CHARACTERIZATION OF A FOUR-DIMENSIONAL LORENTZIAN MANIFOLDS USING JACOBI OPERATOR
 Prof. Dr. Sci. VESELIN TOTEV VIDEV*
 Dept. Mathematics and Informatics, Trakia University, 6000 Stara Zagora, Bulgaria, Europe Union.

(Received On: 27-11-17; Revised \& Accepted On: 18-01-18)

Abstract

In the present note we characterize a four-dimensional Lorentzian manifolds using characteristic coefficients of the Jacobi operator.

Mathematical subject classification: 53 B 20.
Keywords: Jacobi operator, Lorentzian manifolds, reducible space, space of maximal mobility.

An n-dimensional Riemannian manifold M with metric g is called a Lorentzian manifold if at any point $p \in M$, the tangent space M_{p} to the manifold is an n-dimensional vector space with signature ($-,+, \ldots,+$) or (+,+,...,+,-). An unit tangent vector X is called spacelike tangent vector if $g(X, X)=1$ and X is called timelike tangent vector if $g(X, X)=-1$. The set of all spacelike unit tangent vectors in the tangent space M_{p} we denote by $S_{p}{ }_{p} M$, and the set of all unit timelike tangent vectors in M_{p}, we denote by $S_{p}^{-} M$. If ∇ is the Levi-Civita connection induced by g, then the curvature tensor R of type (1, 3), on the manifold M, is defined by the equality

$$
R(x, y, z)=\nabla_{x} z+\nabla_{y}^{z-\nabla_{[x, y]}^{z}, ~}
$$

where $x, y, z \in M_{p}, p \in M$, and [...] are the Lee brackets. Using this tensor we define the curvature tensor of type (0,4) in the following way:

$$
R(x, y, z, u)=g(R(x, y, z), u) .
$$

The curvature tensor R has the following properties:

$$
\begin{aligned}
& R(x, y, z, u)=-R(y, x, z, u)=-R(x, y, u, z), \\
& R(x, y, z, u)+R(y, z, x, u)+R(z, x, y, u)=0, \\
& R(x, y, z, u)=R(z, u, x, y), \\
& \sigma_{x y z}\left(\nabla_{x} R\right)(y, z, u)=0,
\end{aligned}
$$

where $x, y, z, u \in S^{ \pm}{ }_{p} M$, and σ is a cyclic sum over x, y, z. The Ricci tensor ρ on the manifold M is a bilinear symmetric function defined by the equality:

$$
\rho(x, y)=\operatorname{trace}(z \rightarrow R(z, x, y)),
$$

where $x, y, z \in S^{ \pm}{ }_{p} M, p \in M$. Any Lorentzian manifold M with the property

$$
\rho(x, y)=\lambda g(x, y)
$$

$\lambda=$ const., $x, y \in S^{ \pm}{ }_{p} M$ is called Einstein Lorentzian manifold [1].

Let M be a four-dimensional Lorentzian manifold and let $e_{1}, e_{2}, e_{3}, e_{4}\left(e_{4} \in S_{p}^{-} M\right)$ be an arbitrary Lorentzian basis in the tangent space M_{p}, at a point $p \in M$. A bivector space $\wedge^{2} M_{p}$ is a 6 -dimensional vector space of signature (+,+,+,-,-,-), in which $e_{1} \wedge e_{2}, e_{1} \wedge e_{3}, e_{1} \wedge e_{4}, e_{3} \wedge e_{4}, e_{4} \wedge e_{2}, e_{2} \wedge e_{3}$ is an orthonormal basis, where \wedge is the second exterior product in M_{p}, $p \in M[1]$.

Proposition 1[4]: Let M be a four-dimensional Einstein Lorentzian manifold. Then at any point $p \in M$, there exist a Lorentzian basis $e_{1}, e_{2}, e_{3}, e_{4}\left(e_{4} \in S_{p}^{-} M\right)$ in the tangent space M_{p}, such that the matrix of the curvature operator \Re in bivector space $\wedge^{2} M_{p}$, with respect to the orthonormal basis $e_{1} \wedge e_{2}, e_{1} \wedge e_{3}, e_{1} \wedge e_{4}, e_{3} \wedge e_{4}, e_{4} \wedge e_{2}, e_{2} \wedge e_{3}$, has the form:

$$
\left(\begin{array}{ll}
\mathcal{M} & \mathcal{N} \\
-\mathcal{N} & \mathcal{M}
\end{array}\right)
$$

where M and N are one of the following three types:

$$
\begin{align*}
& \mathcal{M}=\left(\begin{array}{ccc}
\alpha_{1} & 0 & 0 \\
0 & \alpha_{2} & 0 \\
0 & 0 & \alpha_{3}
\end{array}\right), \mathcal{N}=\left(\begin{array}{ccc}
\beta_{1} & 0 & 0 \\
0 & \beta_{2} & 0 \\
0 & 0 & \beta_{3}
\end{array}\right), \tag{I}\\
& \alpha_{1}+\alpha_{2}+\alpha_{3}=\lambda \text {, } \\
& \beta_{1}+\beta_{2}+\beta_{3}=0 \quad ; \\
& \mathscr{M}=\left(\begin{array}{ccc}
\alpha_{1} & 0 & 0 \\
0 & \alpha_{2}+1 & 0 \\
0 & 0 & \alpha_{2}{ }^{-1}
\end{array}\right), \quad \mathcal{N}=\left(\begin{array}{ccc}
\beta_{1} & 0 & 0 \\
0 & \beta_{2} & 1 \\
0 & 1 & \beta_{2}
\end{array}\right), \tag{II}\\
& \alpha_{1}+2 \alpha_{2}=\lambda \quad, \\
& \beta_{1}+2 \beta_{2}=0 \quad ; \\
& \mathcal{M}=\left(\begin{array}{ccc}
\alpha & 1 & 0 \\
1 & \alpha & 0 \\
0 & 0 & \alpha
\end{array}\right), \quad \mathcal{N}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & -1 & 0
\end{array}\right), \quad 3 \alpha=\lambda . \tag{III}
\end{align*}
$$

We call this basis Petrov basis of type I, II or III.
The Jacobi operator R_{X} is a symmetric linear operator in the tangent space M_{p}, at a point $p \in M$, defined by the equality [3]:

$$
R_{X}(u)=R(u, X, X), \quad X \in S^{ \pm}{ }_{p} M
$$

Since X is an eigenvector of R_{X}, with the corresponding eigenvalue 0 , then the characteristic equation of R_{X} has the form:

$$
\begin{equation*}
c\left(c^{n-1}-J_{1} c^{n-1}+J_{2} c^{n-2}+\ldots+(-1)^{n-2} J_{n-2} c+(-1)^{n-1} J_{n-1}\right)=0 \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
J_{1}(p ; X)=\rho(X, X), \quad X \in S^{ \pm} M \tag{2}
\end{equation*}
$$

If trace $J_{1}(p ; X)$ is a pointwise constant, for any tangent vector $X \in S^{ \pm} M$, at any point $p \in M$, then from (2) it follows that M is an Einstein Lorentzian manifold. An n-dimensional Lorentzian manifold M is called Osserman Lorentzian manifold if at any point $p \in M$, the characteristic coefficients of the Jacobi operator R_{X} are a constants for any tangent vector $X \in S^{ \pm}{ }_{p} M$, at any point $p \in M[2]$.

Proposition 2[2]: An n-dimensional $(n \geq 3)$ Lorentzian manifold M is an Osserman manifold if and only if M is a space of constant sectional curvature.

Further we consider the case when M is a four-dimensional Lorentzian manifold, then the characteristic equation of the Jacobi operator has the form

$$
c\left(c^{3}-J_{1} c^{2}+J_{2} c-J_{3}\right)=0
$$

If the characteristic coefficient $J_{3}(p ; X)=0$, for any tangent vector $X \in S^{ \pm}{ }_{p} M$, at any point $p \in M$, then we have the following:

Theorem: M is a four-dimensional Einstein Lorentzian manifold such that the characteristic coefficient $J_{3}(p ; X)=0$, for any Jacobi operator $R_{X}, X \in S^{ \pm} M$, at any point $p \in M$, if and only if one of the following cases is true:
a) M is a space of constant sectional curvature;
b) M is a reducible space with metric which is reduce to the following two quadratic forms:

$$
\begin{align*}
& d s^{2}=d x_{1}^{2}+\cos ^{2}\left(\sqrt{\lambda} x_{1}\right) d x_{2}^{2}+d x_{3}^{2}-\cos ^{2}\left(\sqrt{\lambda} x_{3}\right) d x_{4}^{2} ; \quad \lambda>0 \tag{3}\\
& d s^{2}=d x_{1}^{2}+c h^{2}\left(\sqrt{-\lambda} x_{1}\right) d x_{2}^{2}+d x_{3}^{2}-\operatorname{ch}^{2}\left(\sqrt{-\lambda} x_{3}\right) d x_{4}^{2} ; \lambda<0 \tag{4}
\end{align*}
$$

c) M is a space of maximal mobility with metric:

$$
\begin{equation*}
d s^{2}=d x_{1}^{2}+s h^{2}\left(x_{1}-x_{4}\right) d x_{2}^{2}+\sin \left(x_{1}-x_{4}\right) d x_{3}^{2}-d x_{4}^{2} \tag{5}
\end{equation*}
$$

Proof: Let M be an Einstein Lorentzian manifold and let $e_{1}, e_{2}, e_{3}, e_{4}\left(e_{4} \in S_{p}^{-} M\right)$ be a Petrov basis of type I. If a and b are an arbitrary real numbers with the property $a^{2}-b^{2}=1$, then the orthonormal basis

$$
\begin{equation*}
a e_{1}+b e_{4}, b e_{1}+a e_{4}, e_{2}, e_{3} \tag{6}
\end{equation*}
$$

is a Lorentzian basis in M_{p}. Using the characteristic equation of the Jacobi operator $R_{a e_{1}}+b e_{2}$, with respect to this basis, we obtain:

$$
\begin{equation*}
J_{3}\left(p ; a e_{1}+b e_{2}\right)=\alpha_{3}\left(\alpha_{1} \alpha_{2}-a^{2} b^{2}\left(\left(\alpha_{1}-\alpha_{2}\right)^{2}+\left(\beta_{1}-\beta_{2}\right)^{2}\right)\right)=0 \tag{7}
\end{equation*}
$$

and from here, at $a=1$, and $b=0$, we get

$$
\begin{equation*}
J_{3}\left(p ; e_{1}\right)=\alpha_{1} \alpha_{2} \alpha_{3}=0 \tag{8}
\end{equation*}
$$

If $\alpha_{1}=\alpha_{2}=\alpha_{3}=0$, then M is flat. If at least one of $\alpha_{1}, \alpha_{2}, \alpha_{3}$ is different from zero, suppose α_{3}, then from (8) it follows that $\alpha_{1} \alpha_{2}=0$, and then from (7) we obtain

$$
a^{2} b^{2}\left(\left(\alpha_{1}-\alpha_{2}\right)^{2}+\left(\beta_{1}-\beta_{2}\right)^{2}\right)=0
$$

From here it follows that $\alpha_{1}=\alpha_{2}=0, \beta_{1}=\beta_{2}$ and using second property of the curvature tensor R, we obtain $\beta_{3}=-2 \beta_{1}$. That means that for the invariants of the Petrov basis of type I, we have:

$$
\begin{equation*}
\alpha_{1}=\text { const. }, \quad \alpha_{2}=\alpha_{3}=0, \quad \beta_{1}=\beta_{2}, \quad \beta_{3}=-2 \beta_{1} \tag{9}
\end{equation*}
$$

Let $\eta_{1}, \eta_{2}, \eta_{3}, \eta_{4}, \eta_{5}, \eta_{6}$ be an eigenvector basis of the curvature operator \Re in $\wedge^{2} M_{p}$, and let $k_{1}, k_{2}, k_{3}, \bar{k}_{1}, \bar{k}_{2}, \bar{k}_{3}$ are the corresponding eigenvalues. Let $k_{j}=\alpha_{j}+i \beta_{j}$, where $i^{2}=-1$, and $j=1,2,3$. From (9) it follows that the matrix of \mathfrak{R}, with respect to $\eta_{1}, \eta_{2}, \eta_{3}, \eta_{4}, \eta_{5}, \eta_{6}$ has the form:

$$
(\Re)=\left(\begin{array}{llllll}
\alpha_{1}-2 i \beta_{1} & 0 & 0 & 0 & 0 & 0 \\
0 & i \beta_{1} & 0 & 0 & 0 & 0 \\
0 & 0 & -2 i \beta_{1} & 0 & 0 & 0 \\
0 & 0 & 0 & 2 i \beta_{1}-\alpha_{1} & 0 & 0 \\
0 & 0 & 0 & 0 & -i \beta_{1} & 0 \\
0 & 0 & 0 & 0 & 0 & 2 i \beta_{1}
\end{array}\right)
$$

Since the set of $\eta_{1}, \eta_{2}, \eta_{3}, \eta_{4}, \eta_{5}, \eta_{6}$ is a reducible basis, then there exist a Lorentzian basis $v_{1}, v_{2}, v_{3}, v_{4}\left(v_{4} \in S_{p}^{-} M\right)$ in $M_{p}, p \in M$, with respect to which all non-zero curvature components are:

$$
\begin{aligned}
& R\left(v_{1}, v_{2}, v_{2}, v_{1}\right)=-R\left(v_{3}, v_{4}, v_{4}, v_{3}\right)=\alpha_{1}-2 i \beta_{1}, \\
& R\left(v_{1}, v_{3}, v_{3}, v_{1}\right)=-R\left(v_{2}, v_{4}, v_{2}, v_{4}\right)=i \beta_{1}, \\
& R\left(v_{2}, v_{3}, v_{3}, v_{2}\right)=-R\left(v_{1}, v_{4}, v_{4}, v_{1}\right)=-2 i \beta_{1}
\end{aligned}
$$

Using the characteristic equation of the Jacobi operators $R_{v_{2}}$ with respect to $v_{1}, v_{2}, v_{3}, v_{4}\left(v_{4} \in S^{-} M\right)$ we obtain that $R_{v_{2}}$ has an eigenvalues $\frac{-2 i \beta_{1}}{g\left(v_{1}, v_{1}\right)}, \frac{2 i \beta_{1}}{g\left(v_{3}, v_{3}\right)}, \frac{2 i \beta_{1}}{g\left(v_{4}, v_{4}\right)}$.

Using that $R_{v_{2}}$ is diagonalizable and under the assumption $J_{3}\left(p ; v_{2}\right)=0$, we get $\beta_{1}=0$ and according to (9), for the invariants of the Petrov basis of type I we have

$$
\begin{equation*}
\alpha_{1}=\text { const., and } \alpha_{2}=\alpha_{3}=\beta_{1}=\beta_{2}=\beta_{3}=0 \tag{10}
\end{equation*}
$$

If $\alpha_{1}=0$, then M is flat. If $\alpha_{1} \neq 0$, then M is a reducible space with a metric form given by (3) and (4) [4]. Conversely if M is a reducible Einstein Lorentzian manifold, such that at any point $p \in M$, there exist a Petrov basis in the tangent space M_{p}, which invariants fulfill (10). If $X \in S_{p}^{ \pm} M$ is an arbitrary tangent vector in the tangent space M_{p}, at a point $p \in M$, for which

$$
\begin{equation*}
X=\sum_{i=1}^{4} a_{i} e_{i} \tag{11}
\end{equation*}
$$

where a_{i} are an arbitrary real numbers, then the characteristic equation of R_{X}, has the form:

$$
c^{2}\left(c^{2}-\alpha_{3} c+\left(a_{1}^{2}-a_{4}^{2}\right)\left(a_{2}^{2}+a_{3}^{2}\right)\left(9 \beta_{1}^{2}+\alpha_{3}^{2}\right)\right)=0
$$

and from here it follows that $J_{3}(p ; X)=0$.

If $e_{1}, e_{2}, e_{3}, e_{4}\left(e_{4} \in S_{p}^{-} M\right)$ is a Petrov basis of type II, then using the characteristic equations of the Jacobi operators $R_{a e_{1}+b e_{4}}$ and $R_{a e_{2}+b e_{4}}$, with respect to this basis, and the conditions $J_{3}\left(p ; a e_{1}+b e_{4}\right)=J_{3}\left(p ; a e_{2}+b e_{4}\right)=0$, we obtain the system:

$$
\begin{aligned}
& \left(\alpha_{2}-1\right) \alpha_{2}^{2}+\left(\alpha_{2}+1\right) 9 \beta_{2}^{2}=0 \\
& \left(\alpha_{2}+1\right) \alpha_{2}^{2}+\left(\alpha_{2}-1\right) 9 \beta_{2}^{2}=0
\end{aligned}
$$

From here it follows that $\alpha_{2}=\beta_{2}=0$ and then using the characteristic equation of the Jacobi operator $R_{e_{1}}$ with respect to the same basis, and the condition $J_{3}\left(p ; e_{1}\right)=0$, we obtain $\alpha_{1}=0$. Since $\beta_{2}=0$, then from the second property of the curvature tensor R, we get $\beta_{1}=0$. That means that for the invariants of the Petrov basis of type II, holds $\alpha_{1}=\alpha_{2}=\beta_{1}=\beta_{2}=0$, which means that M is a space of maximal mobility with metric of the form (5)[4]. Conversely if M is a four-dimensional Lorentzian manifold, with metric of the form (5), then for any tangent vector $X \in S^{ \pm}{ }_{p} M$, given by (11), and for the corresponding Jacobi operator R_{X}, we have:

$$
J_{3}(p ; X)=\left|\begin{array}{cccc}
\left(a_{3}+a_{4}\right)^{2} & 0 & -a_{1}\left(a_{3}+a_{4}\right) & -a_{1}\left(a_{3}+a_{4}\right) \\
0 & -\left(a_{3}+a_{4}\right)^{2} & -a_{2}\left(a_{3}+a_{4}\right) & a_{2}\left(a_{3}+a_{4}\right) \\
-a_{1}\left(a_{3}+a_{4}\right) & -a_{2}\left(a_{3}+a_{4}\right) & a_{1}^{2}-a_{2}^{2} & a_{2}^{2}-a_{1}^{2} \\
-a_{1}\left(a_{3}+a_{4}\right) & -a_{2}\left(a_{3}+a_{4}\right) & a_{1}^{2}-a_{2}^{2} & a_{2}^{2}-a_{1}^{2}
\end{array}\right|=0 .
$$

Finally if $e_{1}, e_{2}, e_{3}, e_{4}\left(e_{4} \in S_{p}^{-} M\right)$ is a Petrov basis of type III, then using characteristic equation of the Jacobi operator $R_{e_{1}}$, with respect to this basis, we obtain $J_{3}\left(p ; e_{1}\right)=0$, which means that M must to be a symmetric space, and which according to the results of Petrov is impossible[4].

REFERENCES

1. Besse A., Geometrie Riemanniene et dimension 4, Cedic/Fernand Nathan Paris (1981)
2. Blazic N., Gilkey P., Bokan N., A note of Osserman Lorentzian manifolds, Bull. Lond. Math. Soc. 28 (1997), 227-230
3. Chi Q.-Sh., A curvature characterization of certain locally rank-one symmetric spaces, J. Diff. Geom. 28 (1988), 187-202
4. Petrov A.Z., Einstein spaces, Oxford: Pergamon Press, (1969).

Source of support: Nil, Conflict of interest: None Declared.
[Copy right © 2018. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]

