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ABSTRACT 
The thermoelastic response to surface temperature asymmetry and internal Heat Generation parameters with steady 
state temperature field in the context of uncoupled thermoelasticity studied over a composite spherical domain. The 
thermal stresses are computed analytically and presented numerically and graphically. The mathematical model for 
three layered hollow sphere of an Aluminum, Copper and Iron is prepared and observations are illustrated. 
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INTRODUCTION 
 
The temperature distribution and its effect on thermal stresses in the composite regions consisting of several layers have 
numerous applications in engineering and manufacturing fields. The increasing use of composite materials in 
engineering applications has resulted in considerable research activity in this area in recent years. The use of composite 
materials of multilayer type has been tremendous in many engineering fields such as aerospace, automobiles, chemical 
and energy, civil and infrastructure, sports and recreation, biomedical engineering and so on.  
 
An understanding of thermally induced stresses in multilayer isotropic bodies is essential for a comprehensive study of 
their response due to an exposure to a temperature field, which may in turn occur in service or during the 
manufacturing stages. Numerical methods are a common method for such problems; however, analytic approaches can 
provide greater insight into the physical processes and can be used to validate numerical methods. 
 
The Laplace transform technique is used by Carslaw and Jaeger [1], they discussed the infinite composite of two 
different medium and obtained the temperature distribution. They solved the transient boundary value problem of heat 
conduction in solids consisting of many parallel layers. In practice if the number of layers is more than two, the inverse 
of Laplace transform becomes quite difficult. The Adjoin-solution technique which has been introduced by Goodman 
[2] provides a method of solution to large class of heat conduction problems in composite slabs from the solution but 
one adjoin problem. The primary disadvantage of the Adjoin-solution method is that only the solutions of the 
boundaries (i.e. interface) of the layers can be determined.  
 
Recently Tittle [3] introduced a technique for orthogonal expansion of functions over a one dimensional multilayer 
region. The method essentially is an extension of Sturm-Liouville problem to the case of one dimensional multilayer 
region and it has the advantage on other analytic methods is that its application to the solution of the boundary value 
problem of heat conduction is relatively simple. Bulavin and Kashcheev [4] used the method of separation of variables 
and of orthogonal expansion of functions over a one dimensional multilayer region to solve the transient heat 
conduction problem involving distributed volume heat sources in a multilayer region. 
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Recently, Vollbrech [6]discussed the stress in cylindrical and spherical walls subjected to internal pressure stationary 
heat flow. Kandil [7] has studied the effect of steady state temperature and pressure gradient on compound cylinder 
under high pressure and temperature. Ghosn and Sabbaghian [8] investigated a one dimensional axisymmetric quasi-
static coupled thermoelasticity problem. The solution technique uses Laplace transform. The inversion to the real 
domain is obtained by means of Cauchy’s theorem of residues. Sherif and Anwar [10] discussed the problem of 
infinitely long elastic circular cylinder whose inner and outer surfaces are subjected to known temperature and are 
traction free. They have neglected both the inertia term and relaxation effects. Chen and Yang [9] discussed the thermal 
response of one dimensional quasi-static coupled thermoelastic problem of an infinite long cylinder composed of two 
different materials. They applied the Laplace transform with respect to time and used the Fourier series and matrix 
operation to obtain the solution. Jane and Lee [11] considered the solution by using the Laplace transform and the finite 
difference method. The cylinder was composed of multilayer of different materials. They obtained solution for the 
temperature and thermal stress distributions in a transient state. Zong-Yi Lee [13] studied the one dimensional quasi-
static coupled thermoelastic problem of multilayered sphere with time dependent boundary conditions is considered. 
The medium is without body forces and heat generation. Laplace transform and finite difference methods are used to 
obtain the solution of wide range of transient thermal stresses. 
 
The observations and study of all above cited papers and other referred literature on multilayer composites with 
different geometries reveals that results appearing in the different articles are with complexities such as space and time 
dependent properties. In most of the articles authors have discussed the heat conduction. Therefore it is to clarify, that 
how internal heat generation and surface temperature asymmetry affect the temperature and thermal stresses. In view of 
these findings, there is need to quantify the conclusions regarding the effect of internal heat generation and temperature 
asymmetry in fundamental problems where the layers of composites are homogeneous and isotropic. Recently Pawar  
et al. [16] discussed the problem where the temperature and thermal stresses are discussed under surface temperature 
asymmetry and heat generation and obtained analytic solution.  
 
In this study, an exact analytic solution of steady temperature distribution and stress distribution function for one 
dimensional three layered sphere subjected to asymmetric surface temperature and internal heat generation is presented. 
The solutions are obtained and the effects on thermal stresses due to heat generation and surface temperature 
asymmetryparameter in the sphere are analyzed and results are illustrated graphically. This is a novel work to study the 
thermal stresses under changing source in each layer and surface temperature asymmetry parameter. The analysis is 
made on the basis of uncoupled thermoelasticity. On determining the temperature distribution function from heat 
conduction equation, it is used as a known function and introduced in thermoelastic equations to obtain the stress 
function. The Results presented here could not be found in the open literature despite of extensive search. 
 
FORMULATION OF THE PROBLEM 
 
A three layered hollow sphere contains an inner region 10 rrar ≤≤= , middle region 21 rrr ≤≤  and an outer region 

brrr =≤≤ 32 which are in perfect contact and uniform volumetric heat with the rate ( )3/ mWq is generated for

0>t . The inner and outer surfaces are maintained at constant temperatures ( )aT  and ( )bT  respectively. The layers of 
the multilayer sphere are homogeneous and isotropic, ( ) )3,2,1(, =ik i are the thermal conductivities of material of 
these layers. 
 
The geometry of the problem for steady state heat conduction in three layered hollow sphere has been considered as 
following figure. 
 

 
Figure-1: The heat conduction in three layered sphere 
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The inner and outer radii of multilayer sphere and the radius at the interface between generic first and third phases have 
been denoted by 30 , rr and ir  respectively. The mechanical and thermal properties of each layer have been assumed to 

be homogeneous and isotropic and are denoted with apex ( )i . 
 
HEAT CONDUCTION PROBLEM 
 
Assume one dimensional steady state radial temperature field. The heat conduction equation in the thi  layer of the 
spherical composite is given as [5], 
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subjected to the following boundary conditions, 
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NONDIMENSIONALIZATION 
 
For convenience, we recast the above system of governing equations and auxiliary conditions into a dimensionless 
form. Redefining the variables as follows,  

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )abaibai TTTT /,,,, =ϑϑϑ  

( ) ( ) 03210321,0 /,,,,,,, rrrrrrRRRRR =  
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K ii =                (8) 

Introducing these new variables into the governing and auxiliary equations (1-7) to obtain the problem in more concise 
form as 

( )
( ) 01

2

2

=+






 i
i

Q
dR
Rd

R
ϑ

               (9) 

where the internal heat generation in dimensionless form is written as 
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The boundary conditions are expressed as 
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THERMOELASTICITY PROBLEM 
 
In this section, thermal stress for steady state Temperature field is analyzed on the basis of uncoupled Thermoelasticity. 
For one dimensional problem in the spherical coordinate system, which means spherically symmetric problem, the 
displacement technique is extensively used. The properties in spherical coordinates φ  and θ  direction are identical and 

u denotes the displacement in the radial direction, the strain displacement relations for the thi layer as [12,295] 

( )
( )

dr
du i

i
rr =ε , ( )

( )

r
u i

i =θθε                (14) 

 
The corresponding thermoelastic stress strain relation or Hooke’s relations are 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 (3 2 )i i i i i i i i
rr rre Rσ λ µ ε λ µ α ϑ= + − +                (15) 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )Re iiiiiiiii θαµλεµλσσ θθφφθθ )23(2 +−+==                (16) 

where ( )i
rrσ , ( )i

θθσ  and ( )i
φφσ  are the stresses in the radial and tangential direction, ( )i

rrε  and ( )i
θθε  are strains in radial and 

tangential direction in the thi layer of the composite hollow sphere. ( ) ( )Riϑ  is the temperature change obtained from 

the heat conduction equation (9), ( )ia is the coefficient of thermal expansion, ( )ie is the strain dilation and ( )iλ and ( )iµ
are the lame constants related to the modulus of elasticity ( )iE and the Poisson’s ratio ( )iν as,  
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The equilibrium equation in radial direction excluding the body forces and inertia term is, 
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Assuming the traction free surface is as 

( ) ( ) 00 =rrrσ  , at arr == 0  and brr == 3                (19) 
 
Then stress components for thi layer are obtains as [12] 
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Assuming the interface conditions as follows 
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Assuming the interface conditions as 
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Using the dimensionless coordinates (8) one can obtain following relations for stress function in following 
dimensionless form as, 
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Boundary conditions are expressed as, 
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The equations (9-13) and (23-26) constitutes the Mathematical formulation of the problem in dimensionless variables 
 
Solution: 
The heat conduction equation (9) is Cauchy’s homogeneous linear equation expressed as 
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The solution of this equation is obtained by integral method using boundary conditions and expressed with interface 
conditions as 
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with interface conditions (12) and (13) 
 
DETERMINATION OF THERMAL STRESS 
 
Using equations (23), (24) and (28), the expressions for radial and tangential stresses are obtained as 
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with interface conditions (26) 
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VALIDATION 
 
If, in the governing expression or solutions obtained for temperature distribution, radial and tangential stressdistribution 
functions, one substitutes Q  for ( )iQ  and excludes interface conditions, one gets the expression for temperature and 
stresses for homogenous and isotropic hollow sphere and the results are validated with results obtained by Pawar et al. 
[16] or the results obtained will reduce to special case of isotropic and homogeneous material hollow sphere. This 
article deals with the thermoelastic response to heat generation and temperature asymmetry parameter in three layered 
composite hollow sphere. No one has discussed such problem for a multilayered composite spherical domain. Hence, 
the correctness and accuracy is verified by above validation. 
 
NUMERICAL AND GRAPHICAL DISCUSSION 
 
A three layer composite hollow sphere was considered for the numerical calculation purpose. Its schematic picture is 
demonstrated in fig. 1.The radius of the hollow sphere varies from mtom 30.002.0 .The material layers and its 
thermal properties are given in following table. 
 

Layer  1 2 3 
Material properties Aluminum Copper Iron 
( ) )(/ tyconductiviThermalmKWki  204.2 386 72.7 

( )RatiosPoissoni 'ν  0.35 0.33 0.30 

( )GPaEi  70 117 100 

( )Kai /1 (coeff. Thermal expansion) 2.3x10-6 16.5x10-6 6.7x10-6 

( )mri  0.02 to 0.10 0.10 to 0.20 0.20 to 0.3 

Table-1 
 
In dimensionless variables   radius R varies in layers as (8) 
 

iR  (1 to 15) 1 to 5 5 to 10 10 to 15 

Table-2 
 

Dimensionless source parameter ( )iQ varies in layers as (10) 
 

g  ( )iQ  ( )2Q  ( )iQ  
500 3 2 7 

1000 5 3 14 
1500 7 4 21 

Table-3 
 

The numerical calculations and graphs are obtained by using the MATLAB software. One dimensional steady state 
temperature and thermal stress variation with radius is discussed under this analysis. The main approach of the analysis 
is to investigate the variation in above quantities with internal heat generation and surface temperature asymmetry 
parameter. The uniform volumetricsource inside the sphere changes due to varied conductivity of layer material and 
hence heat generation parameter. Thus it is very interesting to observe the effect of these parameters on thermal stresses 
inside the body. 
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Figure-2: Radial stress variation for different values of heat generation ( ( ) 1>bϑ ) 

 

 
Figure-3: Tangential stress variation for different values of heat generation ( ( ) 1>bϑ ) 

 

 
Figure-4: Radial stress variation for surface temperature asymmetry ( ( ) 1<bϑ ) 
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Figure-5: Tangential stress variation for surface temperature asymmetry ( ( ) 1<bϑ ) 

 

 
Figure-6: Radial stress variation for different surface temperature ( ( ) 1>bϑ ) 

 

 
Figure-7: Tangential stress variation for different surface temperature ( ( ) 1>bϑ ) 
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EFFECT OF INTERNAL HEAT GENERATION 
 
Fig. 2shows the radial stress distribution in the layers for different values of heat generation parameter ( )iQ  (

1000,500=g ) and ( ) 100=bϑ  (>1). Due to induced conditions, the radial stresses at the inner and outer surfaces 

of the hollow sphere are zero. As g increases, ( )iQ  have different values in the layers, as shown in the table 3. In the 
inner layer, there is a tension which increases with increase in g , in middle region the tension gradually changes to 
compression, while in outer layer stress changes completely to compression and it increases with heat generation. Thus 
the internal heat generation parameter takes different values with respect to conductivity of material and accordingly 
significantly affects the nature of radial stress in that layer. It is also found that there is a radial position where radial 
stress switches from tension to compression. 
 
The effect of heat generation in multilayer sphere on the tangential stress distribution in fig. 3 with ( ) 100bϑ = and

1000,500=g , the surface of inner layer experiences tangential tension and this increases with increase in the value 
of heat generation parameter while outer surface of experience tangential compression, while in the middle layer of 
copper, tangential stress changes from tensile to compression along the radial direction and tangential stress values 
coincides on outer surface. 
 
EFFECT OF TEMPERATURE ASYMMETRY 
 
The effect of temperature asymmetry on the radial stresses in the layered hollow sphere is illustrated in Fig. 4 for 

( ) )1(99.0,01.0 <=bϑ , 1000=g . The value ( ) 1=bϑ corresponds to zero temperature gradient inside the sphere 
and consequently no thermally induced stresses. The temperature at the outer surface is lower than that of lower 
surface. The lower the value of ( )bϑ , greater the temperature asymmetry and larger the temperature gradient. This fact 
is reflected by the stress curves in Fig. 4, where stresses occur at these values. The maximum part of the hollow sphere 
is under compression in all layers. It is observed that the inner layer is under tension and then in middle and outer 
layers the radial stresses becomes more compressive. As expected, on inner and outer surface the radial stress are null. 
As ( )bϑ  increases, the stresses tension as well as compression decreases.  
 
Fig. 5 depicts the effect of temperature asymmetry on tangential stress distribution. The inner layer experiences tension, 
middle region experiences tension and compression and outer layer experiences compression. It gives greater variation 
and curves touches at some point in the sphere.  
 
Now the analysis is presented when the temperature of the outer surface is higher than inner surface, ( ) 1bϑ > . Fig. 6 
shows the radial stress distribution ( ) 50,20=bϑ with 1000g = . This fig is exactly same as that of Fig. 4 but values 
are greater but nature is same and graphs do not touch anywhere in any layer. The tangential stress distribution is 
shown in Fig 7. 
 
CONCLUSION 
 
The exact analytical solutions have been developed for thermal stresses in a three layered hollow sphere experiencing 
internal heat generation and subjected to asymmetric temperature on its surface. The layers were homogeneous and 
isotropic and solutions with interface conditions are analyzed by Mathematical software MATLAB. The results were 
discussed numerically and graphically layer wise and observations are presented. The radial and tangential stress 
components have different nature in different layers, tensile or compressive depending on the level of heat generation 
and the degree of temperature asymmetry. There are radial locations are obtained where stress switches from tensile to 
compression that they are neutral radii. 
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