International Journal of Mathematical Archive-9(2), 2018, 225-232 $\$$ MA Available online through www.ijma.info ISSN 2229-5046

THE (MOD AND INTEGRAL) SUM LABELING OF CERTAIN GRAPHS

${ }^{1}$ R. K. SAMAL* AND ${ }^{2}$ D. MISHRA
${ }^{1}$ Department of Mathematics, OPS Mohavidyalaya, Hindol Road, Dhenkanal, Odisha, India.
${ }^{2}$ Department of Mathematics,
C. V. Raman College of Engineering and Technology, Bhubaneswar, Odisha, India.

(Received On: 02-01-18; Revised \& Accepted On: 06-02-18)

Abstract

This paper establishes that (mod and integral) sum graph labeling for the friendship graph $f_{3, n}$ and also find (optimal, mod and integral) sum number for $f_{3, n}$. Moreover an attempt has been made and also (mod and integral) sum numbers for the ladder graphs L_{n}, for $n \geq 1$, the crown graphs $P_{n} \odot K_{1}$ for $n \geq 2$ and $C_{n} \odot K_{1}$ for $n \geq 3$ are determined in this paper.

Keywords: The (optimal, mod and integral) sum graph; the sequential numbering method; Recurrence Relation method; Friendship Graph; ladders graph; crowns graph.

1. INTRODUCTION

All graphs considered in this paper are simple, finite and undirected. We follow in general the graph-theoretic notation and terminology of Ref [1] unless otherwise specified. The notion of a sum graph was introduced by Harary [2] in 1990. A graph $G(V, E)$ is called a sum graph if there is a bijection λ from $V(G)$ to a set of positive integers $S \subset N$ such that $u v \in E(G)$ if and only if $\lambda(u)+\lambda(v) \in S$. The sum number $\sigma(G)$ of a connected graph is the least nonnegative m of isolated vertices $m K_{1}$ such that $G \bigcup m K_{1}$ is a sum graph. Let $\delta(G)$ be the smallest degree of vertices of the G. It is obvious that $\sigma(G) \geq \delta(G)$. In case $\sigma(G)=\delta(G)$, then the graph G is called δ - optimum summable graph. In 1993 Harary [3] extended the sum graph concept to allow the selection of vertex labels from all the integers. A graph $G(V, E)$ is called an integral sum graph if there is a bijection λ from $V(G)$ to a set of integers $S \subset Z$ such that $u v \in E(G)$ if and only if $\lambda(u)+\lambda(v) \in S$. The integral sum number $\zeta(G)$ of a graph is the smallest nonnegative number m of isolated vertices such that $G \bigcup m K_{1}$ is an integral sum graph. It is obvious that $\zeta(G) \leq \sigma(G)$ for any graph G and a graph G is an integral sum graph if and only if $\zeta(G)=0$.

The concept of mod sum graph was introduced by Boland, Laskar, Turner and Domke [4] in 1990. A graph $G(V, E)$ is a mod sum graph if there exist a positive integer Z and a labeling of the vertices with distinct elements from $\{1,2,3, \ldots, z-1\}$ such that $u v \in E_{p}$ if and only if $\lambda(u)+\lambda(v)(\bmod z)$ is the label of vertex of G. We similarly define the mod sum number $\rho(G)$ of a graph is the smallest nonnegative number m of isolated vertices such that $G \bigcup m K_{1}$ is a mod sum graph(MSG). A mod sum graph may be connected, so that the mod sum number may be zero. All sum graphs are mod sum graphs by choosing a sufficiently large modulus Z but the converse is not true. For an updated survey on the results on (integral, mod) sum graphs one may refer to [6, 7 and 8]. Here we give (optimal, mod and integral) sum labeling to certain classes of graphs find their (mod and integral) sum numbers.

[^0]Definition 1.1 [5] (Friendship graph $f_{3, n}$): The friendship graph $f_{3, n}$ is a graph with vertex set $V=V\left(f_{3, n}\right)=\left\{c, v_{1}, v_{2}, v_{3}, v_{4}, \ldots v_{2 n-1}, v_{2 n}\right\}$ and edges set $E\left(f_{3, n}\right)=\left\{\left(c, v_{i}\right)\left(v_{2 m-1}, v_{2 m}\right) \mid i=1,2,3, \ldots 2 n, m=1,2, \ldots, n\right\}$. The vertex c is called centre of $f_{3, n}$ and each edge $\left(c, v_{i}\right)$ for $i=1,2,3, \ldots, 2 n$ is called a spoke and each edge $\left(v_{2 m-1}, v_{2 m}\right)$ for $m=1,2,3, \ldots, n$ is called a rim. In this paper, we determine the (mod and integral) sum number of the graph $f_{3, n}$

Definition 1.2 (Ladder graph L_{n}): It is a simple graph with vertex set $V=V\left(L_{n}\right)=\left\{a_{1}, a_{2}, \ldots . a_{n}, b_{1}, b_{2}, \ldots b_{n}\right\}$ and edges set $E=E\left(L_{n}\right)=\left\{a_{i} b_{i}: 1 \leq i \leq n\right\} \cup\left\{a_{i} a_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{b_{i} b_{i+1}: 1 \leq i \leq n-1\right\}$. Hence L_{n} has $2 n$ vertices and $(3 n-2)$ edges.

Definition 1.3 (Crown graph): A graph obtained by attaching a single pendant edge to each vertex of a path $P_{n}=a_{1} a_{2} \ldots a_{n}$ is called a crown graph $P_{n} \odot K_{1}$ which is obtained from the path by joining a vertex a_{i} to $b_{i}, 1 \leq i \leq n$. The edges are labeled as $1 \leq i \leq n, e_{2 i-1}=a_{i} b_{i}$ and $e_{2 i}=a_{i} a_{i+1}$. Hence $P_{n} \odot K_{1}$ has $2 n$ vertices and (2n-1) edges. The crown $C_{n} \odot K_{1}$ is the graph obtained by taking one copy of C_{n} and n copies of K_{1} and joining the $i^{\text {th }}$ vertex of C_{n} with an edge to every vertex in the $i^{\text {th }}$ copy of K_{1}. Hence $C_{n} \odot K_{1}$ has $2 n$ vertices and $2 n$ edges.

2. RESULTS

Although the following theorems are existing results but we determine the sum number, mod sum number and integral sum number of the graph $f_{3, n}$ by the sequential numbering method.

Theorem 2.1: $f_{3, n}$ is an optimal sum graph and $\sigma\left(f_{3, n}\right)=2$, for $n \geq 2$.
Proof: Label of the centre vertex $c=1$ and label of the remaining vertices of $f_{3, n} \cup 2 K_{1}$ are of the following scheme.

- $v_{2 i-1}=2 n+i-1, i=1,2, \ldots, n$ and $v_{2 i}=4 n-i, i=1,2, \ldots, n$.
- $c_{1}=c+v_{2}$ and $c_{2}=v_{2 i-1}+v_{2 i}$ for $i=1,2, \ldots, n$.

Let $A=\left\{c, v_{1}, v_{2}, v_{3}, \ldots v_{2 n}\right\}, C=\left\{c_{1}, c_{2}\right\}, S=A \bigcup C$. it is easily verified the following assertions are true and valid.

1. The vertices of S are distinct.
2. $c+v_{i} \in S$ for $i=1,2, \ldots, 2 n$.
3. $v_{2 i-1}+v_{2 j} \notin S$ for $i, j=1,2, \ldots, m$ and $i \neq j$.

Hence the above projected labeling is an optimal sum labeling of $f_{3, n}$ and $\sigma\left(f_{3, n}\right)=2$, for $n \geq 2$.
Theorem 2.2: $f_{3, n}$ is an integral sum graph and $\zeta\left(f_{3, n}\right)=0$, for $n \geq 2$.
Proof: Label of the centre vertex $c=0$ and label of the remaining vertices of $f_{3, n}$ are of the following scheme.

- $v_{2 i-1}=-(2)^{i}$, for $i=1,2, \ldots, n$ and $v_{2 i}=(2)^{i}$, for $i=1,2, \ldots, n$.
- $c+v_{i}=v_{i}$, for $i=1,2, \ldots, 2 n$ and $v_{2 i-1}+v_{2 i}=0$ for $i=1,2, \ldots, n$.

Let $A=\left\{c, v_{1}, v_{2}, v_{3}, \ldots v_{2 n}\right\}$. it is easily verified the following assertions are true and valid.

1. The vertices of A are distinct.
2. $\quad v_{2 i-1}+v_{2 i} \notin A$, for $i=1,2, \ldots, n$ and $i \neq j$.

Hence the above projected labeling is an integral sum labeling of $f_{3, n}$ and, $\zeta\left(f_{3, n}\right)=0$ for $n \geq 2$.

Theorem 2.3: $f_{3, n}$ is a mod sum graph and $\rho\left(f_{3, n}\right)=0$, for $n \geq 2$.

Proof: Label of the centre vertex $c=3 n+3$ and label of the remaining vertices of $f_{3, n}$ are of the following scheme.

- $v_{2 i-1}=3+(i-1)(3 n+3)$, for $i=1,2, . ., n$.
- $v_{2 i}=3 n+(n-i)(3 n+3)$, for $i=1,2, . ., n$ and with modulus $z=n(3 n+3)$.

Hence the above projected labeling is a mod sum labeling of $f_{3, n}$ and, $\rho\left(f_{3, n}\right)=0$ for $n \geq 2$.

In the next couple of results we determine the sum number, mod sum number and integral sum number of the graph L_{n} by the sequential numbering method.

Lemma 2.4: The sum number for ladder graph L_{2} is given by $\sigma\left(L_{2}\right)=3$.

Proof: The sum labeling of the graph $L_{2} \bigcup 3 K_{1}$ is considered as stated below:

$$
a_{1}=1, a_{2}=2, b_{1}=3, b_{2}=5, c_{1}=4, c_{2}=7, c_{3}=8
$$

Hence the above projected labeling is a sum labeling of $L_{2} \cup 3 K_{1}$ and $\sigma\left(L_{2}\right)=3$.

Theorem 2.5: The sum number for ladder graph $L_{n}, \sigma\left(L_{n}\right)=n$, for $n \geq 3$.

Proof: The sum labeling of the graph $L_{n} \cup n K_{1}$ is considered as stated below.

$$
a_{i}=i, 1 \leq i \leq n, b_{i}=2 n-i+1,1 \leq i \leq n, c_{k}=2 n+2 k-1,1 \leq k \leq n .
$$

Let $V=V\left(L_{n}\right)=\left\{a_{1}, a_{2}, \ldots a_{n}, b_{1}, b_{2}, \ldots b_{n}\right\}, C=\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ be the vertex set of $n K_{1}$ and $S=V \cup C$. It is easily verified the following assertions are true and valid.

1. The vertices in S are distinct positive integers.
2. $\quad c_{i}+c_{j} \notin S$ for any $c_{i}, c_{j} \in C(i \neq j)$.
3. $a_{i}+a_{j} \in S$ for any $a_{i}, a_{j} \in V(i \neq j)$.
4. $\quad b_{i}+b_{j} \in S$ for any $b_{i}, b_{j} \in V(i \neq j)$.
5. $a_{i}+c_{j} \notin S$ for any $a_{i} \in V$ and for any $c_{j} \in C$.
6. $b_{i}+c_{j} \notin S$ for any $a_{i} \in V$ and for any $c_{j} \in C$.

Thus the above projected labeling is a sum labeling of $L_{n} \cup n K_{1}$ and $\sigma\left(L_{n}\right)=n$, for $n \geq 3$.

Theorem 2.6 An integral sum number for $L_{n}, \zeta\left(L_{n}\right)=3$, for $n \geq 2$.

Proof: The integral sum labeling of the graph $L_{n} \cup 3 K_{1}$ is considered as stated below:

- $a_{1}=-1, a_{2}=3, a_{i}=a_{i-2}-a_{i-1}$, for $i=3,4, \ldots, n$;
- $b_{1}=1, b_{2}=-3, b_{i}=b_{i-2}-b_{i-1}$, for $i=3,4, \ldots, n ; c_{1}=0, c_{2}=2, c_{3}=-2$.

Let $V=V\left(L_{n}\right)=\left\{a_{1}, a_{2}, \ldots a_{n}, b_{1}, b_{2}, \ldots b_{n}\right\}, C=\left\{c_{1}, c_{2} c_{3}\right\}$ be the vertex set of $3 K_{1}$ and $S=V \cup C$. It is easily verified the following assertions are true and valid.

The vertices in S are distinct integers.

1. $c_{i}+c_{j} \in S$ for any $c_{i}, c_{j} \in C(i \neq j)$.
2. $a_{i}+a_{j} \in S$ for any $a_{i}, a_{j} \in V(i \neq j)$.
3. $b_{i}+b_{j} \in S$ for any $b_{i}, b_{j} \in V(i \neq j)$.

Hence the above projected labeling is an integral sum labeling of $L_{n} \bigcup 3 K_{1}$ and $\zeta\left(L_{n}\right)=3$, for $n \geq 3$. \square

${ }^{1}$ R. K. Samal* and ${ }^{2}$ D. Mishra / The (Mod and Integral) Sum Labeling of Certain graphs / IJMA- 9(2), Feb.-2018.

Theorem 2.7: The mod sum number for ladder graph $L_{n}, \rho\left(L_{n}\right)=1$, for $n \geq 3$.

Proof: The mod sum labeling of the graph $L_{n} \bigcup K_{1}$ is considered as stated below.
$a_{i}=i$, for $i=1,2, \ldots, n, b_{i}=2 n-i+1$, for $i=1,2, \ldots, n$, with modulus $z=2 n+2$. The isolated vertex is $c=2 n+1$.
Let $V=V\left(L_{n}\right)=\left\{a_{1}, a_{2}, \ldots a_{n}, b_{1}, b_{2}, \ldots b_{n}\right\}, C=\{c\}$ be the vertex set of K_{1} and $S=V \bigcup C$. It is easily verified the following assertions are true and valid.

1. The vertices in S are distinct.
2. $a_{i}+a_{j} \in S$ for any $a_{i}, a_{j} \in V(i \neq j)$.
3. $b_{i}+b_{j} \in S$ for any $b_{i}, b_{j} \in V(i \neq j)$.

Hence the above projected labeling is mod sum labeling of $L_{n} \cup K_{1}$ and $\rho\left(L_{n}\right)=1$, for $n \geq 3$.
In the next couple of results we determine the sum number, mod sum number and integral sum number of the graphs $P_{n} \odot K_{1}$ and $C_{n} \odot K_{1}$ by iterative scheme and the Recurrence Relation method.

Theorem 2.8: The sum number for graph $P_{n} \odot K_{1}, \sigma\left(P_{n} \odot K_{1}\right)=1$, for $n \geq 2$.

Proof: The sum labeling of the graph $\left(P_{n} \odot K_{1}\right) \bigcup K_{1}$ is considered as stated below:

$$
a_{i}=i, 1 \leq i \leq n ; b_{i}=2 n-i+1,1 \leq i \leq n ; c=2 n+1
$$

Let $V=V\left(P_{n} \odot K_{1}\right)=\left\{a_{1}, a_{2}, \ldots a_{n}, b_{1}, b_{2}, \ldots b_{n}\right\}, E\left(P_{n} \odot K_{1}\right)=\left\{a_{i} b_{i}: 1 \leq i \leq n\right\} \cup\left\{a_{i} a_{i+1}: 1 \leq i \leq n-1\right\}$.
Hence the above projected labeling is the sum labeling of $P_{n} \odot K_{1}$ and $\sigma\left(P_{n} \odot K_{1}\right)=1$, for $n \geq 2$.

Theorem 2.9: An integral sum number for graph $P_{n} \odot K_{1}, \zeta\left(P_{n} \odot K_{1}\right)=1$, for $n \geq 3$.

Proof: An integral sum labeling of the graph $\left(P_{n} \odot K_{1}\right) \bigcup K_{1}$ is considered as stated below:

- $a_{1}=3, a_{2}=-4, a_{i+1}=a_{i-1}-a_{i}$, for $i=2,3, \ldots, n-1$;
- $c=2, b_{i}=c-a_{i}$, for $i=1,2, \ldots, n$.

Let $V=V\left(P_{n} \odot K_{1}\right)=\left\{a_{1}, a_{2}, \ldots a_{n}, b_{1}, b_{2}, \ldots b_{n}\right\}, E\left(P_{n} \odot K_{1}\right)=\left\{a_{i} b_{i}: 1 \leq i \leq n\right\} \cup\left\{a_{i} a_{i+1}: 1 \leq i \leq n-1\right\}$.
Hence the above projected labeling is an integral sum labeling of $P_{n} \odot K_{1}$ and $\zeta\left(P_{n} \odot K_{1}\right)=1$, for $n \geq 3$.

Theorem 2.10: $P_{n} \odot K_{1}$ is a mod sum graph and $\rho\left(P_{n} \odot K_{1}\right)=0$, for $n \geq 2$.

Proof: We only give a mod sum labeling of the graph $\left(P_{n} \odot K_{1}\right)$.We can consider the following two cases.

Case-I: If n is an even.

$$
a_{i}=2 i, \text { for } i=1,2, \ldots, n, b_{i}=2 i-1, \text { for } i=1,2, \ldots, n, \text { with modulus } z=2 n+1
$$

Case-II: If n is an odd.
$a_{i}=2 i$, for $i=1,2, \ldots, n, b_{i}=2 i+1$, for $i=1,2, \ldots, n$, with modulus $z=2 n+1$.
Let $V=V\left(P_{n} \odot K_{1}\right)=\left\{a_{1}, a_{2}, \ldots a_{n}, b_{1}, b_{2}, \ldots b_{n}\right\}, E\left(P_{n} \odot K_{1}\right)=\left\{a_{i} b_{i}: 1 \leq i \leq n\right\} \cup\left\{a_{i} a_{i+1}: 1 \leq i \leq n-1\right\}$.

Hence the above projected labeling is a mod sum labeling of $P_{n} \odot K_{1}$ and $\rho\left(P_{n} \odot K_{1}\right)=0$, for $n \geq 2$.

Theorem 2.11: The sum number for graph $C_{n} \odot K_{1}, \sigma\left(C_{n} \odot K_{1}\right)=2$, for $n \geq 3$.
Proof: We only give a sum labeling of the graph $\left(C_{n} \odot K_{1}\right) \cup 2 K_{1}$.We can consider the following two cases.

Case-1: $n=2 k+1(k \geq 1)$.

- $f_{1}=1, f_{2}=2, f_{i+1}=f_{i}+f_{i-1}, i=2,3, \ldots, 2 k$.
- $a_{i}=f_{2 i-1}, i=1,2, \ldots, k+1, b_{i}=f_{2 i}, i=1,2, \ldots, k$.
- $d_{1}=a_{k+1}+b_{k}, d_{i+1}=a_{i}+d_{i}, i=1,2, \ldots, k, e_{1}=a_{k+1}+d_{k+1}, e_{i+1}=b_{i}+e_{i}, i=1,2, \ldots, k-1$.
- $c_{1}=a_{1}+a_{k+1}, c_{2}=b_{k}+e_{k}$.

Let $A=\left\{a_{1}, a_{2}, \ldots, a_{k}, a_{k+1}\right\}, B=\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}, D=\left\{d_{1}, d_{2}, \ldots, d_{k}, d_{k+1}\right\}$,
$E=\left\{e_{1}, e_{2}, \ldots e_{k}\right\}, C=\left\{c_{1}, c_{2}\right\}, S=A \bigcup B \bigcup C \bigcup D \bigcup E$.It is easily verified the following assertions are true and valid.

1. The vertices of S are distinct.
2. There only are $a_{k+1}+a_{1}=c_{1} \in S$ for any $a_{i}, a_{j} \in A(i \neq j)$;
3. $b_{i}+b_{j} \notin S$ for any $b_{i}, b_{j} \in B(i \neq j)$;
4. $\quad d_{i}+d_{j} \notin S$ for any $d_{i}, d_{j} \in D(i \neq j)$;
5. $e_{i}+e_{j} \notin S$ for any $e_{i}, e_{j} \in E(i \neq j)$;
6. $a_{i}+b_{j} \in S$ if and only if a_{i} is adjacent to b_{j}.
7. $a_{i}+d_{j} \in S$ if and only if $i=j$; and $a_{1} b_{1} a_{2} b_{2} a_{3} b_{3} \ldots b_{k} a_{k+1} a_{1}$ is a cycle $C_{2 K+1}$.
8. $\quad a_{i}+e_{j} \notin S$ for any $a_{i} \in A$ and for any $e_{j} \in E$;
9. $b_{i}+d_{j} \notin S$ for any $b_{i} \in B$ and for any $d_{j} \in D$;
10. $b_{i}+e_{j} \in S$ if and only if $i=j$;
11. $d_{i}+e_{j} \notin S$ for any $d_{i} \in D$ and for any $e_{j} \in E$;
12. $a_{i}+c_{j} \notin S$ for any $a_{i} \in A$ and for any $c_{j} \in C$;
13. $b_{i}+c_{j} \notin S$ for any $b_{i} \in B$ and for any $c_{j} \in C$;
14. $d_{i}+c_{j} \notin S$ for any $d_{i} \in D$ and for any $c_{j} \in C$;
15. $e_{i}+c_{j} \notin S$ for any $e_{i} \in E$ and for any $c_{j} \in C$;
16. $c_{i}+c_{j} \notin S$ for any $c_{i}, c_{j} \in C(i \neq j)$.

Case-2: $n=2 k(k \geq 2)$.

- $\quad f_{1}=1, f_{2}=2, f_{i+1}=f_{i}+f_{i-1}, i=2,3, \ldots, 2 k-1$.
- $a_{i}=f_{2 i-1}, i=1,2, \ldots, k, b_{i}=f_{2 i}, i=1,2, \ldots, k$.
- $d_{1}=a_{k}+b_{k}, d_{i+1}=a_{i}+d_{i}, i=1,2, \ldots, k-1, e_{1}=a_{k}+d_{k}, e_{i+1}=b_{i}+e_{i}, i=1,2, \ldots, k-1$.
- $c_{1}=a_{1}+b_{k}, c_{2}=b_{k}+e_{k}$

Let $A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}, B=\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}, D=\left\{d_{1}, d_{2}, \ldots, d_{k}\right\}$,
$E=\left\{e_{1}, e_{2}, \ldots e_{k}\right\}, C=\left\{c_{1}, c_{2}\right\}, S=A \bigcup B \bigcup C \bigcup D \bigcup E$.It is easily verified the following assertions are true and valid.

1. The vertices of S are distinct.
2. There only are $b_{k}+a_{1}=c_{1} \in S$ for any $a_{i}, a_{j} \in A(i \neq j)$;
3. $b_{i}+b_{j} \notin S$ for any $b_{i}, b_{j} \in B(i \neq j)$;
4. $\quad d_{i}+d_{j} \notin S$ for any $d_{i}, d_{j} \in D(i \neq j)$;
5. $e_{i}+e_{j} \notin S$ for any $e_{i}, e_{j} \in E(i \neq j)$;
6. $a_{i}+b_{j} \in S$ if and only if a_{i} is adjacent to b_{j}.
7. $a_{i}+d_{j} \in S$ if and only if $i=j$; and $a_{1} b_{1} a_{2} b_{2} a_{3} b_{3} \ldots a_{k} b_{k} a_{1}$ is a cycle $C_{2 K}$.
8. $a_{i}+e_{j} \notin S$ for any $a_{i} \in A$ and for any $e_{j} \in E$;
9. $b_{i}+d_{j} \notin S$ for any $b_{i} \in B$ and for any $d_{j} \in D$;
10. $b_{i}+e_{j} \in S$ if and only if $i=j$;
11. $d_{i}+e_{j} \notin S$ for any $d_{i} \in D$ and for any $e_{j} \in E$;
12. $a_{i}+c_{j} \notin S$ for any $a_{i} \in A$ and for any $c_{j} \in C$;
13. $b_{i}+c_{j} \notin S$ for any $b_{i} \in B$ and for any $c_{j} \in C$;
14. $d_{i}+c_{j} \notin S$ for any $d_{i} \in D$ and for any $c_{j} \in C$;
15. $e_{i}+c_{j} \notin S$ for any $e_{i} \in E$ and for any $c_{j} \in C$;
16. $c_{i}+c_{j} \notin S$ for any $c_{i}, c_{j} \in C(i \neq j)$.

Hence the above projected labeling is a sum labeling of graph $\left(C_{n} \odot K_{1}\right) \cup 2 K_{1}$ and $\sigma\left(C_{n} \odot K_{1}\right)=2$, for $n \geq 3 \square$
Theorem 2.12: An integral sum number for graph $C_{n} \odot K_{1}, \zeta\left(C_{n} \odot K_{1}\right)=2$, for $n \geq 3$.
Proof: We only give an integral sum labeling of the graph $\left(C_{n} \odot K_{1}\right) \cup 2 K_{1}$. We can consider the following two cases.

Case-1: $n=2 k+1(k \geq 1)$.

- $f_{1}=-1, f_{2}=3, f_{i+1}=f_{i-1}-f_{i}, i=2,3, \ldots, 2 k$.
- $a_{i}=f_{2 i-1} i=1,2, \ldots, k+1, b_{i}=f_{2 i}, i=1,2, \ldots, k$.
- $d_{1}=a_{k+1}+a_{1}, d_{i+1}=a_{i}+d_{i}, i=1,2, \ldots, k, e_{1}=a_{k+1}+d_{k+1}, e_{i+1}=b_{i}+e_{i}, i=1,2, \ldots, k-1$.
- $c_{1}=a_{1}+b_{1}, c_{2}=b_{k}+e_{k}$.

Let $A=\left\{a_{1}, a_{2}, \ldots, a_{k}, a_{k+1}\right\}, B=\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}, D=\left\{d_{1}, d_{2}, \ldots, d_{k}, d_{k+1}\right\}$,
$E=\left\{e_{1}, e_{2}, \ldots e_{k}\right\}, C=\left\{c_{1}, c_{2}\right\}, S=A \cup B \cup C \bigcup D \cup E$.It is easily verified the following assertions are true and valid.

1. The vertices of S are distinct.
2. $a_{1}+b_{1}=c_{1} \in S$ for $a_{1} \in A$ and for $b_{1} \in B$.
3. $b_{i}+b_{j} \notin S$ for any $b_{i}, b_{j} \in B(i \neq j)$;
4. $d_{i}+d_{j} \notin S$ for any $d_{i}, d_{j} \in D(i \neq j)$;
5. $e_{i}+e_{j} \notin S$ for any $e_{i}, e_{j} \in E(i \neq j)$;
6. $a_{i}+b_{j} \in S$ if and only if a_{i} is adjacent to b_{j}.
7. $a_{i}+d_{j} \in S$ if and only if $i=j$; and $a_{1} b_{1} a_{2} b_{2} a_{3} b_{3} \ldots b_{k} a_{k+1} a_{1}$ is a cycle $C_{2 K+1}$.
8. $a_{i}+e_{j} \notin S$ for any $a_{i} \in A$ and for any $e_{j} \in E$;
9. $b_{i}+d_{j} \notin S$ for any $b_{i} \in B$ and for any $d_{j} \in D$;
10. $b_{i}+e_{j} \in S$ if and only if $i=j$;
11. $d_{i}+e_{j} \notin S$ for any $d_{i} \in D$ and for any $e_{j} \in E$;
12. $a_{i}+c_{j} \notin S$ for any $a_{i} \in A$ and for any $c_{j} \in C$;
13. $b_{i}+c_{j} \notin S$ for any $b_{i} \in B$ and for any $c_{j} \in C$;
14. $d_{i}+c_{j} \notin S$ for any $d_{i} \in D$ and for any $c_{j} \in C$;
15. $e_{i}+c_{j} \notin S$ for any $e_{i} \in E$ and for any $c_{j} \in C$;
16. $c_{i}+c_{j} \notin S$ for any $c_{i}, c_{j} \in C(i \neq j)$.
${ }^{1}$ R. K. Samal* and ${ }^{2}$ D. Mishra / The (Mod and Integral) Sum Labeling of Certain graphs / IJMA- 9(2), Feb.-2018.
Case-2: $n=2 k(k \geq 2)$.

- $f_{1}=-1, f_{2}=3, f_{i+1}=f_{i-1}-f_{i}, i=2,3, \ldots, 2 k-1$.
- $a_{i}=f_{2 i-1} i=1,2, \ldots, k, b_{i}=f_{2 i}, i=1,2, \ldots, k$.
- $d_{1}=a_{1}+b_{k}, d_{i+1}=a_{i}+d_{i}, i=1,2, \ldots, k-1, e_{1}=a_{k}+d_{k}, e_{i+1}=b_{i}+e_{i} i=1,2, \ldots, k-1$.
- $c_{1}=a_{1}+b_{1}, c_{2}=b_{k}+e_{k}$.

Let $A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}, B=\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}, D=\left\{d_{1}, d_{2}, \ldots, d_{k}\right\}$,
$E=\left\{e_{1}, e_{2}, \ldots e_{k}\right\}, C=\left\{c_{1}, c_{2}\right\}, S=A \cup B \cup C \bigcup D \bigcup E$.It is easily verified the following assertions are true and valid.

1. The vertices of S are distinct.
2. $a_{1}+b_{1}=c_{1} \in S$ for $a_{1} \in A$ and $b_{1} \in B$
3. $b_{i}+b_{j} \notin S$ for any $b_{i}, b_{j} \in B(i \neq j)$;
4. $\quad d_{i}+d_{j} \notin S$ for any $d_{i}, d_{j} \in D(i \neq j)$;
5. $e_{i}+e_{j} \notin S$ for any $e_{i}, e_{j} \in E(i \neq j)$;
6. $a_{i}+b_{j} \in S$ if and only if a_{i} is adjacent to b_{j}.
7. $a_{i}+d_{j} \in S$ if and only if $i=j$; and $a_{1} b_{1} a_{2} b_{2} a_{3} b_{3} \ldots a_{k} b_{k} a_{1}$ is a cycle $C_{2 K}$.
8. $\quad a_{i}+e_{j} \notin S$ for any $a_{i} \in A$ and for any $e_{j} \in E$;
9. $b_{i}+d_{j} \notin S$ for any $b_{i} \in B$ and for any $d_{j} \in D$;
10. $b_{i}+e_{j} \in S$ if and only if $i=j$;
11. $d_{i}+e_{j} \notin S$ for any $d_{i} \in D$ and for any $e_{j} \in E$;
12. $a_{i}+c_{j} \notin S$ for any $a_{i} \in A$ and for any $c_{j} \in C$;
13. $b_{i}+c_{j} \notin S$ for any $b_{i} \in B$ and for any $c_{j} \in C$;
14. $d_{i}+c_{j} \notin S$ for any $d_{i} \in D$ and for any $c_{j} \in C$;
15. $e_{i}+c_{j} \notin S$ for any $e_{i} \in E$ and for any $c_{j} \in C$;
16. $c_{i}+c_{j} \notin S$ for any $c_{i}, c_{j} \in C(i \neq j)$.

Thus the above projected labeling is an integral sum labeling of graph $\left(C_{n} \odot K_{1}\right) \cup 2 K_{1}$ and $\zeta\left(C_{n} \odot K_{1}\right)=2$, for $n \geq 3$ 。

Theorem 2.13: $C_{n} \odot K_{1}$ is a mod sum graph and $\rho\left(C_{n} \odot K_{1}\right)=0$, for $n \geq 4$.
Proof: We only give a mod sum labeling of the graph $\left(C_{n} \odot K_{1}\right)$.We can consider the following two cases.
Case-1: $n=2 k+1(k \geq 2)$.

- $a_{i}=(k-i) N+1, i=1,2,3, \ldots, k, b_{i}=(k-i+1) N, i=1,2, \ldots, k$.
- $d_{i}=(k-i) N+2, i=1,2, \ldots, k, e_{i}=(k-i) N+3, i=1,2, \ldots, k$.
- $a_{k+1}=k N+1, d_{k+1}=k N+2$ and with modulus $z=k N$, where $N \geq 5$ is an integer.

Let $A=\left\{a_{1}, a_{2}, \ldots, a_{k}, a_{k+1}\right\}, B=\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}, D=\left\{d_{1}, d_{2}, \ldots, d_{k}, d_{k+1}\right\}$,
$E=\left\{e_{1}, e_{2}, \ldots e_{k}\right\}, S=A \cup B \cup D \cup E$.It is easily verified the following assertions are true and valid.

1. The vertices of S are distinct.
2. $a_{i}+b_{j} \bmod z \in S$ If and only if a_{i} is adjacent to b_{j}.
3. $a_{i}+d_{j} \bmod z \in S$ if and only if $i=j$.
4. $b_{i}+e_{j} \bmod z \in S$ if and only if $i=j$.
5. $a_{1} b_{1} a_{2} b_{2} a_{3} b_{3} \ldots b_{k} a_{k+1} a_{1}$ is a cycle $C_{2 k+1}$.

Case-2: $n=2 k(k \geq 2)$.

- $a_{i}=(k-i) N+1, i=1,2,3, \ldots, k, b_{i}=(k-i+1) N, i=1,2, \ldots, k$.
- $d_{i}=(k-i) N+3, i=1,2, \ldots, k, e_{i}=(k-i) N+4, i=1,2, \ldots, k$, with modulus
$z=(n-k) N$,where $N \geq 5$ is an integer. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}, B=\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}$, $D=\left\{d_{1}, d_{2}, \ldots d_{k}\right\}, E=\left\{e_{1}, e_{2}, \ldots e_{k}\right\}, S=A \bigcup B \bigcup D \cup E$.It is easily verified the following assertions are true and valid.

1. The vertices of S are distinct.
2. $a_{i}+b_{j} \bmod z \in S$ If and only if a_{i} is adjacent to b_{j}.
3. $a_{i}+d_{j} \bmod z \in S$ if and only if $i=j$.
4. $\quad b_{i}+e_{j} \bmod z \in S$ if and only if $i=j$.
5. $a_{1} b_{1} a_{2} b_{2} a_{3} b_{3} \ldots a_{k} b_{k} a_{1}$ is a cycle $C_{2 K}$.

Thus the above projected labeling is a mod sum labeling of graph $\left(C_{n} \odot K_{1}\right)$. .So $C_{n} \odot K_{1}$ is a mod sum graph and $\rho\left(C_{n} \odot K_{1}\right)=0$, for $n \geq 3$.

REFERENCES

1. A BONDY, U S R MURTY. Graph Theory with application [M].American Elsevier Publishing Co., Inc., New York, 1976.
2. F. Harary, Sum graphs and difference graphs, Congressus Numerantium 72 (1990) 101-108.
3. F. Harary, Sum graphs over all integers, Discrete Mathematics124 (1994) 99-105.
4. J.Bolland, R.Laskar, C. Turner, G.Domke, (1990) On mod sum graphs Congressus Numerantium 70; 131-135.
5. F. Fernau, J.F. Ryan, K.A. Sugeng (2009) A sum labeling for the generalized friendship graph, Discrete Math 308: 734-740.
6. J.Wu, J.Mao, D.Li , New types of integral sum graphs, Discrete Mathematics 260, (2003) 163-176.
7. W. Dou, J.Gao, The (mod, integral) sum numbers of fans and $K_{n, n}-E\left(n K_{2}\right)$, Discrete Mathematics 306 (2006) 2655-2669.
8. J.A. Gallian, A dynamic survey of graph labeling, Electronic Journal of Combinatorics, DS6, Nineteenth edition, December 26, 2016.
[^1]
[^0]: Corresponding Author: ${ }^{1}$ R. K. Samal*, ${ }^{1}$ Department of Mathematics, OPS Mohavidyalaya, Hindol Road, Dhenkanal, Odisha, India.

[^1]: Source of support: Nil, Conflict of interest: None Declared.
 [Copy right © 2018. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]

