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ABSTRACT
In this paper, we prove two common fixed point theorems for four mappings in dislocated quasi b-metric spaces.
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1. INTRODUCTION

Zeyada et.al [12] initiated the concept of dislocated quasi metric spaces and generalized the results of Hitzler and Seda
[5] in dislocated quasi metric spaces. The notion of b-metric space was introduced by Czerwic [3] in connection with
some problems concerning with the convergence of non measurable functions with respect to measure. Recently Klin-
eam and Suanoom [7] introduced the concept of dislocated quasi b-metric spaces and which generalize b-metric spaces
[3] and quasi b-metric spaces [10] and proved some fixed point theorems in it by using cyclic contractions. The authors
[1, 4,7, 8,9, 11] etc. Obtained fixed, common fixed points theorems in dislocated quasi b-metric spaces using various
contraction conditions for single and two maps.

In this paper, we prove two common fixed point theorems for four maps in dislocated quasi b-metric spaces and we
also give examples to support our theorems.

First we recall some known definitions and lemmas.

Definition 1.1: Let X be a non-empty set, s> 1(a fixed constant) and d: XxX—[0,:0) be a function. consider the
following condition on d.
(1.1.1)d(x,x) = 0,Vx € X,
(1.12)d(x,y) =d(y,x) =0 =x=y,Vx,y €X,
(1.1.3)d(x,y) = d(y,x), VX, y € X,
1.14)dx,y) <d(x,z) + d(z,y),Vx,y,z € X,
(1.15)d(x,y) < s[d(x,z) + d(z,y)],Vx,y,z € X.
(i) If d satisfies (1.1.2),(1.1.3) and (1.1.4) then d is called a dislocated metric and (X, d) is called a dislocated
metric space.
(ii) If d satisfies (1.1.1),(1.1.2) and (1.1.4) then d is called a quasi metric and (X, d) is called a quasi metric space.
(iii) If d satisfies (1.1.2) and (1.1.4) then d is called a dislocated quasi metric or dg-metric and (X, d) is called a
dislocated quasi metric space.
(iv) If d satisfies (1.1.1), (1.1.2), (1.1.3) and (1.1.4) then d is called a metric and (X, d) is called a metric space.
(v) Ifd satisfies (1.1.1), (1.1.2), (1.1.3) and (1.1.5) then d is called a b-metric and (X, d) is called a b-metric space.
(vi) if d satisfies (1.1.2) and (1.1.5) then d is called a dislocated quasi b-metric and (X, d) is called a dislocated
quasi b-metric space or dg-metric space.

Definition 1.2: Let (X, d) be a dq b- metric space. A sequence {x,} in (X, d) is said to be
(i) dg b — convergent if there exists some point x € X such that lim d(x,,x) = 0 = lim d(x, x,).

n—-o

In this case x is called a dq b-limit of {x,} and we write X,—x as n—oo,
(ii)Cauchy sequence if lim d(x,,Xp,) = 0= lim d(Xy, Xp)-
n,m-oo m,n—oo
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The space (X, d) is called complete if every Cauchy sequence in X is dq b-convergent.
One can prove easily the following

Lemma 1.3: Let (X, d) be a dq b-metric space and {x,} be dg b-convergent to x in X and y € X be arbitrary.Then
1
Ed(x, y) < lim infd(x,,y) < lim supd(x,,y) < sd(x,y) and

n—oo n—-oo

1
;d(y, x) < lim infd(y, x,) < lim sup d(y, x,) < sd(y, x).
n—oco n—-oo

Note: id(x, y) < max{d(x,z), d(z,y)}Vx,y,z € X.

Definition 1.4: [6] Let X be a non-empty set and S, T: X— X be given self maps on X. The pair (S, T) is said to be
weakly compatible if STx=TSx whenever there exists xeX such that Sx=Tx.

Definition 1.5: [2] Let X be a non-empty set and f, g: X—X be mappings. If there exists x € X such that fx = gx. Then
x is called a Coincidence point of fand g and fx is called a point of Coincidence of fand g.

Now we prove our main result.
2. MAIN RESULT
We need the following definition

Definition 2.1: For the fixed constant s > 1, let d denote the set of all functions ¢:[0,00)—[0,0) satisfying the
following
(d,) : ¢ is monotonically non-decreasing ,

(dy): ) s"p"(t) < oo forallt> 0,
(¢p3):p(t) < tfort> 0.

Clearly (¢p,) and (¢3) implies ¢(0) = 0.

Theorem 2.2: Let (X, d) be a complete dislocated quasi b-metric space with fixed constants > 1 and f, g, S, T: X—X
be continuous mappings satisfying

(2:21) d(fx, gy) < ¢ (max{d(Sx, Ty), —d(Sx,fx), —d(Ty, gy), =d(Sx,gy), —d(Ty, fx)})
V x,y € X, where ¢ € @,

(2.2.2) d(gx,fy) < ¢ (max {d(Tx, Sy), id(Tx, gx), id(Sy, fy), id(Sy, gx), z—lsd(TX, fy)})
vV x,y € X, where ¢ € @,

(2.2.3) f(X) € T(X) and g(X) € S(X),

(2.2.4) fS = Sfand gT = Tg.

Then f, g, Sand T have a unique common fixed point in X.

Proof: Letxo € X.
Define Yon = T Xon = TXone1 ,Yon+e1 = § Xonse1 = SXonez, N=0,1,2.......

Case-(i): Suppose max{d(Yn.1,¥n),d(¥n,Yn-1)} = 0 for some n.
Without loss of generality assume that n=2m.

Then Yoma = Yom.

Using (2.2.1), (2.2.2) and (¢,), we get
d(Yom s Yom+1) = d(FXom , 9Xome1) . . . .
< d(max{d(Yam- 1, Yam), ;d(Y2m-1, Yom), Zd(yZm » Yom+1), ;d()hm-l » Yom+1)s ;d()hm, Yom)})
< (I)(max{ d¥om-1 Yom): AV2m-1 Yoam)r d0om Yam+1) D, from Note

max{d(Yzm-1, Y2m)» dV2ms Yam+1)}, max{d(Vam Yom-1)» d(Yam-1,Y2m)}
= ¢p(max{d(Yam-1, Yom), d¥Yom » Yom-1), d(Yom » Yome1)})
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and

d(Yam+1, Yom) = d(9Xoms1, Xom) . . . L
< d(max{d(Yam , Yom1) ;d(yZm » Yom+1), ;d()hm-l » Yam), ;d()hm-l: Yom+1)s Zd(hm » Yam)})
< ¢<max{ d(¥zm Y2m-1),  d2m Yom+1),  AV2m-1,Y2m)s })

max{d(Yzm-1, Y2m) d¥2m: Yom+1)}, mMax {d(Yzm, Yom-1) d¥2m-1, Y2m)
= ¢ (max{d(yZm ’ y2m—1) ’ d(yZm—l ’ yZm) ’ d(yZm ’ y2m+1)})-

Thus
d(¥2m-1,Y2m)» A¥2m» Y2m-1)»

Max{d(Vom, Yam+1) A Vam+1 Vom)} < (max{ m m me Jem })
td@2m Yzme1). domir, Yom)} < 0 d(Yzms Y2m+1), d(V2m+1, Yom)

= o(max{d(y2m, Y2m+1 )» d(Yom+1, Yam)})

(1)

From (¢s) and (1.1.2), we have Yo = Yomer . TUS Yorm—1 = Yom = Yam+1-

Continuing in this way we have y,im_1 = Yom = Yom+1 =

Thus Yn-1 = ¥n = ¥Yn+1 =

Hence {y.} is a constant Cauchy sequence.

Case-(ii): suppose max{d(yn, ¥n+1 ) » dVns1, yn)} #0 for all n.
Asin (1), we have

Max(d(yzn, Yanss): AW an i1, Von)} < 6 max

d(Yzn-1, Y2n), d(Y2n, YZn—l)'}) 2

d(¥2n, Y2n+1) A¥Y2n+1, Y2n)
If max{d(Yan-1, Yon) » dYon, Yon-1)} < max{d(yzn, Yon+1), d(Yons1s Yon) }o

then from (2), using (¢3) , we get
max{d(Yan, Yon+1), d(Yan+1, Y2n)} = 0, which is a contradiction to Case (ii).

Hence max{d(yZn—l ' an), d(an ’ y2n—1)} > max{d(yZn ’ y2n+1)r d(y2n+1’ an)}-

Now from (2), max{d(yzn, Y2n+1), d(Y2n+1,Y2n)} < d(max{d(y2n-1, ¥2n), d¥2n, Y2n-1)}) 3)

Thisistrue forn=1,2, 3 ....

Hence max{d(Yn' Yn+1)' d(Yn+1r Yn)} S ¢(max{d(Yn—1' Yn)' d(Yn' YH—l)})
< " (max{d(yo, y2), A1, Yo)}) 4)

Now for all positive integers n and p, consider, using (4),

Ao, Ynep) < 54 Yoer) + S°A(Vier, Yoeo) + oo #8°0Vaep 1, Yier)
< s"(t) + 570" (t) + ... +sP™ (1), where t = max{d(yo, 1), d(Y, Yo)}
<s"O"(t) + ™M) + ... + STPTO™P(t), since s> 1

< TIPTsipi(t) < B2, s'¢i(H) - Oasn - oo,
since Y2, s'$!(t) converges for all t > 0.

Thus we have lim d(y,, yn4p) = 0.
n-oo

Also using (4), we have

d(yn+py Yn) < Sg(Yn+py Yn+1) + Sdz(yn+1y Yn)
< Ssd(yn+py Yn2) + 33 d(Yns2, Yner) + szd(yn+1a Yn)
<s d(yn+pv Yne3) +8°A(Yns3, Yne2) + S°A(Ynez, Yie1) + SA(Yne1, Vo)

< sp_ld(y“*'p’ Ynep-1) + Sp-ld(ymp—l, Yiip2) F oo + Szd(ym_z, Vie1) + SA(Vn+1s Yn)
< sp-l¢n+P-l(t) + Sp-l¢n+p-2(t) + + SZ¢n+l(t) + S(I)n(t)

< sn+p-1¢n+p—l(t) + Sn+p—2(1)n+p—2(t) + + Sn+l¢n+l(t) + Snd)n(t) since s> 1.

= NPT St < T2, s'pi(t) > Dasn > o,

Hence we have lim d(yp4p,yn) = 0.
n—-oo
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Thus {y,} is a Cauchy sequence in X.
Since X is a complete dislocated quasi b — metric space, there exists z € X such that {y,} converges to z.

Since S and f are continuous and Sf = S, we have
Sz = lim SyZn: lim SfXZn = lim fSXZn = lim fy2|’1-1 =fz.
n—-oo n—-oo n—-oo n—-oo

Similarly, since T and g are continuous and Tg = gT, we have Tz = gz.

Using (2.2.1), (2.2.2), (¢1) and Note, we get
d(Sz,Tz) =d(fz, gz)

<¢ (max {d(SZ, Tz), i d(Sz, Sz), i d(Tz, Tz), i d(Sz, Tz), i d(Tz, SZ)})
< ¢ (max{d(Sz, Tz), d(Tz, Sz)})

3?% sz) < ¢ (max{d(Sz, Tz), d(Tz, Sz)}).

Thus max{d(Sz,Tz), d(Tz, S2)} < d(max{d(Sz, T2), d(Tz, S2)})

which in turn yields from (¢s) and (1.1.2) that Sz = Tz.

Let o = Sz = Tz Then Sa = S(Sz) = S(fz) = £(Sz) = fo and Ta = T(Tz) = T(gz) = g(Tz) = ga.

Now using (2.2.1), (2.2.2), (¢4) and from Note, we have
d(Sa,a) =d(fa, gz)

<o (max {d(Sa ,Q), %d(Sa ,Sa), %d(a , ), id(Sa , ), %d(a , SO()})
< ¢(max{d(Sa, a), d(a, Sa)})

3?2, Sa) < ¢(max{d(Sa, o), d(a, Sa)}).

Thus we have max{d(Sa, a),d(a, Sa)} < ¢(max{d(Sa, o), d(a, Sar)})

which in turn yields from (¢3) and (1.1.2) that Sa = «.

Similarly we can show that Ta = a.

Thus fa =Sa=a=Ta = ga.

Hence a is a common fixed point of f, g, Sand T.

One can prove the uniqueness of common fixed point of f, g, S and T using (2.2.1) and (2.2.2).

Now we give an example to illustrate the Theorem 2.2.

Example 2.3: Let X= [0, 1] and d(x, y) = (x+2y)°.

X
12

Letf, g, S, T: X—>X be defined by fx = >, gx = —,Sx =~ and Tx = .

Let ¢:[0,00)—[0,0) be defined by ¢(t) = i, for t € [0,00).

Then itis clear thatd(x,y) =d(y,x) =0 =>x=y

Also d(x, y) = (x+2y)* < [(x + 22) + (z + 2y)]? < 2[(x + 22)% + (z + 2y)?] = s[d(x,2) + d(z,y)], where s = 2
Thus d is a dislocated quasi b — metric with s = 2.

2
Consider d(fx, gy) = (5 + z—y)

8 12
B <3x + 4y)2
“\ 24

2
Xy
N
4
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_ d(Sx,Ty)
16

IA

1
—d(Sx, Ty)

;1- 1 1 1 1

L max {d(Sx. Ty), - d(Sx,fx), —d(Ty,gy), -d(Sx,gy), - d(Ty, fX)}

= ¢(max {d(sx, Ty), —-d(Sx, ), —-d(Ty,gy), —d(Sx,gy), —-d(Ty, f)}).

IA

Similarly we can show that

d(gx, fy) < o(max {d(Tx, Sy), = d(Tx, gx), = d(Sy, fy), —d(Sy,gx), —d(Tx)}).
Clearly f(X) = [0, 3] € [0, 5] = T(X) and g(X) = [0, =] € [0,-] = S(X).

It is also clear that Sf = fSand Tg = gT.

Fort>0,

1
Consider T, s"d"(6) =i, 2" = = iyt = t(r> =t< .
2

Thus all conditions of Theorem 2.2 are satisfied. Clearly 0 is the unique common fixed point of f, g, Sand T.
In the similar lines of proof of Theorem 2.2, we prove the following.

Theorem 2.4: Let (X, d) be a complete dislocated quasi b-metric space with fixed constant s > 1and f, g: X—X be
continuous mappings satisfying

(24.1) d(fx, gy) < ¢ (max{d(x,y), d(x ), d(v.gy), 5-d(x.gy), --d¥.f)}) VxyeX where ¢ € b,

(242) d(gx fy) < ¢ (max{d(x,y), d(xg9), d(y.fy), - d(¥,g%), -d(xf)}) ¥xy € X, where ¢ € ;.
Then f and g have a unique common fixed point .

Proof: As in Theorem 2.2, we can show that {x,} is convergent to z € X, where Xon1 = fXon , Xons2 = Xonets
n=0,1,2...and X, € X is arbitrary.

Since f is continuous and x, — z, we have

2 = Jim xanys = fim fran = £(Jim x,) = f2.

Similarly, since g is continuous we have z = gz.

Thus z is a common fixed point of fand g.

Consider d(z, 2) = d(fz, 92) < ¢ (max{d(z,2), d(z.2), d(z2), =d(z2), =d(z2)}) = (d(z 2))
From (¢3) follows that d(z, z) =0

Thus d(z, z) = 0 whenever z is a common fixed point of fand g.

Now suppose that w is another common fixed point of f and g.

Then d(w, w) = 0.

Now consider d(z, w) = d(fz, gw)

<o (max {d(z, w), d(z,z), d(w,w), i d(z,w), i d(w, Z)})
< ¢(max{d(z, w), d(w, 2)})
and
d(w, z) = d(gw, fz)
<o (max {d(W, z), d(w,w), d(z,z), 2_15 d(z,w), 2_15 d(w, Z)})
< ¢o(max{d(z, w), d(w, 2)}).
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Hence max{d(z, w),d(w, z)} < ¢(max{d(z, w), d(w, z)})
which in turn yields from (¢3) and (1.1.2) that w = z.
Hence z is the unique common fixed point of fand g.

Theorem 2.5: Let (X, d) be a complete dislocated quasi b-metric space with fixed constant s > 1and f, g : X>X be
continuous mappings satisfying

(25.1) d(fx,fy) < ¢ (max {d(gx, gy), d(gx, fx), d(gy, fy), id(gx, fy), z—lsd(gy, fx)}) V x,y € X, where ¢ € dg,
(2.5.2) f(X) < g(X) and fg = gf.
Then f and g have a unique common fixed point.

Proof: As in Theorem 2.2, we can show that {gx,} is convergent to z € X, where fx, = gXn+1, N =0,1,2.....and X, € X is
arbitrary.

Since fand g are continuous and fg = gf, we have fz = lim fgx, = lim gfx, =gz.
n-oo n—-oo
Thus fz is a point of coincidence of f and g.

Consider d(fz, f2) < ¢ (max {d(fz, fz), d(fz, f2), d(fz, fz), -d(fz, fz), -d(fz, fz)}) = ¢(d(fz, f2))
which in turn yields from (¢3) that d(fz, fz) = 0.
Thus if fz is a point of coincidence of fand g then d(fz, fz) = 0.

Suppose fw is another point of coincidence of f and g. Then d(fw, fw) = 0.

From (2.5.1) and (¢,), we have
d(fz, fw) < qb(max{d(fz, fw), d(fz, fz), d(fw, fw), —d(fz, fw), --d(fw, fz)})

< o(max{d(fz, fw),d(fw, f2)})
and

d(fw, 12) < ¢ (max{d(fw, 2), d(fw, fw), d(fz, f2), -d(fw, fz), ;-d(fz, fw)})
< ¢(max{d(fz, fw),d(fw, fz)}).

Thus we obtain

max{d(fz, fw),d(fw, fz)} < ¢(max{d(fz, fw),d(fw, fz)})
which in turn yields from (¢3) and (1.1.2) that fz = fw.
Thus fz is the unique point of coincidence of f and g.
Leta=fz =gz

Since fg = gf we have fa = fgz = gfz = ga.

Hence fa is a point of coincidence of fand g.

Thus fz = fa which implies that a = fa = ga.

Hence a is a common fixed point of f and g.

Suppose B is another common fixed point of f and g.
Thatis g = f = gp.

Hence @ is a point of coincidence of fand g.

But fz is the unique point of coincidence of f and g.
Hence fB = fz which implies that § = a.

Thus a is the unique common fixed point of f and g.
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Corollary 2.6: Let (X, d) be a complete dislocated quasi b-metric space with fixed constant s > 1and f: X—X be
continuous mapping satisfying

(2:6) d(fx. fy) < ¢ (max{d(x, y), d(x £, d(y, fy), =d(x fy), =d(y, 59}) Vx,y € X, where ¢ € P, .
Then f have a unique common fixed pointin X .

Proof: It follows from Theorem 2.5.

Now by replacing the continuities of all mappings and completeness of space X by weakly compatibility pairs of
mappings and completeness of one of subspace and using some other contractive conditions, we prove a common fixed
point theorem for four maps in dislocated quasi b-metirc spaces. Actually we prove the following Theorem.

Theorem 2.7: Let (X, d) be a dislocated quasi b-metric space with fixed constant s > 1and f, g, S, T: X—X be
mappings satisfying

(2.7.1) d(fx, gy) < ¢($max{d($x, Ty), d(Sx, fx), d(Ty, gy), d(Sx, gy), d(Ty, fx)})
V x,y € X, where ¢ € @, and ¢ is continuous,

(2.7.2) d(gx,fy) < ¢ (% max{d(Tx, Sy), d(Tx, gx), d(Sy, fy), d(Sy, gx), d(Tx, fy)})
V x,y € X, where ¢ € @ and ¢ is continuous,

(2.7.3) f(X) € T(X) and g(X) < S(X),

(2.7.4) One of S(X) and T(X) is a complete subspace of X and

(2.7.5) The pairs (f, S) and (g, T) are weakly compatible.

Then f, g, Sand T have a unique common fixed point in X.

Proof: As in proof of Theorem 2.2 the sequence {y,} is Cauchy in X, where Y, = fXon = TXons1 aNd Yoni1 = QXonet =
SXons2, N=0,1, 2.....

Suppose S(X) is complete subspace of X.
Since Yon+1 = SXons2 © SX, there exist z, u € X such that y,.;—2 = Su.

By Lemma 1.3, (2.7.1), (¢,) and continuity of ¢, we get
id(fu, z) < lim infd(fu, gx,n41)
< lim inf (55 max{d(z, yzn), 4z f0), dWans Voner) G Yanis), d@zn f0)3)
< lim infq)(% max{d(z, y,,), d(z, fu), 2smax{d(y,,, z), d(z, Y2ns1)} AZ Vans1), d(Van, fu)})

n—-co

<¢ (ﬁ max{0, d(z, fu), 0,0, d(z, fu) })
<4 (gd(z, fu))
<é G max{d(z, fu), d(fu, z)}) (1)

Also we can show that = d(z, fu)< ¢ (l max{d(z, fu), d(fu, z)}) @)

From (1) and (2) imax{d(fu, z),d(z, fu)} < (I)e max{d(z, fu), d(fu, Z)})

which in turn yields from (¢3) and (1.1.2) that fu = z. Thus Su =z = fu.
Since (f, S) is weakly compatible, we have Sz = S(Su) = S(fu) = f(Su) = fz.

By Lemma 1.3, (2.7.1), (¢,) and continuity of ¢, we obtain
~d(sz,2) == d(fz, 2)
< lim infd(fz, gX,n41)

n—-oo

< lim inf¢ (5 max{d(Sz, yon), d(Sz, S2), AWz, Yans1) d(S2, Yanes), d(zn S2)})

n—oo
1 d(Sz, ,2 d(Sz,z),d(z, Sz)},2 d ,Z),d(z, )

< (g 157 Y2025 S5 2). (0 S 25y ) e yinn)) )
2s (5z,Y2n+1), d(¥2n, S2)

< (% max{sd(Sz, ), 2smax{d(Sz, 2), d(z, 52)}, 0,0, 5d(57,7), sd(z 52)))
<¢(; max{d(sz,2),d(z,52)}) .
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Also we can show that % d(z, Sz)< cI)G max{d(Sz, z), d(z, Sz)})

From (3) and (4), 2 max{d(Sz 2), d(z, 52)} < ¢(% max{d(Sz, 2), d(z, 52)})

which in turn yields from (¢3) and (1.1.2) that Sz = z.
Thus Sz =z =fz.
Since f(X) € T(X), there exists a € X such that Ta = fz.

From (2.7.1) and (¢;) we have
d(Ta, ga) =d(fz, go)

§¢(ﬁmax{d(Ta, Ta), d(Ta, Ta), d(Ta, ga), d(Ta,ga), d(Ta, T“)})
< ¢($ max{d(Ta, Ta), d(Ta, ga)})
< ¢($ max{2s max{d(Ta, ga), d(ga, Ta)}, d(Ta, g(x)})

< ¢(§ max{d(Ta, ga), d(ga, TO()})
< ¢(max{d(Ta, ga), d(ga, Ta)})

Similarly we have d(ga, Ta) < ¢(max{d(Ta, ga), d(ga, Ta)})

From (6) and (7), max{d(Ta, ga), d(ga, To)} < ¢(max{d(Ta, ga), d(ga, Ta)})
which in turn yields from (¢3) and (1.1.2) that Ta = ga.

Thusga=z=Ta.

Since (g, T) is a weakly compatible pair, we have gz = Tz.

From (2.7.1) and (¢1) we have
d(z, gz) = d(fz, gz)

< §( 5 max{d(z, g2), d(z,2), d(gz g2), d(z g2), d(gz,72)))
§¢(§max{d(z, gz), 2smax{d(z,gz), d(gz,2)},2s max{d(gz,z), d(z g2z)}, d(z gz), d(gz, Z)})

< ¢(; max{d(z g2), d(gz2)})
< ¢p(max{d(z, gz), d(gz,2)})

Similarly we have d(gz,z) < ¢(max{d(gz,z), d(z,gz)})

From (8) and (9), max{d(z, gz), d(gz, z)} < ¢(max{d(gz,z), d(z, gz)})
which in turn yields from (¢3) and (1.1.2) that gz = z.

Hence Tz=gz=2

From (5) and (10) we have fz=Sz=z=Tz =gz.

Thus z is a common fixed pointof f, g, Sand T.

The uniqueness of common fixed point follows easily from (2.7.1) and (2.7.2).
Now we provide the following example to support our Theorem 2.7

Example 2.8: Let X=[0,1] and d(x,y)=(x+2y)*.

2 2 2

2
Letf, g, S,T:X—X be defined by fx = )1(—6 ,8X = L sx= X? and Tx = X?

T 24
Let ¢:[0,50)—>[0,0) be defined by ¢(t) = =, for t € [0,).
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(6)
U]
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(10)
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As in Example 2.3, d is a dislocated quasi b — metric with s = 2.

Consid

er d(fx, gy) = (= + ﬁ)z

24

_[(3x% + 4y? 2
~\ 6x8

%2 2y2\ 2
R

3
8

d(Sx,Ty)

1 5
= 572 4%, Ty)

< == max{d(Sx, Ty), d(Sx,fx), d(Ty,gy), d(Sx,gy), d(Ty, fx)}

8 2s2

= ¢($max{d(5x, Ty), d(Sx,fx), d(Ty,gy), d(Sx,gy), d(Ty, fx)}).

Thus (2.7.1) is satisfied.

Clearly one can verify the remaining conditions (2.7.2), (2.7.3), (2.7.4) and (2.7.5).

Clearly 0 is the unique common fixed point of f, g, Sand T.
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