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ABSTRACT  

A dominating set 𝐷 of a graph 𝐺 = 𝐺(𝑉,𝐸) is called metro dominating set 𝐺 if for every pair of vertices 𝑢,𝑣 there 
exists a vertex  𝑤 in 𝐷 such that 𝑑(𝑢,𝑤) ≠ 𝑑(𝑣,𝑤). The 𝑘- metro domination number of Cartesian product of 
𝑃2𝑋𝑃𝑛  �𝛾𝛽𝑘(𝑃2𝑋𝑃𝑛)�,  is the order of smallest  𝑘- dominating set of 𝑃2𝑋𝑃𝑛 which resolves as a metric set. In this paper 
we calculate the 𝑘- metro domination number of Cartesian product of 𝑃2𝑋𝑃𝑛. 
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INTRODUCTION 
 
Let 𝐺(𝑉,𝐸) be a graph. A subset of vertices 𝐷 ⊆ 𝑉 is called a dominating set (𝛾 − 𝑠𝑒𝑡) if every vertex 𝑉 − 𝐷 adjacent 
to at least one vertex in 𝐷. The minimum cardinality of dominating set is called domination number of the graph 𝐺 and 
it is denoted by  𝛾(𝐺).  
 
The metric dimension of a graph 𝐺 is denoted by 𝛽(𝐺), is defined as the cardinality of a minimal subset 𝑆 ⊆ 𝑉 having 
the property that  for each pair of vertices 𝑢, 𝑣 in 𝐺 there exists a vertex in 𝑤 in 𝑆 such that 𝑑(𝑢,𝑤) ≠ 𝑑(𝑣,𝑤), the 
coordinate of each vertex 𝑣 of 𝑉(𝐺) with respect of each landmark 𝑢𝑖 belongs to 𝑆 is defined as usual with 𝑖𝑡ℎ 
component of  𝑣 as 𝑑(𝑢,𝑣𝑖) for each 𝑖 and is of dimension 𝛽(𝐺).  
 
Metro domination number introduced by B.Sooryanaraya and Raghunath.P [8]. Fink and Je-cobson [11] in 1985 
introduced the concept of multiple domination. A subset 𝐷 of 𝑉(𝐺) is 𝑘- dominating in 𝐺 if every vertex of  𝑉 − 𝐷 has 
at least 𝑘  neighbours in 𝐷. The cardinality of minimum 𝑘-dominating set is called 𝑘-domination number of 𝐺 and is 
denoted by 𝛾𝑘(𝐺).  
 
A dominating set 𝐷 of a graph 𝐺(𝑉,𝐸) is called metro dominating set of 𝐺 if for each pair of  vertices 𝑢, 𝑣 there exists 
a vertex  𝑤 𝑖𝑛 𝐷  such that  𝑑(𝑢,𝑤) ≠ 𝑑(𝑣,𝑤).  For example: The set of darkened vertices of the graph 𝐺, 𝑜𝑓 𝑓𝑖𝑔𝑢𝑟𝑒1, 
is 2-metro dominating set and hence 𝛾𝛽2(𝐺) = 3.  
 

 
𝐅𝐢𝐠𝐮𝐫𝐞 − 𝟏: 𝛾𝛽2(𝑃2𝑋𝑃8) = 3. 

 
Theorem: 1.1(3). For all 𝑚 ≥ 2 𝑎𝑛𝑑 𝑛 ≥ 3 we have that 𝛽(𝑃𝑚𝑋𝑃𝑛) is 2 if 𝑛 is odd, and 3 if 𝑛 is even. 
 

Theorem: 1.2(2). Let 𝐾 ≥ 1 then 𝛾𝑘(𝑃2𝑋𝑃𝑛) = �
𝑛
2𝑘

+ 1  𝑖𝑓 𝑛 ≡ 0(𝑚𝑜𝑑2𝑘)

� 𝑛
2𝑘
�                    𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

�     
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2. OUR RESULTS  
 
Theorem 2.1: For all   𝑚,𝑛, 𝛾𝛽2(𝑃2𝑋𝑃𝑛) = �𝑛+1

3
� ,𝑛 ≥ 7. 

 
Theorem 2.2: For all  𝑚,𝑛, 𝛾𝛽3(𝑃2𝑋𝑃𝑛) = �n+1

4
� , n ≥ 9.  

 

Theorem 2.3: For all  𝑚,𝑛, 𝛾𝛽4(𝑃2𝑋𝑃𝑛) = �𝑛+1
5
� ,𝑛 ≥ 11.  

 
Theorem 2.4: For all  𝑚,𝑛, 𝛾𝛽𝑘(𝑃2𝑋𝑃𝑛) = �𝑛+1

𝑘+1
� ,𝑛 ≥ 2𝑘 + 3. 

 
Proof: Consider 𝑃2𝑋𝑃𝑛 as two canonical copies of 𝑃𝑛 with vertices labelled 𝑢1,𝑢2, … . .𝑢𝑛 and  𝑣1, 𝑣2, … … 𝑣𝑛 with for 
each 𝑖, 𝑢𝑖𝑣𝑖 the only edges between the two paths. By using the theorem 1.1 and theorem 1.2, since a metro dominating 
set 𝐷 is also a dominating set then we show that 𝛾𝛽𝑘(𝑃2𝑋𝑃𝑛) ≥ �𝑛+1

𝑘+1
�.                                                                            (1) 

 
To prove reverse inequality we find a metro dominating set of cardinality �𝑛+1

𝑘+1
�. 

𝐷1 = �𝑢2(𝑙−𝑘)+1:  𝑙 ≥ 1�, 𝑛 ≡ 0�𝑚𝑜𝑑2(𝑘 + 1)�  
𝐷2 = {𝑣2𝑙−𝑘+2:  𝑙 ≥ 1}, 𝑛 ≡ 𝑘 + 2�𝑚𝑜𝑑2(𝑘 + 1)�  
 
Let us choose the vertices dominates at least 2𝑘 + 1, hence minimum number of vertices required to dominate the 
vertices of  𝑃2𝑋𝑃𝑛 is  �𝑛+1

𝑘+1
�. By using the theorem 1.1 we note that the dominating set which satisfies the above 

condition also serves as metric basis. Thus 𝛾𝛽𝑘(𝑃2𝑋𝑃𝑛) ≤ �𝑛+1
𝑘+1

�.                                                                                    (2)  
 
Therefore from (1) and (2),  𝛾𝛽𝑘(𝑃2𝑋𝑃𝑛) = �𝑛+1

𝑘+1
�. 
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