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ABSTRACT 

Steady, plane, viscous, incompressible, constantly inclined two-phase magnetohydrodynamic (MHD) fluid in a rotating 
frame through porous media is considered. A second order partial differential equation is obtained and by applying 
hodograph transformation technique exact solution for vortex flow is found out. Result is summarised in the form of a 
theorem and streamline pattern is shown for the solution.   
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1. INTRODUCTION 
 
In fluid mechanics, two-phase flow occurs in a system containing gas and liquid with a meniscus separating the two 
phases [19]. Two-phase flow is a particular example of multiphase flow. The interest in the problems of mechanics of 
systems with more than one phase has developed rapidly during the past few years [13]. Considerable amount of work 
has been devoted to dusty fluid flows due to the importance of such studies in many physical applications, ranging from 
fluidization problems to high-speed and dust supersonic flows [36]. Saffman [24] pioneered the study of the fluid-
particle system. He derived the equations describing the motion of a gas carrying small dust particles and the equations 
satisfied by small disturbances of a steady laminar flow. Saffman formulated these equations of motion of dusty fluid 
which is represented in terms of large number density ( )N x, t  of very small spherical inert particles whose volume 
concentration is small enough to be neglected. It is assumed that the density of the dust particles is large when 
compared with the fluid density so that the mass concentration of the particles is an appreciable fraction of unity. In this 
formulation, Saffman also assumed that the individual particles of dust are so small that Stoke’s law of resistance 
between the particles and the fluid remains valid. Using the model of Saffman, several authors [12, 20, 22, 29] 
investigated various aspects of hydrodynamics and hydromagnetic two-phase fluid flows. M.H. Hamdan and R.M. 
Barron [7] developed the differential equations governing the dusty fluid flow in porous media based on Saffman’s [24] 
dusty gas flow equations. Brent E. Sleep [14], M. H. Hamdan and K.D. Sawalha [15], Fathi M. Allam et al. [1], K.R. 
Madhura et al. [21] studied the dusty gas flow through porous medium. C. Thakur and R. B. Mishra [35] applied 
hodograph transformation in constantly inclined MFD flow. Manoj Kumar, Sayantan Sil and C. Thakur [18] studied 
two phase MFD flows through porous media.  
 
Various transformation techniques involving inverse or semi-inverse methods are used for reformulation of equations 
in solvable form in order to get exact solutions. The hodograph transformation method is one of such methods. Ames 
[2] has given an excellent survey of the method. Many authors including Chandna et al. [6, 8, 9, 10, 11, 25] have 
applied hodograph and Legendre transform to investigate steady plane viscous flows, non-Newtonian flows and 
constantly inclined, aligned, transverse and orthogonal MHD non-Newtonian flows.  
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As the theory of rotating fluids has become very important because of its occurrence in many natural phenomena for its 
application in various technological solutions many studies have been carried out on various types of flows both non-
MHD and MHD in a rotating system. Several authors [3, 4, 17, 30, 31, 32, 33, 34, 37] studied rotating MHD flow and 
found out exact solutions. Krishan Dev Singh [28] studied unsteady MHD Poiseuille flow in a rotating system. M.A. 
Imran et al. [16] found out exact solutions for the MHD second grade fluid in a porous medium using integral 
transformation technique. A.M. Rashid [23] studied unsteady MHD flow of a rotating fluid from stretching surface in 
porous medium and effects of radiation and variable viscosity on it. Sayantan Sil and Manoj Kumar [26] studied 
rotating orthogonal plane MHD flow through porous media using complex variable technique. Also Sayantan Sil and 
Manoj Kumar [27] obtained exact solutions of a second grade rotating fluid. 
 
In this paper hodograph transformation is employed for steady, plane, rotating, viscous, incompressible, constantly 
inclined two-phase magnetohydrodynamic (MHD) flows through porous media and partial differential equation of 
second order is obtained which is used to find the solution for vortex flow. 

 
2. BASIC EQUATIONS 
 
The basic equations of motion governing the steady flow of a dusty, incompressible, viscous fluid with infinite 
electrical conductivity through porous media in a rotating frame in the presence of magnetic field are given by [24] 
 
For Fluid Phase: 

 0⋅ =V∇ ,                                                          (Continuity)                                                                                         (1) 

( )[ ] ( )ρ 2 P μ KN( )⋅ × = − + × × + −V V + V H H U V∇ Ω ∇ ∇ 2 ηη
k

+ ∇ −V V , 

                                                                      (Linear Momentum)                                                                    (2) 
( )× × =V H 0∇  .                                            (Diffusion)                                                                                  (3) 

 
For Dust Phase:                                                              

 (N ) 0⋅ =U∇ ,                                              (Continuity)                                                                                         (4) 

[ ]m ( ) 2 K( )⋅ + × = −U U U V U∇ Ω ,       (Linear Momentum)                                                                           (5) 
0⋅ =H∇  ,                                                   (Solenoidal)                                                                                         (6)   
 

where V, U, H, Ω  P, ρ , η  , k  are fluid velocity vector, dust velocity vector, magnetic field vector, constant angular 
velocity vector, fluid pressure, fluid density, kinematic coefficient of viscosity, magnetic permeability and permeability 
of the porous medium respectively; m is the mass of each dust particle, N the number density of dust particles and 
K=6πa η   -Stoke’s resistance (drag coefficient) for the particles, a is spherical radius of dust particles. 
 
The situation for which the velocity of fluid and dust particles are everywhere parallel, is defined as [5]                                                                                            

N
α

=U V ,                                                                                                                                                         (7) 

where α is some scalar satisfying                                                                                 
α 0⋅ =V ∇ ,                                                                                                                                                        (8) 

which implies that  α is a constant on the fluid streamlines.  
 
Introducing vorticity function, current density function and Bernoulli function defined, respectively, by    

v u
x y
∂ ∂

ω = −
∂ ∂

,                                                                                                                                                   (9) 

2 1H HQ
x y

∂ ∂
= −

∂ ∂
 ,                                                                                                                                                        (10) 

B P′= +
21

2
ρ ×rΩ 21 ρV

2
+ ,                                                                                                                               (11) 

where 2 2 2V u v= + , P′  is the reduced pressure given by 21P P
2

′ = − ρ ×rΩ  and the last term being the 

centrifugal contribution of pressure. The system of equations (1)-(6) can be replaced by the following system:   
u v 0
x y
∂ ∂

+ =
∂ ∂

,                                                                                                                                                          (12) 
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2
Bη ρ v 2 v μQH K(α N)u

y x
∂ω ∂

− ω − ρΩ + − − = −
∂ ∂

ηu
k

−                                                                                   (13) 

1
B vη ρ u 2 u μQH K(α N)v

x y k
∂ω ∂ η

− ω − ρΩ + + − = +
∂ ∂

,                                                                   (14) 

2 1uH vH f− = , (arbitrary constant)                                                                                                             (15) 

mα α u u α αu v 2 v u u v
N N x y x N y N

    ∂ ∂ ∂ ∂   + − Ω + +       ∂ ∂ ∂ ∂       

αK 1 u
N

 = − 
 

,                             (16) 

mα α v v α αu v 2 u v u v
N N x y x N y N

    ∂ ∂ ∂ ∂   + + Ω + +       ∂ ∂ ∂ ∂       
 

αK 1 v
N

 = − 
 

,                              (17) 

0
y

H
x

H 21 =
∂
∂

+
∂
∂

.                                                                                                                                                         (18) 

 
The advantage of this system over the original system is that the order of partial differential equation is reduced from 
two to one.   
 
We now consider constantly inclined plane flows and let θ0 denote the constant non-zero angle between V and H. The 
vector and scalar product of V and H, using the diffusion equation (15), gives 

2 1 0uH vH  VHsin  f− = θ = ,                                                                                    

1 2 0 0 uH vH  VHcos  fcot− = θ = θ ,                                                                                                             (19)  

where     2
2

2
1 HHH +=    . 

 
Solving (19), we get                                             

  ( ) ( )1 22 2

f fH Cu v ,H Cv u
V V

= − = +  ,                                                                                                             (20) 

where 0C cot  = θ  is a known constant for a prescribed constantly inclined non-aligned flow. 
 
Using (20) in the system of equations (9)-(18), we have 

u v 0
x y
∂ ∂

+ =
∂ ∂

,                                                                                                                                                                 (21) 

η ρ v
y

∂ω
− ω

∂
2 v− ρΩ 2

fμQ
V

+ ( )Cv u+ − K(α N)u−
B
x
∂

= −
∂

ηu
k

−                                                     (22) 

η
x
∂ω

−
∂

ρ uω − 2 uρΩ 2

fμQ
V

+ ( )Cu v− + K(α N)v−
B
y

∂
=
∂

ηv
k

+ ,                                               (23) 

mα α u u α αu v 2 v u u v
N N x y x N y N

    ∂ ∂ ∂ ∂   + − Ω + +       ∂ ∂ ∂ ∂       
   

αK 1 u
N

 = − 
 

,                           (24) 

 

mα α v v α αu v 2 u v u v
N N x y x N y N

    ∂ ∂ ∂ ∂   + + Ω + +       ∂ ∂ ∂ ∂       
 

αK 1 v
N

 = − 
 

 ,                             (25) 

( )2 2 u vv u 2uv
y x

 ∂ ∂
− + + ∂ ∂ 

( )2 2 u vCv Cu 2uv 0
x y

 ∂ ∂
+ − + − = ∂ ∂ 

,                                                    (26) 

v u
x y
∂ ∂

− = ω
∂ ∂

 ,                                                                                                                                                               (27) 

2 2

Cv u Cu v Q
x V y V f
∂ + ∂ −   − =   ∂ ∂   

 .                                                                                                         (28) 
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Let the flow variables ( ) ( )u x,  y ,  v x,  y  be such that, in the flow region under consideration, the Jacobian                                                                   

(u, v)J
(x, y)
∂

=
∂

  satisfies 0 < |J| < ∞ .                                                                                     

 
In such a case, we consider x and y as function of u and v such that the following relations hold true:  

u yJ
x v
∂ ∂

=
∂ ∂

 ,   
u xJ
y v
∂ ∂

= −
∂ ∂

 , 

v yJ
x u
∂ ∂

= −
∂ ∂

  ,
v xJ
y u
∂ ∂

=
∂ ∂

 .                                                                                                                                       (29) 

 
Employing transformation equation (29) in (21) and (26), we get 

x y 0
u v
∂ ∂

+ =
∂ ∂

 ,                                                                                                                                                                (30) 

( )2 2 x yCu Cv 2uv
u v
∂ ∂ − − − ∂ ∂ 

( )2 2 x yu v 2Cuv 0
v u
∂ ∂ + − − + = ∂ ∂ 

.                                              (31) 

 
The equation of continuity implies the existence of stream function ( )ψ x, y so that      

v
x

∂ψ
= −

∂
 ,      u

y
∂ψ

=
∂

 .                                                                                                                                (32)  

 
Likewise, equation (30) implies the existence of a function ( )L u, v  called the Legendre transform of the stream 

function ( )ψ x, y   such that 

L y
u
∂

= −
∂

 ,     
L x
v
∂

=
∂

.                                                                                                                                  (33) 

 
Employing (33) in (31), we have 

( ) ( )
2 2

2 2 2 2
2

L Lv u 2Cuv 2Cu 2Cv 4uv
u u v
∂ ∂

− − + − −
∂ ∂ ∂

( )
2

2 2
2

Lu v 2Cuv 0
v
∂

+ − − =
∂

.                   (34)  

 
Now introducing the polar coordinate (V, θ) in the hodograph plane i.e. the ( )u,  v  plane through the relation : 

u  Vcos  ,    v  Vsin= θ = θ  , 
 
equation (34) gets transformed into 

2

2
L

V
∂

−
∂

2C
V

2L
V
∂
∂ ∂θ 2

1
V

−
2

2
L

θ
∂
∂

1 L
V V
∂

− +
∂ 2

2C L 0
θV
∂

=
∂

                                                                                (35) 

where θ is the inclination of vector field V . 
 
3. VORTEX FLOW 
 
A solution of (35) is given by  

 ( )2
2 1 1L B A co sV s VB in= + θ+ θ  , 

            ( )22
2 1 1B u A vBv u= + + +  ,                                                                                                               (36) 

where A1, B1 and B2 are arbitrary constants and B2≠0. In this case,  

2 1 2 1
L Lx 2B v B , y (2B u A )
v u
∂ ∂

= = + = − = − +
∂ ∂

,                                                                                  (37) 

and therefore the velocity field is given by 

   1 1

2 2

y A x Bu ,   v
2B 2B
+ −

= − =    .                                                                                                                     (38) 
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These relations represent a circulatory flow. 
 
From (20), we get 

( ) ( )[ ]
( ) ( )2

1
2

1

112
1 AyBx

AyCBxf2BH
++−

++−−
=  , 

 

and         
( ) ( )[ ]

( ) ( )2
1

2
1

112
2 AyBx

AyBxCf2BH
++−

+−−
=  .                                                                                                                   (39) 

The vorticity ω and current density Q  can be expressed as                                                    

2

1
B

ω =  , Q 0=  .                                                                                                                                           (40) 

 
From the integrability condition for B with the use of (13) and (14) and (38)-(40), we obtain  

( )1x B−
x
∂
∂

(N )−α ( )1y A+ +
y
∂
∂

(N )−α 2+ (N )−α
2η
kK

= −                                                          (41) 

Solving (41), the number density of dust particles N(x, y) is given by   

  1

1 1

CN
(x B )(y A )

=
− +

α+ η
kK

− ,                                                                                                                (42) 

where C1 is an arbitrary constant. From equation (8) and (38), we obtain 
 α = C2 [(x-B1)2+(y+A1)2] ,                                                                                                                                (43) 

where C2 is an arbitrary constant. 

Hence    ( ) ( )2 21
2 1 1

1 1

C ηN C x B y A
(x B ) (y A ) kK

 = + − + + − − + +
 .                                                            (44) 

 
Using (38) – (40) and (42) in (22) and (23) and solving, we get 

( ) ( ) ( )2 22 1 1
1 1 32

2 12

ρ 1 2B KC x BB x B y A ln C
2B y A4B

+ Ω − = − + + + +  +
   ,                                                    (45)  

where C3 is an arbitrary constant. The pressure P is given by 
( ) ( ) ( )2 22 1 1

1 1 32
2 2 1

ρ 1 4B KC x BP x B y A ln C
8B 2B y A
+ Ω − = − + + + +  +

    ,                                                (46) 

In this case the streamlines are given by ( ) ( )2 2
1 1x B y A  constant− + + = , which are concentric circles.  

 
Figure-1: Concentric circular streamlines taking A1=0, B1=0 

 
Summing up, we have: 
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Theorem 1: If  the dust particle is everywhere parallel to fluid velocity in the steady, plane, constantly inclined 
Magnetohydrodynamic  flow of an incompressible, viscous, two phase fluid through porous media in a rotating frame, 
then the streamlines are concentric circles and the dust particle number density is given by (44). Also the velocity, the 
magnetic field, the vorticity, the current density and the pressure are given by (38), (39), (40) and (46) respectively. 
 
In the absence of rotating reference frame i.e. =Ω 0  we recover the results of Manoj Kumar, Sayantan Sil and C. 

Thakur [18]. Also when porous media is absent i.e. the term 0
k
η
→  our result will tally with C. Thakur and R. B. 

Mishra [35]. 
 
4. CONCLUSION 
 
In this paper, the analytical solution of steady, plane, viscous, incompressible, constantly inclined two-phase 
Magnetohydrodynamic fluid through porous media in a rotating frame is obtained using hodograph transformation 
technique. The expressions for velocity profile, magnetic field, number density of dust particles, streamline and 
pressure distributions are found out. Streamline pattern is also plotted. The present analysis is more general and several 
results of various authors (as already mentioned in the text) can be recovered in the limiting cases. 
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