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ABSTRACT 

The object of the present paper is to study anti-invariant submanifolds M  of (є) - Sasakian manifold 𝑀. It is shown 
that if M is totally umbilical then M is totally geodesic. Also results have been obtained connecting   totally geodesicty 
and   anti-invariance of M. Also  we  find  the necessary  and  sufficient condition for  anti-invariant  submanifolds of 
(є)-Sasakian  manifold  to be  T-invariant and anti-invariant and condition  for  integrability of the  distribution D. 
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INTRODUCTION 
 
The index of a metric is very important in differential geometry as it gives rise to vector fields   such as space-like, time 
like, and light-like fields. K.L.Duggal and A.Bejancu [9], introduced and studied (є)-Sasakian  manifolds  with the help 
of  these  vector fields  and  further such  manifolds were  investigated  by  Xufeng  and  Xiaoli  [2], and others ([1], [3], 
[4]) and study of light like  submanifolds is carried out by ([6], [17], [25]) because Sasakian manifolds with indefinite 
metrics play crucial role in Physics. The research work on the geometry of invariant submanifols of  contact and 
complex manifolds is carried out by M.Kon [29], in 1973,  C.S.Bagewadi [27],  in 1982, K.Yano and  M.Kon  [28], in 
1984 and other authors ([7],[8][10][20]). Also the study of geometry of anti-invariant submanifolds is carried out by 
([11], [13], [14], [15], [16], [21], [22], [23], [24], [26]) invarious contact manifolds. Motivated by the studies of the 
above authors, we study antiinvariant submanifolds of (є)-Sasakian manifold. The paper is organised as follows: the 
section 1 consists of preliminaries of (є)-Sasakian manifold, and section 2 contains the results as stated in abstract. 
 
1. PRELIMINARIES 
 
A (2n+1)-dimensional differentiable manifold 𝑀 end owed with an almost contact structure (φ, ξ, η), where φ is a 
tensor field of type (1, 1), η is a 1-form and ξ is a vector field on 𝑀 Satisfying 

𝜙2𝑋 = −𝑋 + 𝜂(𝑋)𝜉,   𝜂(𝜉) = 1,                                                                                                         (1.1) 
𝜂(𝜑𝑋) = 0,   𝜑(𝜉)  =  0 

is called an almost contact manifold.  If there exists a semi-Riemannian metric g satisfying, 
𝑔(𝜙𝑋, 𝜙𝑌) =  𝑔(𝑋, 𝑌) −  є𝜂(𝑋)𝜂(𝑌)                                                                                               (1.2) 

then (φ, ξ, η, g)  is  called  an (є)-almost contact metric  structure and M  is known  as (є)- almost contact manifold for  
all X,Y ∈ T(M)  where   є= ±1 ,  For an  (є)-almost contact manifold.  
 
We also have 

𝜂(𝑋) = є𝑔(𝑋, 𝜉) 
for all X∈TM, є=g(ξ, ξ). Hence ξ is never a light like vector field on  M and we have two classes of (є)-Sasakian 
manifolds. when є=-1 and the index of g is odd then M is time like Sasakian manifold and M is a space like Sasakian 
manifold when є=-1 and the index of g is even. For є= 1 and index of g is zero we obtain usual Sasakian manifold and 
for є = 1 and index of g is one then M is a Lorentz - Sasakian manifold. If dη(X, Y) = g(φX, Y)  then M is said to have 
(є)-contact metric structure (φ, η, ξ, g). If moreover this structure is normal then the (є)-contact metric structure is 
called (є)-Sasakian structure and the manifold endowed with this structure is called an (є)- Sasakian manifold. Also the 
(є)-contact metric structure is an (є) -Sasakian structure if and only if 

Corresponding Author: Venkatesha.S2*, 1Department of Mathematics,    
Kuvempu University, Shankaraghatta - 577 451, Shimoga, Karnataka, INDIA. 

http://www.ijma.info/�


C. S. Bagewadi and Venkatesha.S* / Anti-Invariant Submanifolds of (є) –Sasakian Manifold / IJMA- 9(3), March-2018. 

© 2018, IJMA. All Rights Reserved                                                                                                                                                                       149  

 
(𝛻𝑋 𝜑)𝑌 = 𝑔(𝑋, 𝑌)𝜉 − є𝜂(𝑌)𝑋                                                                                                         (1.3) 
𝛻𝑋𝜉 = − є𝜑𝑋                                                                                                                                   (1.4) 

 
Let M be a submanifold of 𝑀. Let  𝑇𝑥(𝑀)  and  𝑇⊥

𝑥(𝑀) denote the tangent and normal space of M at x∈M     
respectively. The Gauss and Weingarten formulas are given by 

𝛻𝑋𝑌 =  ∇𝑋𝑌 + 𝜎(𝑋, 𝑌)                                                                                                                        (1.5) 
𝛻𝑋𝑁 = − A𝑁  𝑋 +  𝛻⊥

𝑋𝑁                                                                                                                   (1.6) 
for  any  vector  fields  X, Y  tangent to M and any vector field   N normal to  M, where  of  𝛻  and  ∇   are the operator 
of covariant differentiation on  and of 𝑀 𝑎𝑛𝑑 M, is 𝛻⊥  the linear connection induced in the normal space 𝑇⊥

𝑥(𝑀) Both 
A𝑁  and σ  are called the Shape operator and the second fundamental form and they satisfy 

𝑔(𝜎(𝑋, 𝑌), 𝑁) =  𝑔( A𝑁𝑋, 𝑌)                                                                                                               (1.7) 
 
If the second fundamental form σ of M is of the form σ(X, Y) = g(X, Y)µ,  then M is called totally umbilical.  where µ 
is the mean curvature. If the second fundamental form vanishes identically then M is said to be totally geodesic.           
If µ = 0, then M is said to be minimal.  
 
A submanifold M of  a (є)-Sasakian manifold 𝑀  is said to be invariant if the structure vector field ξ of  𝑀  is tangent to 
M  and  φ( 𝑇𝑥(𝑀) ⊂ 𝑇𝑥(𝑀), where  𝑇𝑥(𝑀)   is the tangent space for all  x ∈ M and  If  φ(𝑇𝑥(𝑀) ⊂ 𝑇⊥

𝑥(𝑀)  where 
𝑇⊥

𝑥(𝑀)  is  the normal space  at  x ∈ M then M is said to be anti-invariant in 𝑀. 
 
Now we define  (є) -Sasakian manifold with constant φ-holomorphic sectional curvature; A plane section π on 𝑀 is 
called an invariant φ-section if it is determined by the plane formed by an orthonormal pair X and φX spanning the 
section. The sectional curvature of the plane section φ is called the φ-sectional curvature. If   𝑀   is an (є)-Sasakian 
manifold of constant φ-sectional curvature k, then its curvature tensor has the form 

𝑅 (X Y, Z) = (K+3Є)/4 {g(Y,Z)X-g(X,Z)Y+( K-Є)/4{ղ(X)ղ(Z) Y-ղ(Y)ղ(Z)X                              (1.8) 
                       +g(X, Z)ղ(Y)ξ}-g(Y, Z)ղ(X)+g(ϕY, Z)ϕX-g(ϕX, Z)ϕY-2g(ϕX, Y)ϕZ)}                                                                                                                

 
For any vector fields X, Y, Z on  𝑀 
 
Define a Tensor field T on 𝑀  by [12] setting 

T(X,Y,Z)= 𝑅 (X Y,Z) + g(φY,Z)φX - g(φX,Z)φY - 2g(φX,Y )φZ                                                   (1.9) 
for any vector fields  X, Y, Z  on   𝑀 
 
A sub manifold M is said to  𝑅 –invariant and T-invariant if and only if 

 𝑅(𝑋, 𝑌)𝑇𝑥(𝑀)  ⊂  𝑇𝑥(𝑀) and (T(X, Y)) 𝑇𝑥(𝑀)  ⊂  𝑇𝑥(𝑀)  respectively. 
 
2. SOME THEOREMS 
 
Theorem 2.1: Let M be a submanifold tangent to the structure vector field  ξ of an (є)-Sasakian manifold 𝑀 is totally 
umbilical then M is totally geodesic. 
 
Proof: Since ξ is tangent to M, we have from Gauss formu 𝑙𝑎        

  𝛻𝑋𝜉 =   ∇𝑋𝜉 + 𝜎(𝑋, 𝜉)                     
                                                             
Using (1.4) we have 

− Є𝜑𝑋 =  ∇𝑋𝜉 +  𝜎(𝑋, 𝜉) 
 
Equating tangential and normal components 

(є(𝜑𝑋)𝑇 =  − ∇𝑋𝜉,     (є(𝜑𝑋)⊥ =  𝜎(𝑋, 𝜉) 
 
Putting X = ξ in second equation then by (1.1) we have  𝜎(𝜉, 𝜉) = 0.  Let us assume that M is totally umbilical then   
𝜎(𝑋, 𝑌) = 𝑔(𝑋, 𝑌 )µ  for all X, Y ∈ TM where µ is the mean curvature vector, Putting in 𝑋 =  𝑌 =  𝜉   we get 

𝜎(𝜉, 𝜉) = 𝑔(𝜉, 𝜉)µ 
 
This shows that  µ = 0,   𝐻ence 𝜎(𝑋, 𝑌) = 𝑔(𝑋, 𝑌)µ  𝑖mplies 𝜎(𝑋, 𝑌) = 0. 
 
The second fundamental form σ = 0 thus M is totally geodesic. 
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Remark 2.1:  If M is totally geodesic then  (є(𝜑𝑋)⊥ = σ(X, ξ) = 0,  i.e  Є2(φX)⊥ = 0 
 
 i.e   (φX)⊥ = 0,   φX  is tangent to M and hence M is invariant submanifold of  (Є)-Sasakian manifold. Therefore M 
will also be (Є)-Sasakian manifold. 
 
Theorem 2.2: Let M be a submanifold of a (Є)-Sasakian manifold  𝑀 tangent to the structure vector field ξ of  𝑀  𝑡ℎen  
ξ  is parallel  with respect to the induced connection on M if and only if M is anti-invariant submanifold in  𝑀. 
 
Proof: Suppose the structure vector field  ξ is tangent to M. By Gauss formula 

−Є(𝜑𝑋) =  𝛻𝑋𝜉 =   ∇𝑋𝜉 + 𝜎(𝑋, 𝜉)                                                                                                     (2.1)       
 
Next suppose ξ is parallel w.r.t induced connection on M, then we have  ∇𝑋𝜉 = 0  from equation (2.1) we have    

− Є𝜑𝑋 =  𝜎(𝑋, 𝜉)    i.e    φX = −Є σ (X, ξ) 
 
Hence                     ЄφX is normal to M, φX ∈  𝑇⊥

𝑥(𝑀)  Thus M is anti-invariant. 
 
Conversely: suppose M is anti-invariant, then by dentition of anti-invariant if X ∈ 𝑇𝑥(𝑀)  Then φX ∈ 𝑇⊥

𝑥(𝑀) so       
φX = σ(X, ξ) for conviennce we choose − Є(φX) = σ(X, ξ) 
 
Hence from (2.1), We have   ∇𝑋𝜉 = 0 
This shows that ξ is parallel w.r.to the induced connection on M. 
Hence the theorem. 
 
Theorem 2.3: Let M be a sub manifold of (Є)-Sasakian manifold  𝑀  If ξ is normal to M then M is totally geodesic if 
and only if M is anti-invariant submanifold. 
 
Proof: Suppose ξ is normal to M then Weingarten formula implies           

𝛻𝑋𝜉 =  − A𝑁 𝜉 +  𝛻⊥
𝑋𝜉 

 
Using (1.4) and (2.2) we have 

g(−ЄφX, Y) = g( 𝛻𝑋𝜉, Y) =g(−A𝜉𝑋, 𝑌) + 𝑔(𝛻⊥
𝑋𝜉, 𝑌) = −g(A𝜉𝑋, Y) 

for any X and Y tangent on M, that is, 
𝑔(𝜑𝑋, 𝑌) =  𝑔�A𝜉𝑋, 𝑌�                                                                                                                     (2.3) 

  
Interchange X and Y in the above and adding and by virtue of (1.2) we have 

 𝑔(𝐴𝜉𝑋, 𝑌) + 𝑔(𝐴𝜉𝑌, 𝑋) =  0 
𝑎𝑛𝑑                         𝑔(𝜎(𝑋, 𝑌), 𝜉) = 𝑔(𝐴𝜉𝑋, 𝑌) 
and                       A𝜉𝑋  𝑖s symmetric  we must have 

𝑔(𝐴𝜉𝑋, 𝑌) =  0 
 
If   M is totally geodesic, then σ(X, Y) = 0, i.e   A𝜉𝑋 =0, then by (1.4) - Є φX = 𝛻⊥

𝑋𝜉                 
Hence M is anti-invariant 
 
Conversely: suppose M is anti-invariant then Є φX ∈ 𝑇⊥

𝑥(𝑀) then from (2.2) we get 
−𝑔�𝐴𝜉𝑋, 𝑌 , 𝑌 � = 0      i.e    by (1.7), 𝑔(𝜎(𝑋, 𝑌 ), 𝜉)  = 0   

i.e σ(X,Y ) = 0 
 
Hence M is totally geodesic. 
 
We have the following known result; 
 
Proposition 2.1: [11] Let M be a submanifold tangent to the structure vector field ξ of a normal almost para contact 
metric manifold with constant c(c ≠ 3) Then M is T-invariant if and only if M is invariant or anti-invariant. 
 
On the basis of the above we can prove the following Theorem. 
 
Theorem 2.4: Let M be a submanifold tangent to ξ the structure vector field of (Є)-Sasakian manifold 𝑀 with constant 
k (k ≠ 3)  then M is T-invariant if and only if M is invariant or anti-invariant. 
 
Proof: Easily follows from the Proposition 2.1 
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Theorem 2.5: Let M be an anti-invariant submanifold tangent to ξ the structure vector field of (Є)-Sasakian manifold   
𝑀 with constant k. If  A𝑁𝑋 = 0  for any N ∈ 𝑇⊥

𝑥(𝑀), then φ( 𝑇𝑥(𝑀))  is parallel w .r. t the normal connection. 
 
Proof: To show that φ( 𝑇𝑥(𝑀)) is parallel w.r.t to the normal connection, 𝛻⊥  we have to show that for every local 
section φY ∈ φ( 𝑇𝑥(𝑀)  is also a local section in  φ( 𝑇𝑥(𝑀).   
 
𝑈𝑠𝑖𝑛𝑔  Gauss and Weingarten formula                                                 

𝛻⊥
𝑋𝜙𝑌 = 𝛻𝑋𝜙𝑌 +  A𝜙𝑌   𝑋 

𝛻⊥
𝑋𝜙𝑌 =  𝛻𝑋𝜙𝑌 + 𝜙�𝛻𝑋𝑌� +  A𝜙𝑌   𝑋 

             = 𝛻𝑋𝜙𝑌 + 𝑔(𝑋, 𝑌)𝜉 − Є�(𝑌)𝑋 + A𝜙𝑌  𝑋 
By virtue (1.3) and   (1.5). 
 
Since  A𝑁𝑋 = 0  for any N ∈ 𝑇⊥

𝑥(𝑀)  we have 
g (  𝛻⊥

𝑋𝜙𝑌 ,N) = g(X,Y)g(ξ,N)− Єη(Y)g(X,N) + g(φ ∇𝑋𝑌, 𝑁) + g(σ(X,Y),N) +g(A𝜙𝑌  𝑋, 𝑁) 
  = −𝑔(∇𝑋𝑌, 𝜙𝑁) − 𝑔(σ(X,Y ),ΦN)+ g(A𝜙𝑌  𝑋, 𝑁) 
  = −𝑔(∇𝑋𝑌, 𝜙𝑁) − g(A𝜙𝑁  𝑋, 𝑌) +g(A𝜙𝑌   𝑋, 𝑁) 

 
Since, φN is also in 𝑇⊥

𝑥(𝑀),  R.H.S of the above equation is zero 
 
𝐻𝑒𝑛𝑐𝑒  𝑔 ( 𝛻⊥

𝑋𝜙𝑌 , 𝑁) = 0              
 
Hence the result. 
 
If D denotes the orthogonal subspace of T 𝑀  to ξ then we can  𝑤𝑟𝑖𝑡𝑒  𝑇 𝑀  = 𝐷 ⊕ {𝜉}. 
 
𝑊𝑒 Prove the following Theorem. 
 
Theorem 2.6: Let M be a submanifold of an (Є)-Sasakian manifold 𝑀 then M is anti-invariant if and only if D is     
integrable. 
 
Proof: Let X, Y ∈ D  then X,Y ∈  𝑻 𝑴 

g([X,Y ],ξ) = g(𝛻𝑋𝑌 − 𝛻𝑌𝑋, 𝜉) 
                  = g( 𝛻𝑋𝑌, 𝜉)−g( 𝛻𝑌𝑋, 𝜉) = 𝑋𝑔(𝑌, 𝜉) − 𝑔(𝑌, 𝛻𝑋𝜉) − 𝑌 𝑔(𝑋, 𝜉)  +  𝑔(𝑋, 𝛻𝑌 𝜉) 

 
Using (1.4) we have 

𝑔([𝑋, 𝑌 ], 𝜉) = −𝑔(𝑌, − Є𝜑𝑋) + 𝑔(𝑋, − Є𝜑𝑋) 
 = Є[𝑔(𝑌, 𝜑𝑋) − 𝑔(𝑋, 𝜑𝑌 )] 

 
i.𝑒 𝑔([𝑋, 𝑌 ], 𝜉) = 2𝑔 Є (𝜑𝑋, 𝑌 ) 𝑇ℎ𝑢𝑠 [𝑋, 𝑌] ∈ 𝐷 if and only if  Φx  is normal to Y 
 
i.𝑒  [𝑋, 𝑌] ∈ 𝐷 if and only  𝑖𝑓 𝜑𝑋 ∈ 𝑇⊥

𝑥(𝑀)  𝑖. 𝑒 [𝑋, 𝑌] ∈ 𝐷  if and only if M  is anti-invariant 
 
i.e  D is integrable  if and only if  M is anti-invariant. 
 
Hence the theorem. 
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