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ABSTRACT 
In this paper we have introduced a new class of sets called (i, j)(𝑔𝑠𝑝)∗-closed sets in bitopological spaces which is 
properly placed in between the class of closed sets and gsp-closed sets. As an application, we introduce two new spaces 
namely,  𝑇𝑔𝑠𝑝∗ -space, g𝑇𝑔𝑠𝑝∗ -space.  
 
Keywords: (i, j)(𝑔𝑠𝑝)∗-closed set, 𝑇𝑔𝑠𝑝∗ , g𝑇𝑔𝑠𝑝∗ -spaces. 
 
 
1. INTRODUCTION 
 
Levine [10] introduced the class of g -closed sets in 1970. Maki.et.al [12] defined gα -closed sets in 1994. Arya and 
Tour [3] defined gs -closed sets in 1990. Dontchev [8], Gnanambal [9] Palaniappan and Rao[17] introduced gsp-closed 
sets, gpr -closed sets and rg -closed sets respectively. Veerakumar [18] introduced 𝑔∗-closed sets in 1991. J.Dontchev 

[8] introduced gsp-closed sets in 1995. Levine [10] Devi. et al. [5,6] introduced 2/1T - spaces, bT  spaces and bTα  

spaces respectively. Veerakumar [18] introduced 2/1T *-spaces. The purpose of this paper is to introduce the concepts 
of (i,j) (𝑔𝑠𝑝)∗-closed sets, 𝑇𝑔𝑠𝑝∗ -space, g𝑇𝑔𝑠𝑝∗ -space are introduced and investigated.  
 
2. PRELIMINARIES 
 
Throughout this paper (X,𝜏), (Y,𝜎) represent non-empty topological spaces on which no separation axioms are assumed 
unless otherwise mentioned. For a subset A of a space (X,𝜏1,𝜏2) cl(A) and int(A) denote the closure and the interior of 
A respectively. The class of all closed subsets of a space (X,𝜏1,𝜏2) is denoted by (X,𝜏1,𝜏2) The smallest semi-closed 
(resp.pre-closed and 𝛼-closed) set containing a subset A of (X,𝜏1,𝜏2) is called the semi-closure (resp.pre-closure and     
𝛼-closure) of A and is denoted by scl(A)(resp.pcl(A) and 𝛼cl(A))   
 
Definition 2.1: A subset A of topological space (X,𝜏1,𝜏2) is called  

(1) a  pre-open set[14] if ))(int( AclA ⊆  and a pre-closed set if cl(int(A)) A⊆  
(2) a semi-open set [11] if ))(int(AclA ⊆ and a semi-closed set if AAcl ⊆))(int(  
(3) a semi-preopen set[1] if ))((int( AclclA ⊆  and a semi-preclosed set[ 1] if AAcl ⊆)))(int(int(  
(4) an 𝛼-open set [15] if )))(int(int( AclA ⊆ and an 𝛼-closed set [15] if AAclcl ⊆)))((int(  
(5) a regular-open  set[14] if intcl(A)=A and an regular-closed set [14] if A= intcl(A) 

 
Definition 2.2: A subset A of topological space (X,𝜏1,𝜏2) is called 

(1) a generalized closed set (briefly g-closed) [10] if UAcl ⊆)(  whenever UA ⊆  and U is open in (X,𝜏1,𝜏2) 
(2) generalized semi-closed set(briefly) gs-closed [3] if UAscl ⊆)( whenever UA ⊆ and U is open in 

(X,𝜏1,𝜏2) 
(3) an 𝛼- generalized closed set (briefly 𝛼g-closed) [12] if 𝛼 UAcl ⊆)( whenever UA ⊆ and U is open in 

(X,𝜏1,𝜏2) 
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(4) a generalized semi pre-closed set (briefly gsp-closed) [8] if sp UAcl ⊆)( whenever UA ⊆ and U is open 

in (X,𝜏1,𝜏2) 
(5) a regular  generalized closed set (briefly rg-closed) [17] if sp UAcl ⊆)(  whenever UA ⊆ and U is regular 

open in (X,𝜏1,𝜏2) 
(6) a generalized pre-closed set (briefly gp-closed) [13] if p UAcl ⊆)( whenever UA ⊆  and U is open in 

(X,𝜏1,𝜏2) 
(7) a generalized pre regular-closed set (briefly gpr-closed) [9] if p UAcl ⊆)( whenever UA ⊆ and U is open 

in (X,𝜏1,𝜏2) 
(8) a wg-closed set [16] if UAcl ⊆))(int( whenever UA ⊆  and U is  g-open in (X,𝜏1,𝜏2) 
(9) a gsp-closed set [8] if UAcl ⊆)( whenever UA ⊆  and U is  gsp-open in (X,𝜏1,𝜏2) 
 

Definition: 2.3: A topological space (X,𝜏) is said to be  
(1) a 𝑇1

2�
space [10] if every g-closed set in it is closed. 

(2) a 𝑇𝑏  space [6] if every gs-closed set in it is closed. 
(3) a 𝛼𝑇𝑏  space [5] if every 𝛼g-closed set in it is closed. 

 
3. BASIC PROPERTIES OF (i, j)(𝒈𝒔𝒑)∗ - CLOSED SETS 
 
We introduce the following definitions 
 
Definition 3.1: A subset A of bitopological space (X,𝜏1,𝜏2) is called a (i,j) (𝑔𝑠𝑝)∗-closed set if 𝜏𝑗-cl(A) U⊆ whenever

UA ⊆  and U is 𝜏𝑖-gsp open. 
 
Remark 3.2: By setting 𝜏1= 𝜏2  in definition (1.1)  a (i,j) (𝑔𝑠𝑝)∗-closed set is a (𝑔𝑠𝑝)∗-closed set. 
 
Proposition 3.3: Every 𝜏𝑗-closed set A is (i, j) (𝑔𝑠𝑝)∗-closed. 
 
Proof: Let A be 𝜏𝑗-closed. Let UA ⊆  and U is 𝜏𝑖-gsp open.𝜏𝑗- cl(A) = A U⊆  whenever UA ⊆  and U is 𝜏𝑖-gsp 
open. 
∴ A is (i, j) (𝑔𝑠𝑝)∗-closed. 
 
The converse of the above proposition need not be true in general as seen in the following example. 
 
Example 3.4:  X= {a, b, c},𝜏1= {𝜑,X,{c},{a, c}},𝜏2= {𝜑,X,{a}} 
Then A= {b} is (i, j) (𝑔𝑠𝑝)∗-closed but it is not 𝜏𝑗-closed.  
∴ Every (i, j)(𝑔𝑠𝑝)∗-closed set need not be 𝜏𝑗-closed. 
 
Proposition 3 .5: Every (i, j) (𝑔𝑠𝑝)∗-closed set is (i, j) g-closed. 
 
Proof: Let A be (i, j) (𝑔𝑠𝑝)∗-closed. Then 𝜏𝑗-cl(A)⊆  U whenever A⊆  U and U is 𝜏𝑖- gsp open.  
Let us prove that A is (i, j) g-closed. Let UA ⊆ where  U be 𝜏𝑖-open. Then UA ⊆  where U is 𝜏𝑖 gsp-open. 
Then 𝜏𝑗-cl(A) U⊆ , since A is (i, j) (𝑔𝑠𝑝)∗-closed. 
∴A is (i, j) g-closed. 
 
The converse of the above proposition need not be true in general as seen in the following example. 
 
Example 3.6: X= {a, b, c},𝜏1= {𝜑,X,{c},{a, c}},𝜏2= {𝜑,X,{b},{a, b}} 
Then A= {a} is (i, j) g-closed but it is not (i, j) (𝑔𝑠𝑝)∗-closed. 
∴ Every (i, j)  g-closed set need not be (i, j) (𝑔𝑠𝑝)∗-closed. 
 
Proposition 3.7: Every (i, j) (𝑔𝑠𝑝)∗-closed set is (i, j) gs-closed. 
 
Proof: Let A be (i, j) (𝑔𝑠𝑝)∗-closed.Then 𝜏𝑗-cl(A) U⊆ whenever UA ⊆ and U is 𝜏𝑖 gsp-open.  
Let us prove that A is (i, j) gs-closed. Let UA ⊆  and U is 𝜏𝑖- open. Then UA ⊆  and U is 𝜏𝑖 gsp-open. 
∴ 𝜏𝑗-cl(A) U⊆ , since A is (i,j) (𝑔𝑠𝑝)∗-closed.𝜏𝑗-scl(A) UAcl ⊆⊆ )( ,  

∴ 𝜏𝑗-cl(A) U⊆ , whenever UA ⊆  and U  is 𝜏𝑖 –open. 
∴ A is (i,j) gs-closed. 
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The converse of the above proposition need not be true in general as seen in the following example. 
 
Example 3.8: X= {a, b, c},𝜏1= {𝜑,X,{c},{a,c}},𝜏2= {𝜑,X,{b},{a,b}} 
Then A= {a} is (i, j) gs-closed but it is not (i, j) (𝑔𝑠𝑝)∗-closed. 
∴ Every (i, j) gs-closed set need not be (i, j) (𝑔𝑠𝑝)∗-closed. 
 
Proposition 3.9: Every (i,j) )(𝑔𝑠𝑝)∗-closed set is (i,j) 𝛼𝑔-closed. 
 
Proof:   Let A be (i, j) (𝑔𝑠𝑝)∗-closed.Then 𝜏𝑗-cl(A) U⊆ whenever UA ⊆  and U is 𝜏𝑖 gsp-open.  
Let us prove that A is (i, j) 𝛼g-closed.Let UA ⊆  and U is 𝜏𝑖- open. 
Then UA ⊆  where  U is 𝜏𝑖 gsp-open.𝜏𝑗-cl(A) U⊆ , since A is (i, j) (𝑔𝑠𝑝)∗-closed. 
𝜏𝑗-𝛼cl(A) UAcl ⊆⊆ )( ∴𝜏𝑗-𝛼cl(A) U⊆  whenever UA ⊆ and U  is 𝜏𝑖 –open. 
Hence A is (i, j) 𝛼g-closed. 
 
The converse of the above proposition need not be true in general as seen in the following example. 
 
Example 3.10: X= {a, b, c},𝜏1= {𝜑,X,{c},{a,c}}, 𝜏2= {𝜑,X,{b},{a,b}} 
Then A= {a} is (i, j) 𝛼g-closed but it is not (i, j) (𝑔𝑠𝑝)∗-closed. 
∴Every (i, j) 𝛼g-closed set need not be (i, j) (𝑔𝑠𝑝)∗-closed.  
 
Proposition 3.11: Every (i, j))(𝑔𝑠𝑝)∗-closed set is (i, j) 𝑔𝑠𝑝-closed. 
 
Proof: Let A be (i,j) (𝑔𝑠𝑝)∗-closed.Then 𝜏𝑗-cl(A) U⊆ whenever UA ⊆  and U is 𝜏𝑖 gsp-open.  
Let us prove that A is (i, j) gsp-closed. Let UA ⊆  where U is 𝜏𝑖- open. Then UA ⊆ where U is 𝜏𝑖 gsp-open.Then 
𝜏𝑗-cl(A) U⊆ , since A is (i, j) (𝑔𝑠𝑝)∗-closed.𝜏𝑗-spcl(A)⊆  𝜏𝑗-cl(A) U⊆  
∴𝜏𝑗-spcl(A)⊆U  whenever UA ⊆ and U  is 𝜏𝑖 –open. 
∴ A is (i, j) gsp-closed. 
 
Example 3.12: X= {a, b, c},𝜏1= {𝜑,X,{c},{a,c}},𝜏2= {𝜑,X,{a}} 
Then A= {c} is(i, j) gsp-closed but it is not (i, j) (𝑔𝑠𝑝)∗-closed. 
∴Every (i, j) gsp-closed set need not be (i, j) (𝑔𝑠𝑝)∗-closed. 
 
Proposition 3.13: Every (i, j) )(𝑔𝑠𝑝)∗-closed set is (i, j) r𝑔-closed. 
 
Proof: Let A be (i, j) (𝑔𝑠𝑝)∗-closed.Then 𝜏𝑗-cl(A) U⊆ whenever UA ⊆ and U is 𝜏𝑖 gsp-open.  
Let us prove that A is (i, j) rg-closed. Let UA ⊆  where  U be 𝜏𝑖  – gsp-open. 
Then UA ⊆  where U is 𝜏𝑖 regular open. 
∴ 𝜏𝑗-cl(A) U⊆ ,since A is (i , j) (𝑔𝑠𝑝)∗-closed. 
∴ A is (i, j) rg-closed. 
 
The converse of the above proposition is not true which is proved in the following example. 
 
Example 3.14: X= {a, b, c},𝜏1= {𝜑, X,{c},{a, c}},𝜏2= {𝜑, X,{a}}  
A= {c} is (i,j) rg-closed butit is  not (i, j) (𝑔𝑠𝑝)∗-closed. 
∴Every (i, j) rg-closed set need not be (i, j) (𝑔𝑠𝑝)∗-closed. 
 
Proposition 3.15: Every (i, j) )(𝑔𝑠𝑝)∗-closed set is (i,j) 𝑔p-closed but not conversely. 
 
Proof: Let A be (i,j) (𝑔𝑠𝑝)∗-closed.Then 𝜏𝑗-cl(A) U⊆ whenever UA ⊆ and U is 𝜏𝑖 gsp-open. 
Let us prove that A is (i, j) gp-closed. Let UA ⊆ and U is 𝜏𝑖 - open. Then UA ⊆  and U is 𝜏𝑖 gsp-open.  

Therefore  𝜏𝑗-cl(A) U⊆ ,since A is (i, j) (𝑔𝑠𝑝)∗-closed.𝜏𝑗-pcl(A) UAclj ⊆⊆ )(τ . 

∴ 𝜏𝑗-pcl(A) U⊆ .Therefore A is (i, j) gp-closed. 
 
The converse of the above proposition need not be true in general as seen in the following example 
 
Example 3.16: X= {a, b, c},𝜏1= {𝜑, X,{c},{a,c}},𝜏2= {𝜑, X,{a}} 
 



Pauline Mary Helen M and Kulandhai Therese. A* / (𝒈𝒔𝒑)∗-Closed Sets in Bitopological Spaces / IJMA- 9(3), March-2018. 

© 2018, IJMA. All Rights Reserved                                                                                                                                                                        47  

 
Then A= {c} is (i, j) gp-closed but it is not (i, j) (𝑔𝑠𝑝)∗-closed. 
∴Every (i, j) gp-closed set need not be (i,j) (𝑔𝑠𝑝)∗-closed. 
 
Proposition 3.17: Every (i, j))(𝑔𝑠𝑝)∗-closed set is (i, j) 𝑔pr-closed. 
 
Proof: Let A be (i, j) (𝑔𝑠𝑝)∗-closed.Then 𝜏𝑗-cl(A) U⊆ whenever UA ⊆ and U is 𝜏𝑖 gsp-open.  
Let us prove that A is (i,j) gpr-closed. Let UA ⊆  where U is 𝜏𝑖- regular open.  
Then UA ⊆  where U is 𝜏𝑖 gsp-open. 
⇒  𝜏𝑗-cl(A) U⊆ , since A is (i, j) (𝑔𝑠𝑝)∗-closed. 
∴ 𝜏𝑗-pcl(A)⊆  𝜏𝑖cl(A)⊆U.  
∴ 𝜏𝑗-pcl(A)⊆U whenever A⊆U and U is 𝜏𝑖 regular open. 
∴A is (i, j) gpr-closed. 
 
The converse of the above proposition need not be true in general as seen in the following example. 
 
Example 3.18: X= {a, b, c},𝜏1= {𝜑,X,{c},{a,c}},𝜏2= {𝜑,X,{a}} 
Every subset A is gpr-closed. Then A= {a} is (i, j) gpr-closed but it is not (i, j) (𝑔𝑠𝑝)∗-closed 
 
Every (i, j) gpr-closed set need not be (i, j)(𝑔𝑠𝑝)∗-closed. 
 
Proposition 3.19: Every (i, j))(𝑔𝑠𝑝)∗-closed set is (i,j) 𝑤𝑔-closed but not conversely  
 
Proof: Let A be (i,j) (𝑔𝑠𝑝)∗-closed.Then 𝜏𝑗-cl(A) U⊆ whenever UA ⊆ and U is 𝜏𝑖 gsp-open. 
Let us prove that A is (i,j) wg-closed. Let UA ⊆  where U is 𝜏𝑖 - open. Then UA ⊆ where U is 𝜏𝑖 gsp-open. 

⇒ 𝜏𝑗-cl(A) U⊆ , since A is (i, j) (𝑔𝑠𝑝)∗-closed.𝜏2-cl(int(A)) UAcl ⊆⊆ )(2τ  
∴  𝜏2-cl(int(A )U⊆  whenever  𝜏𝑖 - open. 
∴  A is (i, j) wg-closed. 
 
The converse of the above proposition need not be true in general as seen in the following example. 
 
Example 3.20: X= {a, b, c},𝜏1= {𝜑,X,{b},{a,b}},𝜏2= {𝜑,X,{a}} 
Then A= {b} is (i, j) wg -closed but not (i, j) (𝑔𝑠𝑝)∗-closed. 
∴ Every (i, j) wg-closed set need not be (i, j) (𝑔𝑠𝑝)∗-closed.  
 
4. APPLICATION OF (i, j) (𝒈𝒔𝒑)∗-CLOSED SET 
 
Definition 4 .1: A space (X,𝜏) is called a 𝑇𝑔𝑠𝑝∗ - space if every (𝑖, 𝑗)(𝑔𝑠𝑝)∗-closed set is 𝜏𝑗closed. 
 
Definition 4.2: A space (X,𝜏) is called a 𝑔𝑇𝑔𝑠𝑝∗ - space if every g-closed set is (𝑖, 𝑗)(𝑔𝑠𝑝)∗ closed. 
 
Definition 4.3: A space (X,𝜏) is called a 𝑔𝑇𝑔𝑠𝑝∗ - space if every g-closed set is (𝑔𝑠𝑝)∗ closed. 
 
Theorem 4.4: Every 𝑇1

2�
-space is  𝑇𝑔𝑠𝑝∗ - space 

 
Proof: Let (X, 𝜏)  be a 𝑇1

2�
- space Let us prove that (X,𝜏) is a 𝑇𝑔𝑠𝑝∗ - spaceLet A be a (𝑖, 𝑗)(𝑔𝑠𝑝)∗-closed set. 

Since every (𝑖, 𝑗)(𝑔𝑠𝑝)∗-closed set is g-closed, A is 𝜏𝑗g-closed. 
 
Since (X,𝜏) is a 𝑇1

2�
-space, A is 𝜏𝑗closed. 

∴ (X,𝜏) is a   𝑇𝑔𝑠𝑝∗ - space  
 
The converse of the above theorem need not be true in general as seen in the following example. 
 
Example 4.5: Let X = {a, b,c} and 𝜏= {𝜑,X,{a},{a,b}} 
Then in example3.5 we have proved that the g-closed sets are  𝜑, X,{b},{a,b},{b,c} and the (𝑖, 𝑗)(𝑔𝑠𝑝)∗-closed sets are 
𝜑, X, {b},{a,b}, {b,c}  Since all the (𝑖, 𝑗)(𝑔𝑠𝑝)∗-closed sets are closed, (X,𝜏) is a   𝑇𝑔𝑠𝑝∗ - space. 
∴ A= {b, c} is 𝜏𝑗g-closed but it is not closed,and hence it is not a 𝑇1

2�
- space. Hence a 𝑇𝑔𝑠𝑝∗ - space need not be a  𝑇1

2�
- 

space. 
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Theorem 4.6:  Every 𝛼𝑇𝑏-space is 𝑇𝑔𝑠𝑝∗ - space but not conversely. 
 
Proof: Let (X, 𝜏)  be a 𝛼𝑇𝑏- space Let us prove that (X,𝜏) is a 𝑇𝑔𝑠𝑝∗ - space. Let A be a (𝑖, 𝑗),  (𝑔𝑠𝑝)∗-closed set. 
Every (𝑖, 𝑗)(𝑔𝑠𝑝)∗-closed set is 𝜏𝑗𝛼g-closed and hence A is 𝜏𝑗𝛼g-closed. 
 
Since (X,𝜏) is a 𝛼𝑇𝑏-space, A is 𝜏𝑗closed. 
∴ (X,𝜏) is a   𝑇𝑔𝑠𝑝∗ - space  
 
The converse of the above theorem need not be true in general as seen in the following example. 
 
Example 4.7: Let X = {a, b, c} and 𝜏= {𝜑, X, {a}, {a, b}} 
Then in example 3.10 we have proved that the 𝛼g-closed sets are 𝜑, X, {a},{b},{c},{a, b}, 
{a, c},{b, c} and the (𝑖, 𝑗)(𝑔𝑠𝑝)∗-closed sets are 𝜑, X, {b},{a, b}, {b, c}.  
 
Since the (𝑖, 𝑗)(𝑔𝑠𝑝)∗-closed sets are closed, (X,𝜏) is a   𝑇𝑔𝑠𝑝∗ - space. 
∴ A= {b} is 𝜏𝑗𝛼g-closed, but it is not closed and hence it is not a 𝛼𝑇𝑏- space.  
Hence a 𝑇𝑔𝑠𝑝∗ - space need not be a 𝛼𝑇𝑏- space. 
 
Theorem 4.8: Every 𝑇𝑏-space is 𝑇𝑔𝑠𝑝∗ - space but not conversely. 
 
Proof: Let (X, 𝜏)  be a 𝑇𝑏- space. Let us prove that (X, 𝜏) is a 𝑇𝑔𝑠𝑝∗ - space. Let A be a (𝑖, 𝑗)(𝑔𝑠𝑝)∗-closed set.  
Every (𝑖, 𝑗)(𝑔𝑠𝑝)∗-closed set is 𝜏𝑗gs-closed and hence A is 𝜏𝑗gs-closed.  
 
Since (X,𝜏) is a 𝑇𝑏-space, A is 𝜏𝑗closed. 
∴ (X,𝜏) is a   𝑇𝑔𝑠𝑝∗ - space. 
 
The converse of the above theorem need not be true in general as seen in the following example. 
 
Example 4.9: Let X = {a, b, c} and 𝜏= {𝜑, X, {a},{a,b}} 
Then in example 3.8 we have proved that the gs-closed sets are  𝜑, X, {a} {b},{c},{a, b}, 
{a, c},{b, c} and the (𝑖, 𝑗)(𝑔𝑠𝑝)∗-closed sets are 𝜑, X, {b},{a, b}, {b, c}.  
 
Since the (𝑔𝑠𝑝)∗-closed sets are closed, (X,𝜏) is a   𝑇𝑔𝑠𝑝∗ - space. 
∴ A= {b} is gs-closed, but it is not closed, and hence it is not a 𝑎𝑇𝑏- space. 
Hence a   𝑇𝑔𝑠𝑝∗ - space need not be a          𝑇𝑏- space. 
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