.2.51: A Γ-semi normal sub near-field space S is said to be a right simple Γ-semi normal sub near-field 
space if S is its only right Γ-semi sub near-field space. 
 
Theorem 1.2.52: A Γ-semi normal sub near-field space S is a right simple Γ-semi normal sub near-field space if and 
only if aΓS= S for all a ∈ S. 
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Proof: Suppose that S is a right simple Γ-semi normal sub near-field space and a ∈ S. Let t ∈ aΓS, s ∈ S, γ ∈ Γ. 
t ∈ aΓS ⇒ t = aαs1 where s1 ∈S and α ∈ Γ. 
 
Now tγs = (aα s1 )γ s = aα (s1 γ s)∈aΓS ⇒ aΓS is a right Γ-semi  sub near-field space of S. 
 
Since S is a right simple Γ-semi normal sub near-field space, aΓS = S. 
 
Therefore aΓS = S for all a ∈ S.  
 
Conversely suppose that aΓS = S for all a ∈ S. 
 
Let R be a right Γ- semi sub near-field space of a Γ- semi normal sub near-field space S. 
 
Let r ∈ R. Then r ∈ S. By assumption rΓS = S. 
 
Let s ∈ S. Then s ∈ rΓS ⇒ s = rαt for some t ∈ S, α ∈ Γ. 
r∈ R, t ∈ S, α ∈ Γ and R is a right Γ- semi  sub near-field space ⇒ rαt ∈ R⇒ s ∈ R. 
 
Therefore, S ⊆ R. Clearly R ⊆ S and hence S = R. 
 
Therefore S is the only right Γ- semi sub near-field space of S. Hence S is right simple Γ- semi normal sub near-field 
space S. This completes the proof of the theorem. 
 
We now introduce a simple Γ-semi normal sub near-field space and characterize simple Γ-semi normal sub near-field 
spaces. 
 
Definition 1.2.53: A Γ-semi normal sub near-field space S is said to be simple Γ-semi normal sub near-field space if S 
is its only two-sided Γ-semi sub near-field space. 
 
Theorem 1.2.54: If S is a left simple Γ-semi normal sub near-field space or a right simple Γ-semi normal sub near-field 
space then S is a simple Γ-semi normal sub near-field space. 
 
Proof: Suppose that S is a left simple Γ-semi normal sub near-field space. Then S is the only left Γ-semi sub near-field 
space of S. 
 
If A is a Γ-semi sub near-field space of S, then A is a left Γ-semi sub near-field space of S and hence A = S. 
 
Therefore S itself is the only Γ-semi sub near-field space of S and hence S is a simple Γ-semi normal sub near-field 
space. 
 
Suppose that S is a right simple Γ-semi normal sub near-field space. Then S is the only right Γ-semi sub near-field 
space of S. 
 
If A is a Γ-semi sub near-field space of S, then A is a right Γ-semi sub near-field space of S and hence A = S. 
 
Therefore S itself is the only Γ-semi sub near-field space of S and hence S is a simple Γ-semi normal sub near-field 
space. 
 
Theorem 1.2.55: A Γ-semi normal sub near-field space S is simple Γ-semi normal sub near-field space if and only if 
SΓaΓS = S for all a ∈ S. 
 
Proof: Suppose that S is a simple Γ-semi normal sub near-field space and a ∈ S. 
 
Let t ∈ SΓaΓS, s ∈ S and γ ∈ Γ. 
 
t ∈ SΓaΓS ⇒ t = s1α aβ s2 where s1, s2 ∈S and α, β ∈ Γ. 
 
Now tγs = (s1α aβ s2)γ s = s1α aβ (s2 γ s) ∈ SΓaΓS and  
sγt =sγ( s1α aβ s2) = ( sγs1 )α aβ s2 ∈ SΓaΓS. Therefore SΓaΓS is a Γ-semi sub near-field space of S. 
 
Since S is a simple Γ-semi normal sub near-field space, S itself is the only Γ-semi sub near-field space of S and hence 
SΓaΓS = S. 
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Conversely suppose that SΓaΓS = S for all a ∈ S. Let I be a Γ-semi sub near-field space of S. 
 
Let a ∈ I. Then a ∈ S. So SΓaΓS = S. 
 
Let s ∈ S. Then s ∈ SΓaΓS ⇒ s = t1α aβ t2 for some t1, t2 ∈ S, α, β ∈ Γ. 
a ∈ I, t1, t2 ∈ S, α, β ∈ Γ, I is a Γ- semi sub near-field space of S  
 
⇒ t1α aβ t2 ∈ I⇒ s ∈ I. Therefore S ⊆ I. Clearly I ⊆ S and hence S = I. 
 
Therefore S is the only Γ- semi sub near-field space of S. Hence S is a simple Γ- semi normal sub near-field space. This 
completes the proof of the theorem. 
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