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ABSTRACT 
The purpose of this paper is to define a new class called the intuitionistic generalized semi regular closed set. Also 
intuitionistic generalized semi regular connectedness is dealt with and their properties are discussed. 
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1. INTRODUCTION 
 
The notion of closed set is very much fundamental in the study of topological spaces. The introduction of generalized 
closed sets was put forward by Levine [6] in the year 1970. This gave rise to a study of the separation axioms, 
connectedness and continuity of generalized closed sets. The intuitionistic fuzzy set introduced by Atanassov [1] was 
later developed by Coker [3], who came up with a new concept of intuitionistic sets and intuitionistic points which was 
helpful to introduce vagueness in Mathematics. Coker [2, 8] dealt with the study of continuity and compactness 
followed by connectedness. There are at present many research works undertaken in this field and many others [9, 10] 
have contributed their works. Gnanambal Ilango [4, 5] and Selvanayaki studied in detail about the generalized pre 
regular closed sets in intuitionistic topological spaces, its properties, connectedness, continuity, compactness. A study 
on generalized semi regular closed sets in soft topology was done by Mohana K et.al [7] where in they studied soft gsr-
closed sets, soft gsr-open sets and soft gsr-T1/2 spaces. Herewith, in this paper we have studied the concepts of 
intuitionistic generalized semi regular closed sets in intuitionistic topological spaces. 
 
2. PRELIMINARIES 
 
In this present study, a space X means an intuitionistic topological space (X,𝜏). 
 
Definition 2.1[5]: Let X be a non empty set. An intuitionistic set (IS) A is an object having the form A = < X, A1, A2>, 
where A1 and A2 are subsets of X satisfying A1 ∩ A2 = φ. The set A1 is called the set of members of A, while A2 is 
called the set of non-members of A. 
 
 
Definition 2.2[5]: Let X be a non empty set and let A, B are intuitionistic sets in the form A = < X, A1, A2>, B = < X, 
B1, B2> respectively. Then  

(a) A ⊆ B if A1 ⊆ B1 and A2 ⊇ B2 
(b) A = B if A ⊆ B and B ⊇ A  
(c) Ā = < X, A2, A1> 
(d) [ ] A = < X, A1, (A1 )c> 
(e) A – B = A ∩ 𝐵�  .  
(f) (f)φ̰  =  < X, φ, X >,  X̰ = < X, X, φ > 
(g) A ∪ B = < X, A1 ∪ B1, A2 ∩ B2 >.  
(h) A ∩ B = < X, A1 ∩ B1, A2 ∪ B2 >. 

        Furthermore, let {Ai: i ∈ J} be an arbitrary family of intuitionistic sets in X, where Ai = < X, Ai (1), Ai (2) >.  Then 
(i) ∩ Ai = < X, ∩ Ai

(1), ∪Ai
(2) >.  

(j) ∪ Ai = < X, ∪ Ai
(1), ∩ Ai

(2) >.  
 
Remark 2.3[5]: Any topological space (X,τ) is obviously an ITS of the form τ = {A’: A ∈ τ } where A’ = < X, A, Ac >.  
 

Corresponding Author: Stephy Stephen** 

 **Department of Mathematics, Nirmala College for Women, Coimbatore, India. 

http://www.ijma.info/�


K. Mohana* and Stephy Stephen** /  
On Generalized Semi Regular Closed Sets in Intuitionistic Topological Spaces / IJMA- 9(3), March-2018. 

© 2018, IJMA. All Rights Reserved                                                                                                                                                                       102  

 
Definition 2.4[5]:  An intuitionistic topology (IT for short) on a non empty set X is a family of IS's in X containing, 
and closed under finite infima and arbitrary suprema. The pair (X,τ) is called an intuitionistic topological space (ITS for 
short). Any intuitionistic set in τ is known as an intuitionistic open set (IOS for short) in X and the complement of IOS 
is called intuitionistic closed set (ICS for short).  
 
Definition 2.5[5]:  Let (X,τ) be an ITS and A = < X, A1, A2 > be an IS in X. Then the interior and closure of A are 
defined as 
Icl(A) = ∩{K : K is an ICS in X and A ⊆ K} 
Iint(A) = ∪{G : G is an IOS in X and G ⊇ A}.  
 
It can be shown that Icl(A) is an ICS and Iint(A) is an IOS in X and A is an ICS in X iff Icl(A) = A and is an IOS in X 
iff Iint(A) = A.  
 
Definition 2.6[5]:  Let (X,τ ) be an ITS. An intuitionistic set A of X is said to be 

(i) Intuitionistic semiopen if A ⊆Icl(Iint(A)). 
(ii) intuitionistic preopen if A ⊆Iint(Icl(A)). 
(iii) intuitionistic regular open ( intuitionistic regular closed ) if A = Iint(Icl(A)) ( A = Icl(Iint(A)) ).  
(iv) intuitionistic α-open if A⊆Iint(Icl(Iint(A))).  

 
Definition 2.7: Let (X,𝜏) be a non empty intuitionistic topological space and let A = < X, A1, A2 > be an intuitionistic 
set. Then A is said to be 

(i) intuitionistic 𝛼 −generalized closed (I𝛼g-closed) if I𝛼cl(A)⊆U whenever A⊆U and U is intuitionistic open 
in X. 

(ii) intuitionistic generalized semiclosed (Igs-closed) if Iscl(A)⊆U whenever A⊆U and U is intuitionistic open 
in X. 

 
Definition 2.8[5]: An intuitionistic subset A of (X,τ) is said to be I-dense  if Icl(A) = X. 

 
Definition 2.9[5]: A space (X,τ) is called intuitionistic irreducible or I hyper connected if every intuitionistic open 
subset of X is I-dense. 
 
3. INTUITIONISTIC GENERALIZED SEMI REGULAR CLOSED SETS: 
 
Definition 3.1: Let (X,𝜏) be an intuitionistic topological space and let A = < X, A1, A2 > be an intuitionistic set. Then A 
is said to be intuitionistic generalized semi regular closed (Igsr-closed) if Iscl(A)⊆U whenever A⊆U and U is 
intuitionistic regular open in X. 
 
Theorem 3.2: 

a) Every I-closed set is Igsr-closed. 
b) Every Irg-closed set is Igsr-closed. 
c) Every Ig-closed is Igsr-closed 
d) Every Iαg-closed set is Igsr-closed 
e) Every Igs-closed set is Igsr-closed. 

 
Converse of the above theorem is not true and is shown in the following examples: 
 
Example 3.3: Let X = {a, b} and τ = {φ, X, < X, {a}, φ >, < X, {a}, {b} >, < X, φ, {b} >}. Then the intuitionistic 
subsets < X, {a}, φ >, < X, φ, {b} >, < X, {a}, {b} > are Igsr-closed, but not I- closed. 
 
Example 3.4: Let X = {a, b} and τ = {φ, X, < X, {a}, φ >, < X, {a}, {b} >, < X, φ, {b} >}. Then the intuitionistic 
subset < X, {a}, φ > is Igsr-closed, but not Irg-closed. 
 
Example 3.5: Consider X = {a, b} and τ = {φ, X, A, B, C} where A = < X, {a}, φ >, B = < X, {a}, {b} >, C = < X, φ, 
{b} >}. Then the intuitionistic subsets < X, {a}, φ >, < X, φ, {b} >} are Igsr-closed, but not Ig-closed. 
 
Example 3.6: Let X = {a, b} and τ = {φ, X, A, B, C} where A = < X, {a}, φ >, B = < X, {a}, {b} >, C = < X, φ, {b} 
>}. Then the intuitionistic subsets < X, {a}, φ >, < X, φ, {a} >, < X, φ, {b} > are Igsr-closed, but not Iαg-closed. 
 
Example 3.7: Let X = {a, b} and τ = {φ, X, A, B, C} where A = < X, {a}, φ >, B = < X, {a}, {b} >, C = < X, φ, {b} 
>}. Then the intuitionistic subsets < X, {a}, {b} > is I-open, but not I-regular open. 
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The diagrammatic representation of the above theorem is shown below: 

 
 
Theorem 3.8: If A is I-regular open and Igsr-closed, then A is I-semi closed. 
 
Proof: Let A = < X, A1, A2 > be I-regular open and Igsr-closed. By definition, we have Iscl(A)⊆A (because U is I-
ropen). We know that A ⊆ Iscl(A). Therefore Iscl(A) = A, ⇒ A is I-semi closed. 
 
Remark 3.9: In (X,τ) an intuitionistic topological space, if Iscl(A) = A, then A is Igsr-closed. 
 
Proposition 3.10: Let (X,τ) be an ITS and ISC(X) (IRO(X)) be the family of all intuitionistic semi closed (intuitionistic 
regular open) sets of X. If ISC(X) = IRO(X) then every intuitionistic subset of X is Igsr-closed in X. 
 
Proof: Let A be an intuitionistic subset of X such that A ⊆ U where U is intuitionistic regular open in X. Given that 
ISC(X) = IRO(X), then by hypothesis, U is intuitionistic semi closed in X. ⇒Iscl(U) = U. Iscl(A) ⊆ Iscl(U) = U ⇒ A is 
Igsr-closed in X. 
 
Definition 3.11:  Let (X,τ) be an ITS and let A be a subset of X. 
 Then Igsr-cl(A) = ⋂ {K; K is Igsr-closed in X and A ⊆ K}  and  
          Igsr-int(A) = ⋃ {G; G is Igsr-open in X and G ⊆ A} 
 
Theorem 3.12: Let A be an intuitionistic subset of an intuitionistic topological space (X,τ). Then A is Igsr-open ⟺ U 
⊆ Isint(A) whenever U is intuitionistic regular closed and U ⊆ A. 
 
Proof: 
Necessity: Let A be Igsr-open in X. U is intuitionistic regular closed in X such that U ⊆ A. 
Uc is intuitionistic regular open in X such that Ac ⊆ Uc.  We know that Ac is Igsr-closed, 
Therefore, Iscl(Ac) ⊆ Uc. But Iscl(Ac) = (Isint(A))c ⊆ Uc .⇒ U ⊆ Isint(A). 
 
Sufficiency: Let B be an intuitionistic regular open set ∋ Ac ⊆ K. Then Bc is intuitionistic regular closed in X and  Kc ⊆ 
A. To prove that Ac is Igsr-closed. By hypothesis, Kc ⊆ Isint (A) ⇒ Iscl(Ac) = (Isint(A))c ⊆ K.  Hence Ac is Igsr-closed 
and ∴ A is Igsr-open in X. 
 
Lemma 3.13: Let A and B be subsets of ITS, then the following results are true; 

i) Igsr-cl(X̰) = X̰ and Igsr-cl(ϕ̰) = ϕ̰ 
ii) If A ⊆ B then Igsr-cl(A) ⊆ Igsr-cl(B) 
iii) A ⊆ Igsr-cl(A) 
iv) Igsr-cl(A) = Igsr-cl(Igsr-cl(A)) 

 
Lemma 3.14: Let A and B be two subsets of the ITS(X,τ), then Igsr-cl(A⋂B) ⊂ Igsr-cl(A) ⋂ Igsr-cl(B). 
 
Proof: A ⋂ B ⊂ A. We have Igsr-cl(A⋂B) ⊆ Igsr-cl(A)  and Igsr-cl(A⋂B) ⊆ Igsr-cl(B). 
Thus Igsr-cl(A⋂B) ⊂ Igsr-cl(A) ⋂ Igsr-cl(B). 
 
Theorem 3.15: If ISC(X,τ) be closed under finite unions, then IGSRC(X,𝜏) is closed under finite unions. 
 
Proof: Let ISC(X,τ) be closed under finite unions, let A,B ∈ IGSRC(X,𝜏) and let A ⋃ B ⊂ U, U is I-ropen in X.          
A ⊆ U, B ⊆ U. Hence Iscl(A) ⊆ U, Iscl(B) ⊆ U ⇒ Iscl(A) ⋃ Iscl(B) ⊂ U. 
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By hypothesis, Iscl(A) ⊆ U. So A⋃B ∈ IGSRC(X,τ). 
 
Theorem 3.16: If ISO(X,τ) be open under finite unions, then IGSRO(X,𝜏) is open under finite unions. 
 
Proof: Let ISO(X,τ) be open under finite unions. Let A, B ∈ IGSRO(X,τ) and let A ⋃ B ⊂ U, U is I-ropen in X.          
A ⊆ U, B ⊆ U. Hence Iscl(A) ⊆ U, Iscl(B) ⊆ U ⇒ Iscl(A) ⋃ Iscl(B) ⊂ U. 
 
By hypothesis, Iscl(A) ⊆ U. So A⋃B ∈ IGSRO(X,τ). 
 
Corollary 3.17: If ISO(X,τ) be closed under finite unions, then IGSRO(X,𝜏) is closed under finite unions. 
 
Theorem 3.18: Let A be an Igsr-closed set of an ITS(X,𝜏) and A ⊆ B ⊂ Iscl(A), then B is Igsr-closed in X. 
 
Proof: Let A be an Igsr-closed set of an ITS(X,τ) and A ⊆ B ⊆ Iscl(A). Let U be I-ropen ∋ B ⊆ U. Since A is Igsr-
closed, Iscl(A) ⊆ U whenever A ⊆ U. Therefore now B ⊆ Iscl(A), ⇒ Iscl(B)  ⊆ Iscl(Iscl(A)) = Iscl(A) ⊆ U. Therefore, 
B is Igsr-closed in X. 
 
Theorem 3.19: Let A be an intuitionistic generalized semiregular open set of ITS(X,τ) and Isint(A) ⊆ B ⊆ A, then B is 
Igsr-open. 
 
Proof: Given Isint(A) ⊆ B ⊆ A. Since (Isint(A))c = Iscl(Ac). Ac ⊆ Bc ⊆ Iscl(Ac).  Ac is Igsr-closed. By theorem 3.18, Bc 
is also Igsr-closed, then B is Igsr-open.  
 
4. INTUITIONISTIC GENERALIZED SEMI REGULAR CONNECTEDNESS 
 
Definition 4.1: Let (X,τ) be an intuitionistic topological space. Then X is called Igsr-connected if there does not exists 
an proper intuitionistic set (φ̰ ≠ A ≠ X̰) of X which is both Igsr-open and Igsr-closed. 
 
Proposition 4.2: Every Igsr-connected space is intuitionistic connected. 
 
Proof: Let (X,τ) be an Igsr-connected space and assume it is not intuitionistic connected, then there exists a proper 
intuitionistic subset of X which is both intuitionistic open and intuitionistic closed. We know that every I-open set is 
Igsr-open, then X is not Igsr-connected which is a contradiction. 
 
Proposition 4.3: Every Igsr-connected space is Ig-connected. 
 
Proof: Let (X,τ) be an Igsr-connected space and assume (X,𝜏) is not Ig-connected, then there exists a proper 
intuitionistic subset of X which is both Ig-open and Ig-closed. We know that every Ig-open set is Igsr-open, then X is 
not Igsr-connected which is a contradiction. 
 
Proposition 4.4: Every Igsr-connected space is Irg-connected. 
 
Proof: Let (X,τ) be an Igsr-connected space and assume it is not Irg-connected, then there exists a proper intuitionistic 
subset of X which is both Irg-open and Irg-closed. We know that every Irg- open set is Igsr-open, then X is not Igsr-
connected which is a contradiction. 
 
Proposition 4.5: Every Igsr-connected space is I⍺g-connected. 
 
Proof: Let us consider an Igsr-connected space (X,τ). Suppose it is not I⍺g-connected, then there exists a proper 
intuitionistic subset of X which is both I⍺g-open and I⍺g-closed. Since every I⍺g-open set is Igsr-open, we get that X 
is not Igsr-connected. This is a contradiction. 
 
Proposition 4.6: Every Igsr-connected space is Igs-connected. 
 
Proof: Assume an Igsr-connected space and let it not be Igs-connected. There exists a proper intuitionistic subset of X 
which is both Igs-open and Igs-closed. As every Igs-open set is Igsr-open, we get X is not Igsr-connected which is a 
contradiction. 
 
Theorem 4.7: For an ITS(X,τ), if X is I hyper connected then every intuitionistic subset of X is Igsr-closed. 
 
Proof: If X is I hyper connected, then the only intuitionistic regular open subsets of X are < X, ϕ, X > and < X, X, ϕ >. 
So every intuitionistic subset of X is Igsr-closed. 
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