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ABSTRACT 

In this paper, a method to construct sheaf of Ω-algebras via compatible tolerance relations is presented. A necessary 
and sufficient condition for the existence of sheaf of Ω-algebras via tolerances is also observed. Further, using the 
method a sheaf is constructed over a bounded distributive lattice 𝐿 such that  𝐿 is isomorphic with the collection of all 
global sections. 
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I. INTRODUCTION 
  
The theory of sheaves dates back to 1950’s when Jean Leray first introduced the concepts. Later Grothendieck [10] 
gave a category theoretic approach to sheaves. Subsequently the sheaf concepts are developed by several 
mathematicians in different fields like Complex analysis and Partial Differential Equations. Recently applications of 
sheaf theory are also reported in the domain of Philosophy. Grant Malcolm [9] applied sheaves concepts in theoretical 
computer science. However, the Algebraic, Topological approach is developed by the works of researchers like Comer 
[22], Keimel [16], Hofmann [15], Swamy [23]. 

 
Swamy [23] and Wolf [1] independently developed a construction mechanism for sheaves of Universal algebras based 
on Chinese reminder theorem. The construction of global sheaves of algebras over Boolean spaces is done via 
congruences. The elements of the stalks are the congruence classes in the sheaves of algebras as per the construction 
given by Swamy [23], which in turn are generated from equivalence classes. However, in real life on a collection of 
objects establishing equivalence relations restricts the information and hence there is a need to relax them to tolerance 
relations as they inherits a great amount of information of the objects as well as easier to establish in several ways. 

 
However, the tolerances are not that friendly to establish the algebraic structures when compared with equivalences. 
The algebraic theory of tolerances and compatible tolerances were studied by Chajda [11], Pogonowski [13] and 
Zelinka [5]. Recently the construction of sheaves of sets via tolerance relations is studied by M.P.K.Kishore [19] et al., 
in which a construction mechanism based on tolerances is presented on the lines of construction given by Swamy [23] 
and established linkages with graphs. 

 
In the present work, the construction of sheaves of Ω-algebras over compatible tolerances is studied and established a 
necessary and sufficient conditions for existence of global sheaves of algebras over compatible tolerances. The 
construction is applied on a Distributive lattice in which tolerances are constructed through Prime ideals. 
 
2. PRELIMINARIES 
 
To make the paper almost self-contained we recall some basic definitions that will be useful for out presentation. We 
start with the following. 
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Definition 2.1: Lattice: An algebraic structure (L, ∨, ∧), consisting of a set L and two binary operations ∨ and ∧ on L is 
a lattice if the following axiomatic identities hold for all elements a, b, c of L. 

(i) Commutative laws: 𝑎 ∨  𝑏 =  𝑏 ∨  𝑎 , 𝑎 ∧  𝑏 =  𝑏 ∧  𝑎 
(ii) Associative laws: 𝑎 ∨  �𝑏 ∨ c� = �𝑎 ∨ b� ∨ c , 𝑎 ∧  �𝑏 ∧ c� = (𝑎 ∧ b) ∧ c 
(iii) Absorption laws:𝑎 ∨  �a ∧  𝑏� = 𝑎, 𝑎 ∧ �𝑎 ∨ b� = a 
(iv) Idempotent laws: 𝑎 ∨  𝑎 =  𝑎 , 𝑎 ∧  𝑎 = 𝑎 

 
Definition 2.2: Bounded lattice: A bounded lattice is an algebraic structure of the form (L, ∨, ∧, 0, 1) such that           
(L, ∨, ∧) is a lattice, 0 (the least element) is the identity element for the join operation ∨, and 1 (the greatest) is the 
identity element for the meet operation ∧. 
 
Identity laws: a ∨ 0 = 0 ∨ a = a, a ∧ 1 = 1 ∧ a = a. 
 
Definition 2.3: Distributive lattice: A lattice L is distributive if for all elements a, b, c of L. 

i) a ∨(b ∧ c) = (a ∨ b) ∧ (a ∨ c). 
ii) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c). 

 
Definition 2.4: Tolerance relation: A tolerance relation is a reflexive and symmetric relation on a set. 
 
Definition 2.5: Compatible tolerance: Let (𝐴, Ω)  be an algebra. Let 𝜂  be a tolerance on 𝐴 . Then  𝜂  is said to be 
compatible tolerance if for every 𝜎 ∈  Ω𝑛 ,  𝑎1,𝑎2, … , 𝑎𝑛,𝑏1,𝑏2, … , 𝑏𝑛 ∈ 𝐴  such that (𝑎𝑖 , 𝑏𝑖)1≤𝑖≤𝑛 ∈  𝜂 implies 
(𝜎(𝑎1, 𝑎2, … , 𝑎𝑛), 𝜎(𝑏1, 𝑏2, … , 𝑏𝑛)) ∈ 𝜂. 
 
Definition 2.6: Bijective tolerance: A tolerance 𝜂 on 𝐴 is said to be bijective tolerance if 𝐴 ≅ 𝐴|𝜂.  
 
Example 2.7: Let 𝐴 = {1,2,3,4} and 𝜂 = ∆  ∪  {(1,2), (2,1), (3,4), (4,3), (2,3), (3,2)}  
where ∆= {(1,1), (2,2), (3,3), (4,4)}  then the tolerances 𝜂  on 𝐴  are  𝜂[1] = {1,2} , 𝜂[2] = {1,2,3} , 𝜂[3] = {2,3,4} 
, 𝜂[4] = {3,4} and the tolerance classes are  

𝐴|𝜂 = {𝜂[1], 𝜂[2], 𝜂[3], 𝜂[4]} 
 
Definition 2.8: Sheaf: A sheaf (of sets) is a triple(𝑆, 𝜋, 𝑋) satisfying the following 

(i) 𝑆, 𝑋 are topological spaces. 
(ii) 𝜋 is a local homeomorphism of 𝑆  onto 𝑋, 

 
that is, 𝜋: 𝑆 → 𝑋 is surjection such that for any 𝑠 ∈  𝑆, there exists open sets 𝐺, 𝑈 in 𝑆, 𝑋 respectively such that 𝑠 ∈ 𝐺,
𝜋(𝑠) ∈ 𝑈 and 𝜋|𝐺: 𝐺 → 𝑈 is a homeomorphism. 𝑆 is called the sheaf space,  𝑋 is called the base space andπ  is called 
the projection. Often we say that (𝑆, 𝜋, 𝑋) is a sheaf over 𝑋. For any 𝑝 ∈ 𝑋, 𝜋−1(𝑝) is a non-empty set and is called the 
stalk at 𝑝, denote it by 𝑆𝑝. Note that 𝑆  is a disjoint union of all 𝑆𝑝

′𝑠. 
 
Definition 2.9: Sheaf 𝛺-of algebras: By a sheaf of Ω-algebras we mean a sheaf (𝑆, 𝜋, 𝑋) satisfying the following.  

(i) For each 𝑝 ∈ 𝑋, the stalk 𝑆𝑝 is anΩ-algebra. 
(ii) The Ω operations are all continuous, that is, if  σ  is an n-ary operation, then the map �𝑠1,𝑠2, … , 𝑠𝑛� →

σ�𝑠1,𝑠2, … , 𝑠𝑛� is a continuous map of 𝑆(𝑛) = ��𝑠1,𝑠2, … , 𝑠𝑛�  ∈  𝑆𝑛|𝜋(𝑠1) = 𝜋(𝑠2) = ⋯ = 𝜋(𝑠𝑛)� into 𝑆.Here, 
we regard  𝑆(𝑛)as a subspace of the product space 𝑆𝑛. 

 
Theorem 2.1: Let(𝐴, 𝛺) be an algebra. Let 𝜂 be a compatible tolerance on 𝐴. For each 𝑎1,𝑎2, … , 𝑎𝑛 ∈  𝐴,   𝜎 ∈  𝛺𝑛 
define (𝜎(𝜂(𝑎1), 𝜂(𝑎2), … , 𝜂(𝑎𝑛)) =  𝜂(𝜎(𝑎1, 𝑎2, … , 𝑎𝑛)) then 𝐴|𝜂 is also an 𝛺-algebra. 
 
Proof: Let 𝜂(𝑎1),  𝜂 (𝑎2), … , 𝜂(𝑎n) ∈ A/η.    Observe that 𝜎[𝜂(𝑎1), 𝜂(𝑎2), … , 𝜂(𝑎𝑛)] =  𝜂[𝜎(𝑎1, 𝑎2, … , 𝑎𝑛)]. Since 𝐴 
is an 𝛺 -algebra, 𝜎(𝑎1, 𝑎2, … , 𝑎𝑛) ∈ 𝐴  implies 𝜂(𝜎(𝑎1, 𝑎2, … , 𝑎𝑛))  ∈ 𝐴|𝜂  implies 𝜎[𝜂(𝑎1), 𝜂(𝑎2), … , 𝜂(𝑎𝑛)] ∈ 𝐴|𝜂. 
Hence 𝐴|𝜂 is an 𝛺-algebra.          
   
3. EXISTENCE OF SHEAVES OF 𝛀-ALGEBRAS 
 
Theorem 3.1: Let(𝐴, 𝛺) be an 𝛺-algebra. Let 𝑋 be a topological space. Let T(A) be the set of all compatible tolerances 
on A. Suppose there exists a continuous map 𝑝 ↦ 𝜂𝑝 from 𝑋 to 𝑇(𝐴) where 𝜂𝑝 is a compatible tolerance on 𝐴. Then 
there exists a sheaf of 𝛺-algebras on 𝐴 if and only if for any 𝑎, 𝑏 ∈ 𝐴, 𝑋(𝑎, 𝑏) = �𝑝 ∈ 𝑋|𝑎�(𝑝) = 𝑏�(𝑝)� is open in 𝑋. 
 
Proof: First we observe the construction of sheaf of algebras via compatible tolerances. 
 
 

https://en.wikipedia.org/wiki/Algebraic_structure�
https://en.wikipedia.org/wiki/Operation_(mathematics)�
https://en.wikipedia.org/wiki/Identity_element�
https://en.wikipedia.org/wiki/Identity_(mathematics)�
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Sheaf Construction: Let 𝑋  be a topological space and (𝐴, 𝛺) be an  𝛺-algebra. Let 𝑇(𝐴)be the set of all compatible 
tolerance relations on 𝐴. Let 𝑝 ↦ 𝜂𝑝 be a map of 𝑋 into 𝑇(𝐴). Let𝑆𝑝 be the quotient space 𝐴|𝜂𝑝 for any 𝑝 ∈ 𝑋. Since 𝜂𝑝 
is a compatible tolerance, by the above theorem (2.1) each 𝑆𝑝 = 𝐴|𝜂𝑝  is an Ω-algebra. Define 𝑆 = ⋃ 𝑆𝑝 ,+

𝑝∈𝑋 be the 
disjoint union of 𝑆𝑝

′𝑠. Define 𝑎�: 𝑋 → 𝑆 by 𝑎�(𝑝) = 𝜂𝑝(𝑎) for 𝑎 ∈ 𝐴. Consider a largest topology on 𝑆  such that 𝑎�  is 
open and continuous for each 𝑎 ∈ 𝐴 and define 𝜋: 𝑆 → 𝑋 by 𝜋(𝑠) = 𝑝 for all 𝑠 ∈ 𝑆𝑝. (S, π, X) forms a triple. 
 
Now we prove the necessary and sufficient condition for (S, π, X) to be a global sheaf of algebras. 
 
Let (𝑆, 𝜋, 𝑋) be a global sheaf. First we prove that for 𝑎 ∈ 𝐴, 𝑎� is a global section. Continuity of 𝑎� is clear from the 
definition. Also 𝜋 ∘ 𝑎�(𝑝) = 𝜋�𝑎�(𝑝)� = 𝜋 �𝜂𝑝(𝑎)� = 𝑝, for all 𝑝 ∈ 𝑋. Therefore 𝜋 ∘ 𝑎�  is the identity and hence𝑎� is a 
global section. Now we claim that 𝑋(𝑎, 𝑏)  is open in  𝑋 . Let  𝑝 ∈ 𝑋(𝑎, 𝑏)  that is, 𝑝 ∈ 𝑋  and  𝑎� (𝑝) = 𝑏�(𝑝) = 𝑠 
(say) ,    𝑠 ∈ 𝑆 . By the definition of sheaf there exists open sets 𝐺 and  𝑈 in 𝑆 and  𝑋 respectively such that 𝑠 ∈ 𝐺 
and 𝜋|𝐺: 𝐺 → 𝑈 is a homeomorphism. Observe that 𝜋(𝑠) = 𝜋�𝑎�(𝑝)� = 𝑝, 𝑝 ∈ 𝑈.  
 
Now take 𝑉 = 𝑎�−1(𝐺) ∩ 𝑏�−1(𝐺) ∩ 𝑈. Since 𝑎�, 𝑏� are continuous and 𝑈 is open, it follows that 𝑉 is open in 𝑋 and 𝑝 ∈ 𝑉.  
 
Now for any 𝑞 ∈ 𝑉,   𝑎�(𝑞), 𝑏�(𝑞) ∈ 𝐺 and 𝜋�𝑎�(𝑞)� = 𝜋 �𝑏�(𝑞)�. From the fact that 𝜋|𝐺 is a one-one map, it follows that, 
𝑎�(𝑞) = 𝑏�(𝑞). Therefore 𝑞 ∈ 𝑋(𝑎, 𝑏) and hence 𝑋(𝑎, 𝑏) is open. 
 
Conversely assume that 𝑋(𝑎, 𝑏)is open in 𝑋 . We now prove that(𝑆, 𝜋, 𝑋) is a global sheaf. Let  𝑠 ∈ 𝑆. Then there 
exists 𝑝 ∈ 𝑋, 𝑎 ∈ 𝐴 such that 𝑠 ∈ 𝜂𝑝(𝑎). Now since 𝜂𝑝(𝑎) = 𝑎�(𝑝), 𝑎�(𝑝) ∈ 𝑎�(𝑋) it follows that 𝑠 ∈ 𝑎�(𝑋).  
 
We now prove that 𝜋|𝑎�(𝑋): 𝑎�(𝑋) → 𝑋 is a homeomorphism. 
 
Suppose 𝜋|𝑎�(𝑋) �𝜂𝑝(𝑎)� = 𝜋|𝑎�(𝑋) �𝜂𝑞(𝑎)�. By definition of 𝜋, it follows that 𝑝 = 𝑞. Thus, 𝜂𝑝(𝑎) = 𝜂𝑞(𝑎) and hence  
𝜋|𝑎�(𝑋) is one-to-one. 
 
Given 𝑝 ∈ 𝑋, observe that 𝜋|𝑎�(𝑋) �𝜂𝑝(𝑎)� = 𝑝 for 𝑎 ∈ 𝐴,  𝜂𝑝(𝑎) ∈ 𝑎�(𝑋). Therefore 𝜋|𝑎�(𝑋) is onto. 
 
Let 𝑈 be open in 𝑋 and 𝑠 ∈ �𝜋|𝑎�(𝑋)�−1(𝑈). Then 𝜋|𝑎�(𝑋)(𝑠) ∈ 𝑈. Now since 𝑠 ∈ 𝑆𝑝 for some 𝑝, there exist 𝑎 ∈ 𝐴 such 
that 𝑠 = 𝜂𝑝(𝑎) and hence 𝜋|𝑎�(𝑋) �𝜂𝑝(𝑎)� ∈ 𝑈. Since 𝜋|𝑎�(𝑋) �𝜂𝑝(𝑎)� = 𝑝, it follows that 𝑝 ∈ 𝑈,  clearly 𝑎�(𝑝) ∈ 𝑎�(𝑈).   
 
From the fact that 𝑎� is an open map, it is clear that 𝑎�(𝑈) is open in 𝑆. 
 
Let 𝑠′ ∈ 𝑎�(𝑈). Then 𝑠′ = 𝑎�(𝑞) �= 𝜂𝑞(𝑎)� for some 𝑞 ∈ 𝑈.  
 
It can be observed that 𝜋|𝑎�(𝑋) �𝜂𝑞(𝑎)� ∈ 𝑈 as 𝜋 �𝜂𝑝(𝑎)� = 𝑞. Therefore 𝑠′ = 𝜂𝑞(𝑎) ∈ (𝜋|𝑎�)−1(𝑈). 
 
Thus 𝑎�(𝑈) ⊆ 𝜋|𝑎�(𝑋)(𝑈) and hence  𝜋|𝑎�(𝑋) is continuous. 
 
Let 𝐻  be an open set in 𝑎�(𝑋). By the subspace topology induced by 𝑆 , there exists an open set 𝐺  in 𝑆  such that           
𝐻 = 𝑎�(𝑋) ∩ 𝐺 . Let  𝑠 ∈ 𝐻;  then there exists 𝑞 ∈ 𝑋  such that 𝑠 = 𝑎�(𝑞) �= 𝜂𝑞(𝑎)� , 𝑠 ∈ 𝐺. Since  𝑞 ∈ 𝑎�−1(𝐺), 
consider 𝑊 = 𝑎�−1(𝐺) ∩ 𝑋. Clearly 𝑞 ∈ 𝑊 and  𝑊 is open in 𝑋. 
 
Now let 𝑝 ∈ 𝑊, that is, 𝑝 ∈ 𝑎�−1(𝐺) ∩ 𝑋. Then 𝑎�(𝑝) ∈ 𝐺 and since 𝑎�(𝑝) ∈ 𝑎�(𝑋), it follows that 

𝑎�(𝑝) ∈ 𝑎�(𝑋) ∩ 𝐺 = 𝐻. 𝑝 = 𝜋|𝑎�(𝑋)�𝑎�(𝑝)� ∈ 𝜋|𝑎�(𝑋)(𝐻).  Thus 𝜋|𝑎�(𝑋) is an open map. 
 
Now it is enough to show that every n-ary operation 𝜎 ∈ Ω𝑛 is continuous from  𝑆(𝑛) → 𝑆.  
 
Let 𝜎 ∈  Ω𝑛 . To show that  𝜎: 𝑆(𝑛) → 𝑆 is continuous, let 𝐻 be an open set in 𝑆. We have to show that  𝜎−1(𝐻) is open 
in  𝑆(𝑛) .  Let 𝜎�𝑠1,𝑠2, … , 𝑠𝑛�  ∈  𝐻 , where 𝑠1,𝑠2, … , 𝑠𝑛 ∈  𝑆(𝑛)  and there exists  𝑎1,𝑎2,𝑎3, … , 𝑎𝑛 ∈  𝐴   such that               
𝑆𝑖 = 𝜂𝑝(𝑎𝑖)  for some 𝑝  (Since (𝑆, 𝜋, 𝑋)  is global) and each 𝑆𝑝  being an algebra. Now 
𝜎�𝜂𝑝(𝑎1), 𝜂𝑝(𝑎2), 𝜂𝑝(𝑎3), … 𝜂𝑝(𝑎𝑛)� ∈ 𝐻  implies 𝜂𝑝(𝜎�𝑎1, 𝑎2, … , 𝑎𝑛�) ∈ 𝐻  which implies σ(𝑎1, 𝑎2, … , 𝑎𝑛)(𝑝)� ∈ 𝐻.  
Since σ(𝑎1, 𝑎2, … , 𝑎𝑛)� being continuous there exists an open set 𝑈 in 𝑋 containing 𝑝 such that σ(𝑎1, 𝑎2, … , 𝑎𝑛)� (𝑈) ⊆ 𝐻. 
Now consider  𝑊 = �𝑎1�(𝑈) × 𝑎2�(𝑈) × … × 𝑎n�(𝑈)� ∩ 𝑆(𝑛). Clearly 𝑊 is an open set in 𝑆(𝑛) containing�𝑠1,𝑠2, … , 𝑠𝑛�. 
Let 𝑡 = �𝑎1�(𝑞), 𝑎2�(𝑞), … , 𝑎n�(𝑞)� ∈  𝑊 for some 𝑞 ∈ 𝑈. 
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Then  𝜎(𝑡) = 𝜎�𝑎1�(𝑞), 𝑎2�(𝑞), … , 𝑎n�(𝑞)� = 𝜎�𝜂𝑞(𝑎1), 𝜂𝑞(𝑎2), 𝜂𝑞(𝑎3), … , 𝜂𝑞(𝑎𝑛� = 𝜂𝑞 �𝜎�𝑎1, 𝑎2, … , 𝑎𝑛�� =
σ(𝑎1, 𝑎2, … , 𝑎𝑛)(𝑞)� ∈ 𝐻, since σ(𝑎1, 𝑎2, … , 𝑎𝑛)� (𝑈) ⊆ 𝐻. Which implies σ(𝑊) ⊆ 𝐻 and hence σ is continuous. Thus 
(𝑆, 𝜋, 𝑋) is a sheaf of Ω-algebras. 
 
Theorem 3.2: Let 𝐿 be a bounded distributive Lattice |𝐿| > 2. Let 𝑋 = 𝑆𝑝𝑒𝑐(𝐿) be the spectrum of 𝐿. For each 𝑃 ∈ 𝑋, 
define 𝜂𝑃 = {(𝑥, 𝑦)  ∈  𝐿 × 𝐿|(𝑥 = 𝑦) ∨ (𝑥 ∈ 𝑃)  ∨ (𝑦 ∈ 𝑃)}. Then (1) 𝜂𝑃 is a tolerance on 𝐿 . (2) 𝜂𝑃 is lower semi 
compatible. 
 
Proof: (1) Claim: 𝜂𝑃 is a tolerance on 𝐿. For any 𝑥 ∈ 𝐿, (𝑥, 𝑥) ∈ 𝜂𝑃 therefore 𝜂𝑃 is reflexive. Also for any 𝑥, 𝑦 ∈ 𝐿,
(𝑥, 𝑦) ∈ 𝜂𝑃 . we have to show that (𝑦, 𝑥) ∈ 𝜂𝑃 
 
Case (a): Let 𝑥 = 𝑦 ⇒ 𝑦 = 𝑥 ⇒ (𝑦, 𝑥) ∈ 𝜂𝑃 
 
Case (b): Let 𝑥 ∈ 𝑃 ⇒ (𝑦, 𝑥) ∈ 𝜂𝑃 
 
Case (c): Let𝑦 ∈ 𝑃 ⇒ (𝑦, 𝑥) ∈ 𝜂𝑃. Hence in all the cases for (𝑥, 𝑦) ∈ 𝜂𝑃 ⇒ (𝑦, 𝑥) ∈ 𝜂𝑃. Therefore 𝜂𝑃  is symmetric. 
Thus 𝜂𝑃 is a tolerance on 𝐿. 
 
(2)  Claim: 𝜂𝑃is lower semi compatible.  
 
Let (𝑥1, 𝑦1), (𝑥2, 𝑦2) ∈ 𝜂𝑃. We have to show that (𝑥1 ∧ 𝑥2,  𝑦1 ∧ 𝑦2) ∈ 𝜂𝑃 . 
 
Case (i): Let 𝑥1 = 𝑦1and𝑥2 = 𝑦2 ⇒ 𝑥1 ∧ 𝑥2 = 𝑦1 ∧ 𝑦2 ⇒ (𝑥1 ∧ 𝑥2, 𝑦1 ∧ 𝑦2) ∈ 𝜂𝑃. 
 
Case (ii): Let 𝑥1 = 𝑦1and 𝑥2 ∈ 𝑃, since 𝑥1 ∧ 𝑥2 ≤ 𝑥2 ∈ 𝑃 implies 𝑥1 ∧ 𝑥2 ∈ 𝑃 as a result (𝑥1 ∧ 𝑥2, 𝑦1 ∧ 𝑦2) ∈ 𝜂𝑃.  
 
Case (iii): Also let 𝑥1 = 𝑦1 and 𝑦2 ∈ 𝑃, since 𝑦1 ∧ 𝑦2 ≤ 𝑦2 ∈ 𝑃 implies𝑦1 ∧ 𝑦2 ∈ 𝑃, as a result (𝑥1 ∧ 𝑥2, 𝑦1 ∧ 𝑦2) ∈ 𝜂𝑃 . 
 
Case (iv): Let 𝑥1 ∈ 𝑃 and 𝑥2 = 𝑦2, since 𝑥1 ∧ 𝑥2 ≤ 𝑥1 ∈ 𝑃 implies 𝑥1 ∧ 𝑥2 ∈ 𝑃, and hence(𝑥1 ∧ 𝑥2, 𝑦1 ∧ 𝑦2) ∈ 𝜂𝑃. 
 
Case (v): Let 𝑦1 ∈ 𝑃 and 𝑥2 = 𝑦2, since 𝑦1 ∧ 𝑦2 ≤ 𝑦1 ∈ 𝑃 ⇒ 𝑦1 ∧ 𝑦2 ∈ 𝑃 also𝑦1 ∈ 𝑃, 𝑥2 ∈ 𝑃 and since 
𝑥1 ∧ 𝑥2 ≤ 𝑥2 ∈ 𝑃 implies 𝑥1 ∧ 𝑥2 ∈ 𝑃.Also 𝑦1 ∈ 𝑃, 𝑦2 ∈ 𝑃 ⇒ 𝑦1 ∧ 𝑦2 ∈ 𝑃 hence (𝑥1 ∧ 𝑥2, 𝑦1 ∧ 𝑦2) ∈ 𝜂𝑃.  
 
Case (vi): Also 𝑥1 ∈ 𝑃, 𝑦2 ∈ 𝑃and since 𝑦1 ∧ 𝑦2 ≤ 𝑦2 ∈ 𝑃 , hence  (𝑥1 ∧ 𝑥2, 𝑦1 ∧ 𝑦2) ∈ 𝜂𝑃.  Hence  𝜂𝑃 is lower semi 
compatible. 
 
By interchanging the roles of 𝑥1, 𝑦2the other cases follows. 
 
Theorem 3.3: Let 𝐿  be a bounded distributive Lattice. Let 𝑋 = 𝑆𝑝𝑒𝑐(𝐿)  be the spectrum of  𝐿 . Let 𝑇(𝐿)  be the 
tolerances on 𝐿 . For each 𝑃 ∈ 𝑋 , define 𝜂𝑃 = {(𝑥, 𝑦)  ∈  𝐿 × 𝐿|(𝑥 = 𝑦) ∨ (𝑥 ∈ 𝑃)  ∨ (𝑦 ∈ 𝑃)} Topoligize 𝑇(𝐿) with 
the largest topology for which{< 𝑎, 𝑏 > |𝑎, 𝑏 ∈ 𝐿} forms a sub base where < 𝑎, 𝑏 >= {𝜂𝑃 ∈ 𝑇(𝐿)|𝜂𝑃(𝑎) = 𝜂𝑃(𝑏)} 
then the map 𝑃 ↦ 𝜂𝑃: 𝑋 → 𝑇(𝐿) is continuous. 
 
Proof: Let 𝐻 be an open set in 𝑇(𝐿). To show that  𝑓−1(𝐻) is open in 𝑋 . Let 𝐻 =< 𝑎1, 𝑏1 >∩< 𝑎2, 𝑏2 >∩ … ∩<
𝑎𝑛 , 𝑏𝑛 >for some   𝑎1,𝑎2, … , 𝑎𝑛, 𝑏1,𝑏2, … , 𝑏𝑛 ∈  𝐿. Let 𝑞 ∈ 𝑓−1(𝐻).   Then 𝑓(𝑞) ∈ 𝐻which implies 𝑓(𝑞) ∈ < 𝑎1, 𝑏1 >∩
< 𝑎2, 𝑏2 >∩ … ∩< 𝑎𝑛 , 𝑏𝑛 >.  Then there exists 𝑊1, 𝑊2, … , 𝑊𝑛 open in 𝑇(𝐿)  such that  𝑓(𝑞) ∈ 𝑊𝑖 ⊆ < 𝑎𝑖 , 𝑏𝑖 >(1≤𝑖≤𝑛). 
Thus 𝑓(𝑞) ∈ ⋂ 𝑊𝑖

𝑛
𝑖=1 ⊆ ⋂ < 𝑎𝑖 , 𝑏𝑖 >= 𝐻𝑛

𝑖=1 which implies 𝑞 ∈ 𝑓−1(⋂ 𝑊𝑖)𝑛
𝑖=1 ⊆ 𝑓−1(𝐻). Therefore 𝑓: 𝑃 ↦ 𝜂𝑃: 𝑋 →

𝑇(𝐿) is continuous. 
 
Now the general method described above is applied on an algebraic structure of a bounded distributive lattice. 
 
Theorem 3.4: Let 𝐿 be a bounded distributive lattice, then there exists a sheaf of algebras (𝑆, 𝜋, 𝑋) such that 𝐿 is 
isomorphic with 

 𝛤(𝑋, 𝑆) = {𝑓  𝑓 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑚𝑎𝑝 𝑓𝑟𝑜𝑚 𝑋 𝑡𝑜 𝑆 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝜋 ∘ 𝑓 = 𝑖𝑑𝑋} and each stalk is a lower semi 
lattice. 
 
Proof: Consider 𝑋 = 𝑆𝑝𝑒𝑐(𝐿) be the spectrum of 𝐿, that is,  𝑋 = {𝑃|𝑃 is a prime ideal of 𝐿} equipped with the well-
known hull-kernel topology. For each 𝑃 ∈  𝑋 define 𝑆𝑝 = 𝐿/𝜂𝑃where 𝜂𝑃 is defined as 
 𝜂𝑝 = {(𝑎, 𝑏) ∈ 𝐿|(𝑎 = 𝑏) ∨ (𝑎 ∈ 𝑃)  ∨ (𝑏 ∈ 𝑃)} =  ∆ ⋃(𝑃 × 𝐿) ⋃(𝐿 × 𝑃) and 𝜂𝑝(𝑎) = {𝑏∈𝐿|(𝑎, 𝑏)∈ 𝜂𝑝} 
 
Case (i): If 𝑎 ∈ 𝑃 then𝜂𝑃(𝑎) = 𝐿 
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Case (ii): If 𝑎 ∉ 𝑃 then 𝜂𝑃(𝑎) = {𝑏 ∈ 𝐿|𝑏 ∈ 𝑃} ∪ {𝑎}, hence 𝜂𝑃(𝑎) = �
𝐿          𝑖𝑓 𝑎 ∈  𝑃

𝑃 ∪ {𝑎} 𝑖𝑓 𝑎 ∉  𝑃 
� 

Structure of 𝐿/𝜂𝑃 = {𝜂𝑃(𝑎)|𝑎 ∈ 𝐿}  (={𝑎�(𝑝)/𝑎 ∈ 𝐿}) 
 
Define ≤p  on 𝐿|𝜂𝑃 by 𝜂𝑃(𝑎)  ≤𝑝 𝜂𝑃(𝑏) if and only if 𝑎 ≤ b. 
Then for 𝑎, b in L if  𝑎 ≤ 𝑏, 
 
Case (i): If 𝑎, 𝑏 ∈  𝑃 then 𝜂𝑃(𝑎) = 𝐿 = 𝜂𝑃(𝑏) 
 
Case (ii): If 𝑎 ∈ 𝑃, 𝑏 ∉ 𝑃  then 𝜂𝑃(𝑎) = 𝐿, 𝜂𝑃(𝑏) =  𝑃 ∪ {𝑏} 
 
Case (iii): If 𝑎 ∉ 𝑃, 𝑏 ∈ 𝑃  this case does not arise since P is an (prime) ideal. 
 
Case (iv): If 𝑎 ∉ 𝑃, 𝑏 ∉ 𝑃 then   𝜂𝑃(𝑎) =  𝑃 ∪ {𝑎}   ≤ 𝑃   𝑃 ∪ {𝑏} =   𝜂𝑃(𝑏). 
 
Hence 𝐿 ≤𝑝, 𝑃 ∪ {𝑏} ∀𝑏 ∉ 𝑃, 𝑃 ∪ {𝑎} ≤𝑝 𝑃 ∪ {𝑏} ≤𝑝 𝑃 ∪ {1} where 1 is the greatest element of L. 
 
Thus 𝐿/𝜂𝑃 is a bounded lower semi-lattice with L as the least element and 𝑃 ∪ {1} as the greatest element. 
 
Let 𝑆 = ⋃ 𝑆𝑃

+
𝑃∈𝑋 ,  the disjoint union of 𝑆𝑃

′𝑠. For each 𝑎 ∈  𝐿 define  𝑎�(𝑃) = 𝜂𝑃(𝑎).  
 
Topologise 𝑆 with the largest topology with respect to each 𝑎� is continuous. Then by theorem 3.1 (𝑆, 𝜋, 𝑋) is a global 
sheaf, since 𝑃 ↦ 𝜂𝑃 being continuous. It is enough to show that 𝐿 ≅ Γ(𝑋, 𝑆).  
 
Let 𝑎�(𝑃) =  𝑏�(𝑃) for all P.  Then, (𝑎, 𝑏) ∈  𝜂𝑃 , ∀𝑃  and since P = {0} being the smallest prime ideal and 𝜂{0} = ∆,   it 
follows that (𝑎, b)∈ ∆ and thus 𝑎 = b. 
 
Let 𝑓: 𝑋 → 𝑆 be a global section, then there exists 𝑎 ∈ 𝐴 such that 𝑓(𝑃) = 𝜂𝑃(𝑎) = 𝑎�(𝑃) ∀𝑃  implies 𝑓 = 𝑎�. Hence 
Γ(𝑋, 𝑆) is onto. Therefore 𝐿 ≅ Γ(𝑋, 𝑆). 
 
Theorem 3.5: Let 𝐿 be a bounded distributive Lattice. For  𝑃 ∈ 𝑆𝑝𝑒𝑐(𝐿),  
𝜂𝑃 = {(𝑥, 𝑦)  ∈  𝐿 × 𝐿|(𝑥 = 𝑦) ∨ (𝑥 ∈ 𝑃)  ∨ (𝑦 ∈ 𝑃)} define ~𝑃on 𝐿/η𝑃by 𝜂𝑃(𝑥)~𝑃 𝜂𝑃(𝑦) if and only if 
𝑥, 𝑦 ∈  𝑃 ∨ (𝑥 = 𝑦) then ~𝑃 is an equivalence relation. 
 
Proof: Reflexive: Let 𝑥 ∈ 𝑃, clearly (𝑥, 𝑥) ∈ 𝜂𝑝 and hence  𝜂𝑃(𝑥)~𝑃 𝜂𝑃(𝑥). Thus ~𝑃is reflexive.  
 
Symmetric: Let (𝜂𝑃(𝑥),  𝜂𝑃(𝑦)) ∈ ~𝑃 ,  implies 𝑥, 𝑦 ∈  𝑃 ∨ (𝑥 = 𝑦), 𝜂𝑃(𝑦)~𝑃𝜂𝑃(𝑥), therefore ~𝑝is symmetric. 
 
Transitive: Let 𝜂𝑃(𝑥) ~𝑃 𝜂𝑃(𝑦)  which implies 𝑥, 𝑦 ∈  𝑃 ∨ (𝑥 = 𝑦) and 𝜂𝑃(𝑦)~𝑃𝜂𝑃(𝑧) which implies  𝑦, 𝑧 ∈  𝑃 ∨
(𝑦 = 𝑧). 
 
Case (i): let 𝑥 = 𝑦, 𝑦 = 𝑧 implies 𝑥 = 𝑧. 
 
Case (ii): let 𝑥 = 𝑦  𝑎𝑛𝑑  𝑦, 𝑧 ∈  𝑃 which implies 𝑥, 𝑧 ∈ 𝑃. 
 
Case (iii): let 𝑦 = 𝑧  𝑎𝑛𝑑  𝑥, 𝑦 ∈  𝑃 which implies 𝑥, 𝑧 ∈ 𝑃. 
 
Case (iv): let 𝑥, 𝑦 ∈  𝑃 𝑎𝑛𝑑 𝑦, 𝑧 ∈  𝑃 implies 𝑥, 𝑧 ∈  𝑃  in all the cases 𝜂𝑃(𝑥)~𝑃𝜂𝑃(𝑧)  therefore ~𝑃 is transitive. 
Hence ~𝑃 is an equivalence relation. 
 
Observe that in (𝐿/η𝑃)/~𝑃 , [𝜂𝑃(0)]~𝑃 = [𝜂𝑃(𝑥)]~𝑃  ∀𝑥 ∈ 𝑃 and [𝜂𝑃(𝑦)]~𝑃 =  {𝜂𝑃(𝑦)} . Let us denote (𝐿/η𝑃)/~𝑃 as 
𝐿𝑃� 
 
Theorem 3.6: Let 𝐿 be a bounded distributive Lattice. For  𝑃 ∈ 𝑆𝑝𝑒𝑐(𝐿) ,  
𝜂𝑃 = {(𝑥, 𝑦)  ∈  𝐿 × 𝐿|(𝑥 = 𝑦) ∨ (𝑥 ∈ 𝑃)  ∨ (𝑦 ∈ 𝑃)} define ~𝑃on 𝐿/η𝑃by 𝜂𝑃(𝑥)~𝑃 𝜂𝑃(𝑦) if and only if  
𝑥, 𝑦 ∈  𝑃 ∨ (𝑥 = 𝑦) then ~𝑃is an equivalence relation. Let  (𝐿/η𝑃)/~𝑃  be denoted as   𝐿𝑃�  then, (𝐿𝑃�, ≤𝑃) is a lattice, 
where ≤𝑃defined on 𝐿𝑃� by [𝜂𝑃(𝑦)]~𝑃 ≤𝑃 [𝜂𝑃(𝑧)]~𝑃 if and only if 𝑦 ≤ 𝑧  
 
Proof: First we observe that 𝐿𝑃� − [𝜂𝑃(0)]~𝑃 is a sub lattice of 𝐿. 
Let [𝜂𝑃(𝑥)]~𝑃 , [𝜂𝑃(𝑦)]~𝑃 ∈ 𝐿𝑃� − [𝜂𝑃(0)]~𝑃  
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which implies 

[ηP(x)]~P ,  [ηP(y)]~P ≠ [ηP(0)]~P  and hene  x, y ∉ P.  Since P is prime ideal, x ∧ y ∉ P, x ∨ y ∉ P which implies  

�(ηp(x ∧ y)�~P, [(ηp(x ∨ y)]~P ∈ LP� − [ηP(0)]~P . 
 
Hence 𝐿𝑃� − [𝜂𝑃(0)]~𝑃is a lattice which is also distributive since L is distributive and 

[(𝜂𝑝�𝑥) ∨ 𝜂𝑝(𝑦)� ∧ 𝜂𝑝(𝑧)]~𝑃 =  [(𝜂𝑝(𝑥 ∨ 𝑦)) ∧ 𝜂𝑝(𝑧)]~𝑃 =   [(𝜂𝑝(𝑥 ∨ 𝑦)) ∧ 𝑧)]~𝑃and 
[(𝜂𝑝(𝑥) ∨ (𝜂𝑝(𝑦) ∧ η𝑃(𝑧))]~𝑃 =  [(𝜂𝑝(𝑥) ∨ 𝜂𝑝(𝑦 ∧ 𝑧)]~𝑃 =   [𝜂𝑝(𝑥 ∨ (𝑦 ∧ 𝑧)]~𝑃 

distributive lattice   [𝜂𝑃(1)]~𝑃  as the greatest element. Hence (𝐿𝑃�, ≤𝑃) is a distributive lattice. Hence each 𝐿/𝜂𝑝can be 
regarded as a bounded distributive lattice. 
 
4. CONCLUSION 
 
In this paper, construction of sheaves of algebras via compatible tolerances is studied and the mechanism is 
implemented on a bounded distributive lattice. It is observed that, with the tolerance relation being semi compatible, the 
stacks are observed to be lower semi lattices isomorphic with the given lattice. 
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	Definition 2.2: Bounded lattice: A bounded lattice is an algebraic structure of the form (L, ∨, ∧, 0, 1) such that           (L, ∨, ∧) is a lattice, 0 (the least element) is the identity element for the join operation ∨, and 1 (the greatest) is the id...

