Ovoids in the Hyperbolic Quadrics $\mathbf{Q}^{+}(7, q)$

Abdelsalam Abou Zayda*
Mathematics Department, Alaqsa University, Gaza, Palestine
E-mail: zayda8@hotmail.com
(Received on: 14-05-11; Accepted on: 18-09-11)

Abstract

In this paper we present a solution of the problem related to the construction of ovoids in $Q^{+}(7, q)$, see [1]. For this purpose we use the point-line geometry $D_{4,2}(q)$ as an isomorphic to the finite classical polar space $Q^{+}(7, q)\left(\Omega^{+}(8, q)\right)$. Further, an upper bounds for the size of ovoids in $Q^{+}(7, q)$ is obtained.

Keywords: Finite classical polar spaces- ovoids-point-line geometry
2000 MSC: 05B25, 51E20.

1. INTRODUCTION:

Many authors interested in the existence and non-existence of ovoids in finite classical polar spaces. In [2] Thas proved that $\mathrm{Q}^{-}(2 \mathrm{n}+1, q), \mathrm{n}>2$, has no ovoid. In [4] the nonsingular hyperbolic quadric $\mathrm{Q}^{+}(5, q)$ has an ovoid, and under a certain condition $\mathrm{Q}^{+}(7, q)$ has an ovoid. In this paper we construct an ovoid for $\mathrm{Q}^{+}(7, q)$ by using the correspondence between the point-line geometry $\mathrm{D}_{4,2}(\mathrm{q})$ and the hyperbolic classical polar spaces $\Omega^{+}(8, \mathrm{q})$, see [5]. For the isomorphism between the non singular hyperbolic quadrics $\mathrm{Q}^{+}(7, q)$ and the classical polar space $\Omega^{+}(8, q)$, see [3]. Further we present an upper pound for the ovoid.

Basic definitions.

Let P be a finite classical polar spaces of rank $r \geq 2$. An ovoid O of P is a pointset of P, which has exactly one point in common with every maximal totally isotropic subspace or maximal singular subspace of P , see [4].

The following definitions can be found in [6].
A given set I, a geometry Γ over I is an ordered triple $\Gamma=(X, D)$, where X is a set, D is a partition $\left\{X_{i}\right\}$ of X indexed by $\mathrm{I}, \mathrm{X}_{\mathrm{i}}$ are called components, is a symmetric and reflexive relation on X called incidence relation such that: A point-line geometry (P, L) is simply a geometry for which $|I|=2$, one of the two types is called points, in this notation the points are the members of P and the other type is called lines. Lines are the members of L. If $p \in P$ and $l \in L$, then $p^{*} 1$ if and only if $p \in 1$. In point-line geometry (P, L), it's said that two points of P are collinear if and only if they are incident with a common line.

A subspace of a point-line geometry $\Gamma=(\mathrm{P}, \mathrm{L})$ is a subset $\mathrm{X} \subseteq \mathrm{P}$ such that any line which has at least two of its incident points in X has all of its incident points in X . A hyperplane of point line geometry is a proper subspace meets each line in at least one point. $\langle\mathrm{X}\rangle$ means the intersection over all subspaces containing X , where $\mathrm{X} \subseteq{ }_{\mathrm{P}}$. Lines incident with more than two points are called thick lines, but those incident with exactly two points are called thin lines.
x^{\perp} means a set of all points in P collinear with x , including x itself. A clique of P is a set of points in which every pair of points are collinear. A partial linear space is a point-line geometry (P, L), in which every pair of points are incident with at most one line and all lines have cardinality at least 2 . A point line geometry $\Gamma=(\mathrm{P}, \mathrm{L})$ is called singular or (linear) if every pair of points is incident with a unique line.

The singular rank of a space Γ is the maximal number n (possibly ∞) for which there is a chain of distinct subspaces $\varnothing \neq X_{0} \subset X_{1} \subset \ldots \subset X_{n}$ such that X_{i} is singular for each $i, X_{i} \neq X_{j}, i \neq j$, for example rank $(\varnothing)=-1, \operatorname{rank}(\{p\})=0$ where p is a point and $\operatorname{rank}(\mathrm{L})=1$ where L a line.

In a point-line geometry $\Gamma=(P, L)$, a path of length n is a sequence of $n+1\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ where, $\left(x_{i}, x_{i+1}\right)$ are collinear, x_{0} is the initial point and x_{n} is the end point. A geodesic from a point x to a point y is a path of minimal possible length with initial point x and end point y. This length is denoted by $d_{\Gamma}(x, y)$. Diameter of Γ is the maximal distance between the points of Γ, i.e, diameter $(\Gamma)=$ maximum $\{\mathrm{d}(\mathrm{x}, \mathrm{y}), \mathrm{x}, \mathrm{y} \in \Gamma\}$. A geometry Γ is called connected if and only if for any two of its points are connected by a bath. A subset X of P is said to be convex if X contains all points of all geodesics connecting two points of X .

A polar space is a point-line geometry $\Gamma=(\mathrm{P}, \mathrm{L})$ satisfying the Buekenhout-Shult axiom:
For each point-line pair ($\mathrm{p}, 1$) with p not incident with $1 ; \mathrm{p}$ is collinear with one or all points of 1 , that is $\left|\mathrm{p}^{\perp} \cap 1\right|=1$ or else $\mathrm{p}^{\perp} \supset$. Clearly this axiom is equivalent to saying that p^{\perp} is a geometric hyperplane of Γ for every point $\mathrm{p} \in \mathrm{P}$.

A point-line geometry $\Gamma=(\mathrm{P}, \mathrm{L})$ is called a projective plane only in case if satisfies the following conditions:
(i) Γ is a linear space; every two distinct points x , y in P lie exactly on one line
(ii) Every two lines intersect in one point
(iii) There are four points no three of them are on a line

A point-line geometry $\Gamma=(\mathrm{P}, \mathrm{L})$ is called a projective space if the following conditions are satisfied:
(i) Every two points lie exactly on one line
(ii) If $1_{1}, 1_{2}$ are two lines $1_{1} \cap l_{2} \neq \varnothing$, then $\left\langle 1_{1}, l_{2}\right\rangle$ is a projective plane. $\left\langle\left\langle 1_{1}, 1_{2}\right\rangle\right.$ means the smallest subspace of Γ containing l_{1} and l_{2}.)

A point-line geometry $\Gamma=(\mathrm{P}, \mathrm{L})$ is called a parapolar space only in case it satisfies the following properties:
(i) Γ is a connected gamma space
(ii) for every line $1,1^{\perp} \mathrm{s}$ not a singular subspace
(iii) for every pair of non-collinear points $x, y ; x^{\perp} \cap y^{\perp}$ is either empty, a single point, or a non-degenerate polar space of rank at least 2

If x, y are distinct points in P and if $\left|x^{\perp} \cap y^{\perp}\right|=1$, then (x, y) is called a special pair and if $x^{\perp} \cap y^{\perp}$ is a polar space, hence (x, y) is called a polar pair (or a symplectic pair). A parapolar space is called a strong parapolar space if it has no special pairs.

Now we present a definition and the construction of the point-line geometry $\mathrm{D}_{4,2}(\mathrm{q})$ to be isomorphic to the hyperbolic classical polar space $\Omega^{+}(8, q)$.

Construction of $\mathbf{D}_{4,2}(\mathbf{q})$

Polar space Δ

$\mathrm{D}_{4,2}(\mathbf{q})$

The geometry $\mathrm{D}_{4,2}$ was defined as an isomorphic to the classical polar space $\Delta=\Omega^{+}(8, \mathrm{~F})$ that comes from a vector space of dimension 8 over a finite field $\operatorname{GF}(\mathrm{q})$ with a symmetric bilinear form. The set S_{1} consists of all totally isotropic 1dimentional subspaces of the vector space V and S_{2} consists of all totally 2-dimensional subspaces of V . The two classes $\mathrm{M}_{1}, \mathrm{M}_{2}$ consist of maximal totally isotropic 4-dimensional subspaces. Two 4-subspaces fall in the same class if their intersection is of even dimension. Then the geometry $\mathrm{D}_{4,2}(\mathrm{~F})$ is a point-line geometry (P, L), whose set of points P is corresponding to the class S_{2}, and whose each line is corresponding to the totally isotropic (1,4)-dimensional subspaces (A, B) and $A \subseteq B$. A point C is incident with a line (A, B) if and only if $A \subset C \subset B$ as a subspaces of V.

To define the co linearity, let C_{1} and C_{2} be two point (the points are the T.I 2-spaces), then C_{1} is collinear to C_{2} if and only if the intersection of C_{1} and C_{2} is a T.I 1-dimensional space, $\mathrm{C}_{1} \cap \mathrm{C}_{2}$ in addition to the complement of C_{1} and C_{2} must form a T.I 3-dimensional space and then contained in a T.I 4 -space. The elements of the class M_{2} are corresponding to the class of geometries of type $\mathrm{A}_{3,2}$ that are convex polar spaces of rank 2 and then they represent

Abdelsalam Abou Zayda* / Ovoids in the Hyperbolic Quadrics $Q^{+}(7, q) /$ IJMA- 2(9), Sept.-2011, Page: 1657-1661
symplecta in the geometry $\mathrm{D}_{4,2}$. Then the symplecta of $\mathrm{D}_{4,2}(\mathrm{~F})$ are the Grassmannians of type $\mathrm{A}_{3,2}(\mathrm{~F})$ that are corresponding to the collection of TI 4-dimensional spaces.

Notation: Let the map $\Psi: \mathrm{P} \rightarrow \mathrm{V}$ defined above, i.e., $\Psi(\mathrm{p})$ is the T.I. 2-dimensional subspace corresponding to the point p. We will use Ψ for the rest of the geometry; for example $\Psi\left(\mathrm{A}_{3,2}\right)$ is the T.I. 4-dimensional subspace corresponding to a geometry of type $\mathrm{A}_{3,2}$. The inverse map Ψ^{-1} will be used for the inverse; for example $\Psi^{-1}(\mathrm{C})$ is the point corresponding to the T.I. 2-dimensional subspace C .

2. OLD RESULTS:

Let V be a vector space over a finite field $\mathrm{F}=\mathrm{GF}(\mathrm{q})$, q is a prime power. The following are finite classical polar spaces:
1- Symplectic Geometry $\mathrm{W}_{\mathrm{n}}(\mathrm{q})$ is the point-line geometry (P, L), where P is the set of all 1-dimensional subspaces $\langle\mathrm{x}\rangle$ of V for which $B(x, x)=0$, and L is the set of all 2-dimensional subspaces $\langle x, y\rangle$ for which $B(x, y)=0$, for a symplectic bilinear form B. In this case n is even, the polar space is of rank $\mathrm{n} / 2$.

2- Hypebolic Geometry $\Omega^{+}(n, q)$ is the point-line geometry (P, L), where P is the set of all 1-dimensional subspaces $\langle x\rangle$ of V for which $B(x, x)=0$, and L is the set of all 2-dimensional $\langle x, y\rangle$ for which $B(x, y)=0$, for a hyperbolic bilinear form B. In this case n is even, the polar space is of rank $n / 2$.

3- Elliptic Geometry $\Omega^{-}(\mathrm{n}, \mathrm{q})$ is the point-line geometry (P, L), where P is the set of all 1-dimensional subspaces $\langle\mathrm{x}\rangle$ of V for which $B(x, x)=0$, and L is the set of all 2-dimensional $\langle x, y\rangle$ for which $B(x, y)=0$, for elliptic bilinear form B. In this case n is even, the polar space is of rank ($\mathrm{n} / 2$)-1.

4- Orthogonal Geometry $\Omega(\mathrm{n}, \mathrm{q})$ is the point-line geometry (P, L), where P is the set of all 1-dimensional subspaces $\langle x\rangle$ of V for which $B(x, x)=0$, and L is the set of all 2-dimensional $\langle x, y\rangle$ for which $B(x, y)=0$, for orthogonal bilinear form B. In this case n is odd, the polar space is of rank $n / 2$.

5- Hermitian Geometry $\mathrm{H}_{\mathrm{n}}^{+}\left(\mathrm{q}^{2}\right)$ is the point-line geometry (P, L), where P is the set of all 1-dimensional subspaces $\langle\mathrm{x}\rangle$ of V for which $B(x, x)=0$, and L is the set of all 2-dimensional $\langle x, y\rangle$ for which $B(x, y)=0$, for a Hermitian bilinear form B. In this case n is odd, the polar space is of rank ($\mathrm{n}-1$)/2.

For the result to come it is useful to present the following theorems that determine the numbers of points and the maximal totally isotropic spaces. For the proofs see [2].
2.1 Theorem: The numbers of points of the finite classical polar spaces are given by the following formulae:

$$
\begin{gathered}
\left|W_{2 n}(q)\right|=\left(q^{2 n}-1\right) /(q-1) \\
|\Omega(2 n+1)|=\left(q^{2 n}-1\right) /(q-1) \\
\left|\Omega^{+}(2 n, q)\right|=\left(q^{n-1}+1\right)\left(q^{n}-1\right) /(q-1) \\
\left|\Omega^{-}(2 n, q)\right|=\left(q^{n-1}-1\right)\left(q^{n}+1\right) /(q-1) \\
\left|H^{+}(2 n, q)\right|=\left(q^{2 n}-1\right)\left(q^{2 n}+1\right) /\left(q^{2}-1\right)
\end{gathered}
$$

2.2 Theorem: The numbers of maximal totally singular subspaces of the finite classical polar spaces are given by the following formulae:

$$
\begin{gathered}
\left|\sum\left(W_{2 n}(q)\right)\right|=(q+1)\left(q^{2}+1\right) \ldots\left(q^{2 n}+1\right), \\
\left|\sum(\Omega(2 n+1, q))\right|=(q+1)\left(q^{2}+1\right) \ldots\left(q^{n+1}+1\right), \\
\left|\sum\left(\Omega^{+}(2 n, q)\right)\right|=2(q+1)\left(q^{2}+1\right) \ldots\left(q^{n}+1\right), \\
\left|\sum\left(\Omega^{-}(2 n, q)\right)\right|=\left(q^{2}+1\right)\left(q^{3}+1\right) \ldots\left(q^{n}+1\right), \\
\left|\sum\left(H^{+}\left(2 n, q^{2}\right)\right)\right|=(q+1)\left(q^{3}+1\right) \ldots\left(q^{n}+1\right) .
\end{gathered}
$$

2.3 Proposition: [7]. The number of subspaces of dimension k in a vector space of dimension n over $\mathrm{GF}(\mathrm{q})$ is given by:

$$
\frac{\left(q^{n}-1\right)\left(q^{n}-q\right) \ldots\left(q^{n}-q^{k-1}\right)}{\left(q^{k}-1\right)\left(q^{k}-q\right) \ldots\left(q^{k}-q^{k-1}\right)}
$$

Remark: This number is called a Gaussian coefficient, and is denoted by: $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$.
2.4. Theorem: [7] Let V be equipped with a bilinear form then the number of Totally isotropic k-subspaces is the following:

The following theorem identifies the number of ovoids and spreads in the finite classical polar spaces. For the proof of that theorem see [2].
2.5 Theorem: [2] Let O be an ovoid and S be a spread of the finite classical polar space P . Then

$$
\begin{aligned}
& \text { For } P=W_{n}(q), \quad|O|=|S|=q^{(n+1) / 2}+1, \\
& \text { For } P=\Omega(2 n+1, q), \quad|O|=|S|=q^{n}+1, \\
& \text { For } P=\Omega^{+}(2 n+2, q), \quad|O|=|S|=q^{n}+1, \\
& \text { For } P=\Omega^{-}(2 n+2, q), \quad|O|=|S|=q^{n+1}+1 \text {, } \\
& \text { For } P=H(2 n, q), \quad|O|=|S|=q^{2 n+1}+1 \text {, } \\
& \text { For } P=H\left(2 n+1, q^{2}\right), \quad|O|=|S|=q^{2 n+1}+1 \text {, }
\end{aligned}
$$

3. THE MAIN RESULT:

First we construct an ovoid in the classical polar space $\Omega^{+}(8, q)$ by constructing an ovoid in the point-line geometry $\mathrm{D}_{4,2}(\mathrm{q})$ (which is isomorphic to $\Omega^{+}(8, \mathrm{q})$) and then it is considered an ovoid to $\mathrm{Q}^{+}(7, \mathrm{q})$ which is isomorphic to $\Omega^{+}(8, \mathrm{q})$.
3.1 Theorem: Let P be the set of points of the point-line geometry $D_{4,2}(q)$. Then the set $\Delta^{2}(p)$ forms an ovoid of the geometry $\mathrm{D}_{4,2}$. Where $\Delta_{2}(\mathrm{p})$ is the set of all points that are of distance at most 2 from the fixed point p , i.,e., $\Delta_{2}(\mathrm{p})=$ $\{x \in P: d(x, p) \leq 2\}$.

Proof: Every maximal totally isotropic in $\Omega^{+}(8, q)$ corresponds to a line 1 in $D_{4,2}$, so to prove that $\Delta^{\square}(p)$ represents ovoid all what to do is to show that every maximal totally isotropic 4 -space has 2 -space (corresponds to a point r in the line 1) such that $\mathrm{r} \in \Delta_{2}(\mathrm{p})$. Now the line 1 that is corresponding to the maximal totally isotropic 4 -space is identified by the two points r and s such that $\Psi(\mathrm{r})=\left\langle\mathrm{x}_{1}, \mathrm{x}_{3}>\right.$ and $\Psi(\mathrm{s})=\left\langle\mathrm{x}_{2}, \mathrm{x}_{3}\right\rangle$ and let $\left.\Psi(\mathrm{p})=<\mathrm{y}_{1}, \mathrm{y}_{2}\right\rangle$. Now if $\Psi(\mathrm{p}) \subset \Psi(\mathrm{l})$, then $\mathrm{p} \in 1$ and $\mathrm{p} \in \Delta^{\square}{ }_{2}(\mathrm{p})$ (because $\mathrm{d}(\mathrm{p}, \mathrm{p})=0$), so $1 \cap \Delta^{\square}(\mathrm{p}) \neq \varphi$. If $\Psi(\mathrm{p})$ is not contained in $\Psi(\mathrm{l})$, then there are two cases:

1. $\Psi(1) \cap \Psi(p)=1$-sapace $=\langle x\rangle, x=x_{3}=y_{2}$. If $y_{1}{ }^{\perp} \cap \Psi(1)=\left\langle x, x_{1}, x_{2}\right\rangle$, then $\left\langle y_{1}, x, x_{2}\right\rangle$ forms a TI 3-space and p is collinear to s . This means that $\mathrm{s} \in \Delta^{*}(\mathrm{p})$, then $1 \cap \Delta_{2}(\mathrm{p}) \neq \varphi$.
2. $\Psi(\mathrm{l}) \cap \Psi(\mathrm{p})=0$-sapace. If $\mathrm{y}_{1}{ }^{\perp} \cap \Psi(\mathrm{l})=\left\langle\mathrm{x}_{3}, \mathrm{x}_{1}, \mathrm{x}_{2}>\right.$ and $\mathrm{y}_{2}{ }^{\perp} \cap \Psi(\mathrm{l})=\left\langle\mathrm{x}_{3}, \mathrm{x}_{1}\right.$, u$\rangle$, then there is a point q such that $\Psi(\mathrm{q})$ $=\left\langle x_{3}, y_{2}\right\rangle$. Now since $\left\langle y_{1}, y_{2}, x_{3}\right\rangle$ is a TI 3-space, the point q is collinear to the point sand since $\left\langle y_{2}, x_{3}, x_{2}\right\rangle$ form TI

3-spaces, the point q is collinear to the point p which means $d(p, s)=2$. Then $s \in \Delta_{2}(p)$, so $1 \cap \Delta{ }_{2}(p) \neq \varphi$. Then every maximal totally isotropic in $\Omega^{+}(8, q)$ intersect the corresponding of $\Delta^{\square}(p)$ in exactly one 2 -space. Which means that $\Delta^{\square}(\mathrm{p})$ corresponds to a void in $\Omega^{+}(8, \mathrm{q})$ and then a void to $\mathrm{Q}^{+}(7, \mathrm{q})$.

Through the following theorem we present an upper pound for the ovoid that is corresponding to $\Delta^{\square}(\mathrm{p})$ in $\mathrm{Q}^{+}(7, \mathrm{q})$.

Abdelsalam Abou Zayda*/Ovoids in the Hyperbolic Quadrics $Q^{+}(7, q) /$ IJMA- 2(9), Sept.-2011, Page: 1657-1661
3.2 Theorem. For any ovoid of $\mathrm{Q}^{+}(7, q), \mathrm{q}$ is finite, we have;

$$
|O| \leq\left(q^{n-1}+1\right)^{2}(q+1)^{2}+1
$$

Proof: Let p a point such that the corresponding totally isotropic 2 -space in $\Omega^{+}(8, q)$ is
$\Psi(p)=\left\langle x_{1}, x_{2}\right\rangle$. We give an upper pound for the number of point of the geometry that are at a distance at most 2 . Let q be a point in the geometry such that $\Psi(\mathrm{q})=\left\langle\mathrm{y}_{1}, \mathrm{y}_{2}\right\rangle$, then we have two cases:

1- d $(\mathrm{p}, \mathrm{q})=1$, then $\Psi(\mathrm{p}) \cap \Psi(\mathrm{q})=1$-space. Then the number of 2-space that intersect $\Psi(\mathrm{p})$ in 1-space is equal the number of 1 -space in the 2 -space $\Psi(\mathrm{p})$ and by Theorem 2.4 this number is given by the formula:

$$
\left[\begin{array}{l}
2 \\
1
\end{array}\right]_{q} \prod_{i=0}^{0}\left(q^{n-i-1}+1\right)=(q+1)\left(q^{n-1}+1\right)
$$

i.,e.,

$$
|O| \leq\left(q^{n-1}+1\right)(q+1)
$$

2-d $\mathrm{d}, \mathrm{p}, \mathrm{q})=2$, then there is a point r such that $\Psi(\mathrm{r}) \cap \Psi \square(\mathrm{p})=1$-space and $\Psi(\mathrm{r}) \cap \Psi(q)=1$-space. Then every 1-space in $\Psi(\mathrm{r}) \cap \Psi \square(\mathrm{p})$ have $(q+1)\left(q^{\mathrm{n}-1}+1\right)$ 1-spaces in $\Psi(\mathrm{r}) \cap \Psi \square(q)$. then the total number of ways such that $\Psi(\mathrm{r})$ $\cap \Psi \square(\mathrm{p})=1$-space and $\Psi(\mathrm{r}) \cap \Psi(\mathrm{q})=1$-space is $(q+1)^{2}\left(q^{\mathrm{n}-1}+1\right)^{2}$. Then the number of points q such that $\mathrm{d}(\mathrm{p}, \mathrm{q})=2$ is $(q$ $+1)^{2}\left(q^{\mathrm{n}-1}+1\right)^{2}$.
i.,e.,

$$
|O| \leq\left(q^{n-1}+1\right)^{2}(q+1)^{2}
$$

Now since $p \in \Delta^{\square}(p)(d(p, p)=0)$, then

$$
|O| \leq\left(q^{\mathrm{n}-1}+1\right)^{2}(q+1)^{2}+1
$$

REFERENCES:

[1] J. De Beule, A. Klein, K. Metsch and L. Storme "Partial ovoids and partial spreads of classical finite polar spaces", Serdica Mathematical Journal, Volum 34 num. 4, pp. 689-714 (2008).
[2] J. A., Thas, "Ovoid's and Spreads of finite classical polar spaces". Geom. Dedicata, 10: 135-144 (1981).
[3] E. E. Shult, "A sporadic ovoid in $\Omega^{+}(8,7)$ ". Algebras, Groups and geometries, 2: 495-513 (1985).
[4] J. A. Thas, " Old and new results on spreads and ovoids of finite classical polar spaces", In Combinatorics 90(Gaeta. 1990). Volume 52 of Ann. Descrete Math., pages 529-544. North-Holand. Amsterdam. (1992).
[5] Abdelsalam Abou zayda, "On hyperplanes of the geometry $\mathrm{D}_{4,2}(\mathrm{q})$ and their related codes" Journal of Mathematics and Statistics, 5(1): 72-76 (2009).
[6] F. Buekenhout and E. E. Shult, "On the foundations of polar geometry". Geom. Dedicata, 3: 155-170, (1974).
[7] P. J. Cameron, "Projective and Polar Spaces" volume 13 of QMW Maths Notes. Queen Mary and Westfield College, University of London, (1992).

