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ABSTRACT 

In this paper, I Dr N V Nagendram as an author in depth study it makes me to study and introduce the Gamma-semi 
normal sub near-field spaces in Γ-near-field space over a near-field PART III, and also Dr. N V Nagendram 
investigate the related properties, results of generalization of a Gamma-semi normal sub near-field spaces in Γ-near-
field space over a near-field. 
 
Keywords: Γ-near-field space; Γ-Semi normal sub near-field space of Γ-near-field space; Semi near-field space of      
Γ-near-field space. 
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SECTION-1: INTRODUCTION 
 
In this paper, Part III consisting important two sections I introduce the Γ-semi normal sub near-field spaces in Γ-near-
field space over a near-field, and Dr. N V Nagendram being an author investigate the related properties of 
generalization of and derived results on a Γ-semi normal sub near-field spaces in Γ-near-field space over a near-field. 
 
As a generalization of a Γ-semi normal sub near-field spaces  in Γ-near-field space over a near-field, introduced the 
notion of Γ-semi normal sub near-field spaces in Γ-near-field space over a near-field, extended many classical notions 
of Γ-semi normal sub near-field spaces  in Γ-near-field space over a near-field.  In this paper, I develop the algebraic 
theory of Γ-semi normal sub near-field spaces in Γ-near-field space over a near-field. 
 
The notion of a Γ- semi normal sub near-field spaces in Γ-near-field space over a near-field is introduced and some 
examples are given. Further the terms; commutative Γ-semi normal sub near-field spaces  in Γ-near-field space, quasi 
commutative Γ-semi normal sub near-field spaces  in Γ-near-field space, normal Γ-semi normal sub near-field spaces  
in Γ-near-field space, left pseudo commutative Γ-semi normal sub near-field spaces  in Γ-near-field space, right pseudo 
commutative Γ-semi normal sub near-field spaces  in Γ-near-field space are introduced. It is proved that (1) if S is a 
commutative Γ-semi normal sub near-field spaces  in Γ-near-field space then S is a quasi commutative Γ-semi normal 
sub near-field spaces  in Γ-near-field space, (2) if S is a quasi commutative Γ-semi normal sub near-field spaces  in      
Γ-near-field space then S is a normal Gamma-semi normal sub near-field spaces  in Γ-near-field space, (3) if S is a 
commutative Γ-semi normal sub near-field spaces  in Γ-near-field space, then S is both a left pseudo commutative and 
a right pseudo commutative Γ-semi normal sub near-field spaces  in Γ-near-field space over a near-field. Further the 
terms; left identity, right identity, identity, left zero, right zero, zero of a Gamma-semi normal sub near-field spaces  in 
Γ-near-field space over a near-field are introduced. It is proved that if a is a left identity and b is a right identity of a     
Γ-semi normal sub near-field spaces in Γ-near-field space, then a = b. It is also proved that any Γ-semi normal sub 
near-field spaces  in Γ-near-field space has at most one identity. It is proved that if a is a left zero and b is a right zero 
of a Γ-semi normal sub near-field spaces  in Γ-near-field space, then a = b and also it is proved that any Γ-semi normal 
sub near-field spaces  in Γ-near-field space over a near-field  has at most one zero element. 
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SECTION-2: RESULTS ON SEMI NORMAL SUB NEAR-FIELD SPACES IN Γ-NEAR-FIELD SPACE 
OVER A NEAR-FIELD 
 
In this section, we now introduce α-idempotent element and Γ-idempotent element in a Γ- Γ-semi sub near-field space. 
the terms α-idempotent, Γ-idempotent, strongly idempotent, mid unit, r-element, regular element, left regular element, 
right regular element, completely regular element, (α, β)-inverse of an element, semi simple element and intra regular 
element in a Γ-semi sub near-field space are introduced. Further the terms, idempotent Γ-semi sub near-field space and 
generalized commutative Γ-semi normal sub near-field space are introduced. It is proved that every generalized 
commutative Γ-semi normal sub near-field space is a left duo Γ-semi normal sub near-field space. It is proved that 
every Γ -idempotent element of a Γ-semi normal sub near-field space is regular near-field space. It is proved that every 
Γ- sub near-field space of a regular near-field space Γ -semi normal sub near-field space T is a regular near-field space 
Γ-semi normal sub near-field space of T. It is proved that a Γ-semi normal sub near-field space T is regular near-field 
space Γ-semi normal sub near-field space if and only if every principal Γ- sub near-field space is generated by an 
idempotent. Further it is also proved that, in a Γ-semi normal sub near-field space, α is a regular element if and only if 
α has an (α, β)-inverse. It is proved that, (1) if α is a completely regular element of a Γ- semi normal sub near-field 
space then α is both left regular and right regular near field space, (2) if ‘α’ is a completely regular element of a Γ-semi 
normal sub near-field space T, then a is regular and semi simple near-field space, (3) if ‘α’ is a left regular element of a 
Γ-semi sub near-field space T, then α is semi simple, (4) if ‘α’ is a right regular element of a Γ- semi normal sub near-
field space T, then a is semi simple, (5) if ‘α’ is a regular element of a Γ- semi normal sub near-field space T, then a is 
semi simple and (6) if ‘α’ is a intra regular element of a Γ- semi normal sub near-field space T, then α is semi simple. It 
is also proved that if α is an element of a duo Γ-semi normal sub near-field space, then (1) α is regular (2) α is left 
regular, (3) α is right regular, (4) α is intra regular, (5) α is semi simple, are equivalent. 
 
Definition 2.1: An element a of Γ- semi sub near-field space S is said to be a α-idempotent provided aαa = a. 
 
Note 2.2: The set of all α-idempotent elements in a Γ- semi sub near-field space S is denoted by Eα. 
 
Definition 2.3: An element a of Γ- semi sub near-field space S is said to be an idempotent or Γ-idempotent if aαa = a 
for all α ∈ Γ. 
 
Note 2.4: In a Γ- semi sub near-field space S, a is an idempotent iff a is an α-idempotent for all α ∈ Γ. 
 
Note 2.5: If an element a of Γ- semi sub near-field space S is an idempotent, then aΓa = a. 
 
We now introduce an idempotent Γ-semi sub near-field space and a strongly idempotent Γ- semi sub near-field space. 
 
Definition 2.6: A Γ- semi sub near-field space S is said to be an idempotent Γ- semi sub near-field space provided 
every element of S is α –idempotent for some α ∈ Γ. 
 
Definition 2.7: A Γ- semi sub near-field space S is said to be a strongly idempotent Γ- semi sub near-field space 
provided every element in S is an idempotent. 
 
We now introduce a special element which is known as mid unit in a Γ- semi sub near-field space. 
 
Definition 2.8: An element a of Γ- semi sub near-field space S is said to be a mid unit provided xΓaΓy = xΓy for all    
x, y ∈ S. 
 
Note 2.9: Identity of a Γ- semi sub near-field space S is a mid unit. 
 
We now introduce an r-element in a Γ- semi sub near-field space and also a generalized commutative Γ- semi sub near-
field space. 
 
Definition 2.10: An element ‘a’ of Γ- semi sub near-field space S is said to be an r-element provided aΓs = sΓa for all 
s ∈ S and if x, y ∈ S, then aΓxΓy = bΓyΓx for some b ∈ S. 
 
Definition 2.11: A Γ- semi sub near-field space S with identity 1 is said to be a generalized commutative Γ- semi sub 
near-field space provided 1 is an r-element in S. 
 
Theorem 2.12: Every generalized commutative Γ- semi sub near-field space is a left duo Γ- semi sub near-field space. 
 
Proof: Let S be a generalized commutative Γ- semi sub near-field space. Therefore 1 is an r-element.  
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Let A be a left Γ- sub near-field space of S. Let x ∈ A and s ∈ S. 
 
Now xΓs = 1ΓxΓs =bΓsΓx = (bΓs)Γx ⊆ A. Therefore A is a Γ-sub near-field space of S. 
 
Therefore S is a left duo Γ- semi sub near-field space. 
 
As an author, I Dr N V Nagendram now introduces a regular element in a Γ- semi sub near-field space and regular       
Γ- semi sub near-field space. 
 
Definition 2.13: An element a of a Γ- semi sub near-field space S is said to be regular Γ- semi sub near-field space 
provided a = aαx βa, for some x ∈ S and α, β ∈ Γ. i.e, a ∈ aΓSΓa. 
 
Definition 2.14: A Γ- semi sub near-field space S is said to be a regular Γ- semi sub near-field space provided every 
element is regular. 
 
Example 2.15: Let S be the set of 3×2 matrices and Γ be a set of some 2×3 matrices over of field. Then S is a regular 
Γ- semi sub near-field space. 
 

Verification: Let A ∈ S, where A = 

















fe
dc
ba

 

Then we chose B ∈ Γ according to the following cases such that ABABA = ABA = A. 
 

Case-1: When the sub matrix 







dc
ba

 is non-singular, then ad - bc ≠ 0. 

e, f may both be 0 or one of them is 0 or both of them are non-zero. 

                                then B = 
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−
−
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0
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and we find ABA = A. 

 

Case-2: af - be ≠ 0. Then B =
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−

beaf
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beaf
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0

0
 and ABA = A. 

 

Case-3: cf – de ≠ 0. Then B =



















−−
−

−
−

−

decf
c

decf
e

decf
d

decf
f

0

0
 and ABA = A. 

 

Case-4: When the sub matrices are singular, then either 




=−
=−





=−
=−

0
0

0
0

deaf
bcad

or
becf
bcad

. 

 
If all the elements of A are 0, then the case is trivial. Next we consider at least one of the elements of A is non-zero, say 
aij ≠ 0, i =1, 2, 3 and j =1, 2. Then we take the thbji element of B as (aij)-1 and the other elements of B are zero and we 
find that ABA = A. Thus A is regular. Hence S is a regular Γ- semi sub near-field space. 
 
Theorem 2.16: Every α-idempotent element in a  Γ- semi sub near-field space is regular Γ- semi sub near-field space. 
 
Proof: Let a be an α-idempotent element in a Γ- Γ- semi sub near-field space S. Then a = aαa for some α ∈ Γ.  
Hence  a = aαaαa. Therefore a is a regular element. 
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Example 2.17: Let S = {0, a, b} and Γ be any nonempty set. If we define a binary operation on S as the following 
Cayley’s table, then S is a Γ- semi sub near-field space. 
  
 
 
 
 
 
Define a mapping from S × Γ × S to S as aαb = ab for all a, b ∈ S and α ∈ Γ. Then S is regular Γ- semi sub near-field 
space. 
 
We now introduce a regular Γ-ideal of a Γ-semigroup. 
 
Definition 2.18: A Γ-sub near-field space A of a Γ- semi sub near-field space S is said to be regular Γ- semi sub near-
field space if every element of A is regular in A. 
 
Theorem 2.19: Every Γ-sub near-field space of a regular Γ- semi sub near-field space S is a regular Γ-sub near-field 
space of S. 
 
Proof: Let A be a Γ-sub near-field space of S and a ∈ A. Then a ∈ S and hence a is regular Γ- semi sub near-field space 
in S. 
 
Therefore a = aαbβa where b ∈ S and α, β ∈ Γ. 
 
Hence a = aαbβa = (aαbβ)( aαbβa) = aα[(bβa)αb]βa. 
 
Let b1 = (bβa)αb ∈ SΓAΓS ⊆ A. 
 
Now aαb1βa = aα[(bβa) αb] βa = a. 
 
Therefore a is regular Γ- semi sub near-field space in A and hence A is a regular Γ-sub near-field space.  
 
This completes the proof of the theorem. 
 
Theorem 2.20: If a Γ- semi sub near-field space S is a regular Γ- semi sub near-field space then every principal Γ-sub 
near-field space is generated by a β-idempotent for some β ∈ Γ. 
 
Proof: Suppose that S is a regular Γ- semi sub near-field space. Let < a > be a principal Γ-sub near-field space of S. 
 
Since S is a regular Γ- semi sub near-field space, there exists x ∈ S, α, β ∈ Γ such that a = aαxβa. 
 
Let aαx = e. Then eβe = (aαx)β(aαx) = (aαxβa)αx = aαx = e. 
 
Thus e is a β-idempotent element of S. 
 
Now a = aαxβa = eβa ∈ < e > ⇒ < a > ⊆ < e >. 
 
Also e = aαx ∈ < a > ⇒ < e > ⊆ < a >. 
 
Therefore < a > = < e > and hence every principal Γ-sub near-field space is generated by an idempotent. 
 
We now introduce left regular element, right regular element, completely regular element in a Γ-semi sub near-field 
space and completely regular Γ- semi sub near-field space. 
 
Definition 2.21: An element a of a Γ- semi sub near-field space S is said to be left regular Γ-semi sub near-field space 
provided a = aαaβx, for some x ∈ S and α, β ∈ Γ. i.e, a ∈ aΓaΓS. 
 
Definition 2.22: An element a of a Γ- semi sub near-field space S is said to be right regular Γ-semi sub near-field space 
provided a = xαaβa, for some x ∈ S and α, β∈ Γ. i.e, a ∈ SΓaΓa. 
 
 
 

. 0 a b 
0 0 0 0 
a 0 a a 
b 0 b b 



Dr. N. V. Nagendram /  
Γ-semi normal sub near-field spaces of a Γ-near-field space over near-field Part III / IJMA- 9(3), March-2018. 

© 2018, IJMA. All Rights Reserved                                                                                                                                                                         90  

 
Definition 2.23: An element a of a Γ- semi sub near-field space S is said to be completely regular Γ-semi sub near-field 
space provided, there exists an element x ∈ S such that a = aαxβa for some α, β ∈ Γ and aαx = xβa i.e., a ∈ aΓxΓa and 
aΓx = xΓa. 
 
Definition 2.24: A Γ- semi sub near-field space S is said to be completely regular Γ- semi sub near-field space provided 
every element of S is completely regular. 
 
We now introduce (α, β)-inverse of an element in a Γ- semi sub near-field space. 
 
Definition 2.25: Let S be a Γ- semi sub near-field space, a ∈ S and α, β ∈ Γ. An element b ∈ S is said to be an            
(α, β)-inverse of a if a = aαbβa and b = bαaβb. 
 
Theorem 2.26: Let S be a Γ- semi sub near-field space and a ∈ S. Then a is a regular element if and only if a has an 
(α, β)-inverse. 
 
Proof: Suppose that a is a regular element. Then a = aαbβa for some b ∈ S and α, β ∈ Γ. 
 
Let x = bβaαb ∈ S. 
 
Now aαxβa = aα(bβaαb)βa = (aαbβa)αbβa = aαbβa = a and  
xβaαx = (bβaαb)βaα (bβaαb) = bβ(aαbβa)α (bβaαb) = bβaα(bβaαb) = bβ(aαbβa)αb = bβaαb = x.  
Therefore x = bβaαb is the (α, β)-inverse of a. 
 
Conversely suppose that b is an (α, β)-inverse of a. 
Then a = aαbβa and b = bβaαb. Therefore a = aαbβa and hence a is regular. 
 
This completes the proof of the theorem. 
 
We now introduce a semi simple element of a Γ- semi sub near-field space and a semi simple Γ- semi sub near-field 
space. 
 
Definition 2.27: An element a of Γ- semi sub near-field space S is said to be semi simple provided a ∈ < a > Γ < a >, 
that is, < a > Γ < a > = < a >. 
 
Definition 2.28: A Γ- semi sub near-field space S is said to be semi simple Γ- semi sub near-field space provided every 
element of S is a semi simple element. 
 
We now introduce an intra regular element of a Γ- semi sub near-field space. 
 
Definition 2.29: An element a of a Γ- semi sub near-field space S is said to be intra regular provided a = xαaβaγy for 
some x, y ∈S and α, β, γ ∈ Γ. 
 
Example 2.30: The Γ- semi sub near-field space Let S = {0, a, b} and Γ be any nonempty set. If we define a binary 
operation on S as the following Cayley’s table, then S is a Γ- semi sub near-field space. 
  
 
 
 
 
 
Define a mapping from S × Γ × S to S as aαb = ab for all a, b ∈ S and α ∈ Γ. Then S is regular Γ- semi sub near-field 
space is an intra regular Γ-semigroup. 
 
Theorem 2.31: If ‘a’ is a completely regular element of a Γ- semi sub near-field space S, then a is regular and semi 
simple. 
 
Proof: Since a is a completely regular element in the Γ- semi sub near-field space S, a = aαxβa for some α, β ∈ Γ and   
x ∈ S. Therefore a is regular. 
 
Now a = aαxβa ∈ aΓxΓa ⊆ < a > Γ < a >. Therefore a is semi simple. This completes the proof of the theorem. 
 

. 0 a b 
0 0 0 0 
a 0 a a 
b 0 b b 
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Theorem 2.32: If ‘a’ is a completely regular element of a Γ- semi sub near-field space S, then a is both a left regular 
element and a right regular element. 
 
Proof: Suppose that a is completely regular. Then a ∈ aΓSΓa and aΓS = SΓa. 
 
Now a ∈ aΓSΓa = aΓaΓS. Therefore a is left regular. Also a ∈ aΓSΓa = SΓaΓa. Therefore a is right regular.This 
completes the proof of the theorem. 
 
Theorem 2.33: If ‘a’ is a left regular element of a Γ- semi sub near-field space S, then a is semi simple. 
 
Proof: Suppose that a is left regular. Then a ∈ aΓaΓx and hence a ∈ < a > Γ < a >. Therefore a is semi simple. This 
completes the proof of the theorem. 
 
Theorem 2.34: If ‘a’ is a right regular element of a Γ- semi sub near-field space S, then a is semi simple. 
 
Proof: Suppose that a is right regular. Then a ∈ aΓaΓx and hence a ∈ < a > Γ < a >. Therefore a is semi simple. This 
completes the proof of the theorem. 
 
Theorem 2.35: If ‘a’ is a regular element of a Γ-semigroup S, then a is Semi simple. 
 
Proof: Suppose that a is regular element of Γ-semigroup S. Then a = aαxβa, for some x ∈ S, α, β ∈ Γ and hence          
a ∈ < a > Γ < a >. Therefore a is semi simple. This completes the proof of the theorem. 
 
Theorem 2.36: If ‘a’ is a intra regular element of a Γ- semi sub near-field space S, then a is semi simple. 
 
Proof: Suppose that a is intra regular. Then a ∈ xΓaΓaΓy for x, y ∈ S and hence a ∈ < a > Γ < a > Therefore a is semi 
simple. This completes the proof of the theorem. 
 
Theorem 2.37: If S is a duo Γ- semi sub near-field space, then the following are equivalent for any element a ∈ S. 

1) a is regular.  
2) a is left regular.  
3) a is right regular.  
4) a is intra regular. 
5) a is semisimple. 

 
Proof: This can proved by cyclic method of proof. Since S is duo Γ- semi sub near-field space, aΓS1 = S1Γa.  
We have aΓS1Γa = aΓaΓS1 = S1ΓaΓa = < aΓa > = < a > Γ < a >. 
(1) ⇒ (2): Suppose that a is regular. Then a = aαxβa ∀x ∈ S and α, β ∈ Γ. 
Therefore a ∈ aΓS1Γa = aΓaΓS1 ⇒ a = aγa δy for some y ∈ S1, γ, δ ∈ Γ. 
Therefore a is left regular. 
 
(2) ⇒ (3): Suppose that a is left regular. Then a = aαaβx for some x ∈ S and α, β ∈ Γ. 
Therefore a ∈ aΓaΓS1 = S1ΓaΓa ⇒ a = y γaδa for some y ∈ S1, γ, δ ∈ Γ. 
Therefore a is right regular. 
 
(3) ⇒ (4): Suppose that a is right regular. Then for some x ∈ S, α, β ∈ Γ; a = xαaβa. Therefore a ∈ S1ΓaΓa = < aΓa > 
⇒ a = xαaβaγy for some x, y ∈ S1 and α, β, γ ∈ Γ. Therefore a is intra regular.  
 
(4) ⇒ (5): Suppose that a is intra regular. Then a = xαaβaγy ∀x, y ∈ S1 and α,β, γ ∈ Γ. Therefore, a ∈ < a > Γ < a >. 
Therefore a is semi simple. 
 
(5) ⇒ (1): Suppose that a is semi simple. Then a ∈ < a > Γ < a > = aΓS1Γa 
⇒ a ∈ aαxβa for some x ∈ S1and α, β ∈ Γ.  
Therefore a is a regular element. 
This completes the proof of the theorem. 
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