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ABSTRACT 
In Chemical Science, the multiplicative connectivity indices are applied to measure the chemical and biological 
characteristics of chemical compounds. In this paper, we introduce the multiplicative product connectivity Revan 
index, multiplicative sum connectivity Revan index, first multiplicative atom bond connectivity Revan index and 
multiplicative geometric-arithmetic Revan index of a molecular graph and compute these multiplicative connectivity 
Revan indices of some important chemical structures like triangular benzenoid, benzenoid rhombus and benzonoid 
hourglass. 
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1. INTRODUCTION 
 
In this paper, we consider only a finite, simple connected graph. Let G be a graph with a vertex set V(G) and an edge 
set E(G). The degree dG(v) of a vertex v is the number of vertices adjacent to v. Let ∆(G)( δ(G)) denote the maximum 
(minimum) degree among the vertices of G. The Revan vertex degree of a vertex v in G is defined as rG(v) = ∆(G) + 
δ(G) – dG(v). The Revan edge connecting the Revan vertices u and v will be denoted by uv. For additional definitions 
and notations, the reader may refer to [1]. 
 
A molecular graph is a graph such that its vertices correspond to the atoms and the edges to the bonds. Chemical graph 
theory is a branch of Mathematical chemistry which has an important effect on the development of the Chemical 
Sciences. A topological index is a numerical parameter mathematically derived from the graph structure. In organic 
chemistry, topological indices have been found to be useful in chemical documentation, isomer discrimination, 
structure property relationships, structure activity relationships and pharmaceutical drug design. There has been 
considerable interest in the general problem of determining topological indices. 
 
Best known and used topological indices are the multiplicative connectivity indices, introduced by Kulli in [2]. 
Motivated by the definitions of the multiplicative connectivity indices and their wide applications, we introduce the 
multiplicative product connectivity Revan index, multiplicative sum connectivity Revan index, multiplicative atom 
bond connectivity Revan index and multiplicative geometric-arithmetic Revan index of a molecular graph as follows: 
 
The multiplicative product connectivity Revan index of a graph G is defined as 

( )
( ) ( )( )

1

uv E G G G

PRII G
r u r v∈

= ∏  

 
The multiplicative sum connectivity Revan index of a graph G is defined as 

 ( )
( ) ( )( )

1 .
uv E G G G

SRII G
r u r v∈

=
+

∏  
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The first multiplicative atom bond connectivity Revan index of a graph G is defined as 

( ) ( ) ( )
( ) ( )( )

1
2G G

G Guv E G

r u r v
ABC RII G

r u r v∈

+ −
= ∏  

 
The multiplicative geometric-arithmetic Revan index of a graph G is defined as 

( )

2 ( ) ( )
( )

( ) ( )
G G

uv E G G G

r u r v
GARII G

r u r v∈

=
+∏  

Recently many multiplicative topological indices were studied, for example, in [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 14, 
15, 16]. Also some connectivity indices were studied, for example, in [17, 18, 19, 20, 21, 22]. In this paper, we 
compute multiplicative connectivity Revan indices of triangular benzenoids, benzenoid rhombus and benzenoid 
hourglass. For more information about these benzenoids see [23, 24]. 
 
2. RESULTS FOR TRIANGULAR BENZENOID Tp. 
 
In this section, we consider the graph of triangular benzenoid Tp which p is the number of hexagons in the base graph. 

Clearly Tp has ( )1 1
2

p p + hexagons. The graph of triangular benzenoid T4 is presented in Figure 1.  

 
Figure-1: The graph of triangular benzenoid T4. 

  
Let G be the graph of a triangular benzenoid Tp. By algebraic method, we obtain |V(Tp)| = p2 + 4p + 1 and 

( ) ( )3 3
2pE T p p= + . Also by algebraic method, we obtain that the edge set E(G) can be divided into three 

partitions:   
E22 = {uv ∈ E(G) | dG(u) = dG(v) = 2}  |E22| = 6. 
E23 = {uv ∈ E(G) | dG(u) = 2, dG(v) = 3}  |E23| = 6p – 6. 

E33 = {uv ∈ E(G) | dG(u) = dG(u) = 3}  |E33| = ( )3 1
2

p p − . 

Clearly ∆(G) = 3 and δ(G) = 2. Therefore rG(u) = 5 – dG(u). Thus we ensure that there are three types of Revan edges 
based on the degree of end Revan vertices of each Revan edge as follows: 

RE33 = {uv ∈ E(G) | rG(u) = rG(v) = 3},  |RE33| = 6. 
RE32 = {uv ∈ E(G) | rG(u) = 3, dG(v) = 2},  |RE32| = 6(p – 1). 

RE22 = {uv ∈ E(G) | rG(u) = rG(u) = 2}  |RE22| = ( )3 1
2

p p − . 

In the following theorem, we compute the multiplicative product connectivity Revan index of Tp. 
 
Theorem 1: The multiplicative product connectivity Revan index of a triangular benzonoid Tp is given by 

( )
( ) ( )36 3 1 1

21 1 1 .
3 6 2

p p p

pPRII T
− −

     = × ×     
     

 

Proof: By definition, we have ( )
( ) ( )( )

1 .
uv E G G G

PRII G
r u r v∈

= ∏  

Thus ( )
( ) ( )36 6 1 1

21 1 1 .
3 3 3 2 2 2

p p p

pPRII T
− −

     = × ×     × × ×    
 

   
( ) ( )36 3 1 1

21 1 1 .
3 6 2

p p p− −
     = × ×     
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In the following theorem, we compute the multiplicative sum connectivity Revan index of Tp. 
 
Theorem 2: The multiplicative sum connectivity Revan index of a triangular benzenoid Tp is given by 

( )
( ) ( )33 3 1 1

21 1 1 .
6 5 2

p p p

pSRII T
− −

     = × ×     
     

 

 

Proof: By definition, we have 
( )

1( )
( ) ( )uv E G G G

SRII G
r u r v∈

=
+

∏   

Thus ( )pSRII T =
61

3 3
 

× + 

( )6 11
3 2

p−
 
 + 

( )3 1
21 .

2 2

p p−
 × + 

 

   
( ) ( )33 3 1 1

21 1 1 .
6 5 2

p p p− −
     = × ×     
     

 

 
In the following theorem, we compute the multiplicative atom bond connectivity Revan index of Tp. 
 
Theorem 3: The first multiplicative atom bond connectivity Revan index of a triangular benzenoid Tp is given by 

( )
( )6 3 1

1
2 1
3 2

p

pABC II T
−

   = × ×   
   

( )3 1
21 .

2

p p−
 
 
 

 

 

Proof: By definition, we have ( ) ( ) ( )
( ) ( )( )

2
.G G

p
G Guv E G

r u r v
ABCRII T

r u r v∈

+ −
= ∏  

Thus ( )
( ) ( )36 6 1 1

2
1

3 3 2 3 2 2 2 2 2 .
3 3 3 2 2 2

p p p

pABC RII T
− −

     + − + − + −
= × ×          × × ×     

 

           
( ) ( )3 16 3 1

22 1 1 .
3 2 2

p pp −−     = × ×          
 

 
In the following theorem, we compute the multiplicative geometric-arithmetic Revan index of Tp. 
 
Theorem 4: The multiplicative geometric-arithmetic Revan index of a triangular benzenoid Tp is given by 

( )
( )6 1

2 6 .
5

p

pGARII T
−

 
=   

 
 

Proof: By definition, we have ( ) ( ) ( )
( ) ( )( )

2
.G G

p
G Guv E G

r u r v
GARII T

r u r v∈

=
+∏  

Thus ( )
( ) ( )36 6 1 1

22 3 3 2 3 2 2 2 2 .
3 3 3 2 2 2

p p p

pGARII T
− −

     × × ×
= × ×          + + +     

 

       

( )6 1
2 6 .

5

p−
 

=   
 

 

 
3. RESULTS FOR BENZENOID RHOMBUS Rp. 

 
In this section, we consider the graph of benzenoid rhombus Rp which is obtained from two copies of a triangular 
benzenoid Tp by identifying hexagons in one of their base rows. The graph of benzenoid rhombus R4 is presented in 
Figure 2.  
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Figure-2: The graph of benzenoid rhombus R4. 

  
Let G be the graph of a benzenoid rhombus Rp. By algebraic method, we obtain |V(Tp)| = 2p2 + 4p and 

( ) 23 4 1pE R p p= + − . It is easy to see that the vertices of benzenoid rhombus Rp are either of degree 2 or 3, see 

Figure 2. Therefore ∆(G)=3 and δ(G)=2. Thus rG(u) = 5 – dG(u). By calculation, we obtain that the edge set E(Rp) can 
be divided into three partitions:   

E22 = {uv ∈ E(G) | dG(u) = dG(v) = 2}  |E22| = 6. 
E23 = {uv ∈ E(G) | dG(u) = 2, dG(v) = 3}  |E23| = 8(p – 1). 
E33 = {uv ∈ E(G) | dG(u) = dG(u) = 3}  |E33| = 3p2 – 4p + 1. 

 
Thus there are three types of Revan edges as follows: 

RE33 = {uv ∈ E(G) | rG(u) = rG(v) = 3}  |RE33| = 6. 
RE32 = {uv ∈ E(G) | rG(u) = 3, rG(v) = 2}  |RE32| = 8(p – 1). 
RE22 = {uv ∈ E(G) | rG(u) = rG(v) = 2}  |RE22| = 3p2 – 4p + 1. 

   
Theorem 5: The multiplicative product connectivity Revan index of a benzonoid rhombus Rp is given by 

( )
( ) 26 4 1 3 4 11 1 1 .

3 6 2

p p p

pPRII R
− − +

     = × ×     
     

 

 
Proof: To compute PRII(Rp), we see that 

( )
( ) ( )( )

1
p

uv E G G G

PRII R
r u r v∈

= ∏
( ) 26 8 1 3 4 11 1 1 .

3 3 3 2 2 2

p p p− − +
     = × ×     × × ×    

 

 
( ) 26 4 1 3 4 11 1 1 .

3 6 2

p p p− − +
     = × ×     
     

 

 
Theorem 6: The multiplicative sum connectivity Revan index of a benzonoid rhombus Rp is given by 

( )
( ) 23 4 1 3 4 11 1 1 .

6 5 2

p p p

pSRII R
− − +

     = × ×     
     

 

 
Proof: To compute SRII(Rp), we see that 

( )
( ) ( )( )

1 .p
uv E G G G

SRII R
r u r v∈

=
+

∏
( ) 26 8 1 3 4 11 1 1 .

3 3 3 2 2 2

p p p− − +
     = × ×     + + +    

 

( ) 23 4 1 3 4 11 1 1 .
6 5 2

p p p− − +
     = × ×     
     

 

  
Theorem 7: The first multiplicative atom bond connectivity Revan index of a benzenoid rhombus Rp is given by 

( )
( ) 23 4 16 4 1

1
2 1 1 .
3 2 2

p pp

pABC RII R
− +−     = × ×          

 

 
Proof: To compute ABC1RII(Rp), we see that 
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( ) ( ) ( )
( ) ( )( )

1
2

.G G
p

G Guv E G

r u r v
ABC RII T

r u r v∈

+ −
= ∏  

( ) 26 8 1 3 4 1
3 3 2 3 2 2 2 2 2 .

3 3 3 2 2 2

p p p− − +
     + − + − + −

= × ×          × × ×     
 

( ) 23 4 16 4 12 1 1 .
3 2 2

p pp − +−     = × ×          
 

 
In the following theorem, we compute the multiplicative atom bond connectivity Revan index of Tp. 
 
Theorem 8: The multiplicative geometric-arithmetic Revan index of a triangular benzenoid Rp is given by 

( )pGARII T =
( )8 1

2 6 .
5

p−
 
  
 

 

 
Proof: To compute GARII(Rp), we see that 

( )

2 ( ) ( )
( )

( ) ( )
G G

p
uv E G G G

r u r v
GARII R

r u r v∈

=
+∏  

                         

( ) 26 8 1 3 4 1
2 3 3 2 3 2 2 2 2 .

3 3 3 2 2 2

p p p− − +
     × × ×

= × ×          + + +     
 

   

( )8 1
2 6 .

5

p−
 

=   
 

 

 
4. RESULTS FOR BENZENOID HOURGLASS Xp. 
 
In this section, we consider the graph of benzenoid hourglass Xp which is obtained from two copies of a triangular 
benzenoid Tp by overlapping hexagons. The graph of benzenoid hourglass is shown in Figure 3.  
 

 
Figure-3: The graph of benzenoid hourglass 

  
Let G be the graph of a benzenoid hourglass Xp. By algebraic method, we obtain |V(Xp)| = 2(p2+4p –2)  and 

( ) 23 9 4pE X p p= + − . It is easy to see that the vertices of benzenoid hourglass Xp are either of degree 2 or 3, see 

Figure 3. Therefore ∆(G)=3 and δ(G)=2. Thus rG(u) = 5 – dG(u). By algebraic method, we obtain that the edge set E(Xp) 
can be divided into three partitions:   

E22 = {uv ∈ E(G) | dG(u) = dG(v) = 2}  |E22| = 8 
E23 = {uv ∈ E(G) | dG(u) = 2, dG(v) = 3}  |E23| = 4(3p – 4). 
E33 = {uv ∈ E(G) | dG(u) = dG(u) = 3}  |E33| = 3p2 – 3p + 4. 

 
Thus there are three types of Revan edges as follows: 

RE33 = {uv ∈ E(G) | rG(u) = rG(v) = 3}  |RE33| = 8. 
RE32 = {uv ∈ E(G) | rG(u) = 3, rG(v) = 2}  |RE32| = 4(3p – 4). 
RE22 = {uv ∈ E(G) | rG(u) = rG(v) = 2}  |RE22| = 3p2 – 3p + 4. 
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We compute the multiplicative connectivity Revan indices of a benzenoid hourglass Xp. 
 
Theorem 9: The multiplicative product connectivity Revan index of a benzonoid hourglass Xp is given by 

( )
( ) 28 2 3 4 3 3 41 1 1 .

3 6 2

p p p

pPRII X
− − +

     = × ×     
     

 

 
Proof: To compute PRII(Xp), we see that 

( )

1( )
( ) ( )p

uv E G G G

PRII R
r u r v∈

= ∏  

                       
( ) 28 4 3 4 3 3 41 1 1 .

3 3 3 2 2 2

p p p− − +
     = × ×     × × ×    

 

( ) 28 2 3 4 3 3 41 1 1 .
3 6 2

p p p− − +
     = × ×     
     

 

 
Theorem 10: The multiplicative sum connectivity Revan index of a benzenoid hourglass Xp is given by 

( )
( ) 24 2 3 4 3 3 41 1 1 .

6 5 2

p p p

pSRII X
− − +

     = × ×     
     

 

 
Proof: To compute SRII(Xp), we see that 

  ( )
( ) ( )( )

1 .p
uv E G G G

SRII X
r u r v∈

=
+

∏  

                        
( ) 28 4 3 4 3 3 41 1 1 .

3 3 3 2 2 2

p p p− − +
     = × ×     + + +    

 

 
( ) 24 2 3 4 3 3 41 1 1 .

6 5 2

p p p− − +
     = × ×     
     

 

 
Theorem 11: The first multiplicative atom bond connectivity Revan index of a benzenoid hourglass Xp is given by 

( )
( ) 23 2 48 2 3 4

1
2 1 1 .
3 2 2

p pp

pABC RII X
− +−     = × ×          

 

 
Proof: To compute ABC1RII(Xp), we see that 

  ( ) ( ) ( )
( ) ( )( )

1
2

.G G
p

G Guv E G

r u r v
ABC RII X

r u r v∈

+ −
= ∏  

( ) 28 4 3 4 3 3 4
3 3 2 3 2 2 2 2 2 .

3 3 3 2 2 2

p p p− − +
     + − + − + −

= × ×          × × ×     
 

( ) 23 4 48 2 3 42 1 1 .
3 2 2

p pp − +−     = × ×          
 

 
Theorem 12: The multiplicative geometric-arithmetic Revan index of a benzenoid hourglass Xp is given by 

 ( )
( )4 3 4

2 6 .
5

p

pGARII T
−

 
=   

 
 

 
Proof: To compute GARII(Xp), we see that 

( ) ( ) ( )
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2
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( ) 28 4 3 4 3 3 4
2 3 3 2 3 2 2 2 2 .

3 3 3 2 2 2

p p p− − +
     × × ×

= × ×          + + +     
 

  

( )4 3 4
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