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1. INTRODUCTION 
 
Zeyada et.al [12] initiated the concept of dislocated quasi metric spaces and generalized the results of Hitzler and Seda 
[5] in dislocated quasi metric spaces. The notion of b-metric space was introduced by Czerwic [3] in connection with 
some problems concerning with the convergence of non measurable functions with respect to measure. Recently Klin-
eam and Suanoom [7] introduced the concept of dislocated quasi b-metric spaces and which generalize b-metric spaces 
[3] and quasi b-metric spaces [10] and proved some fixed point theorems in it by using cyclic contractions. The authors 
[1, 4, 7, 8, 9, 11] etc. Obtained fixed, common fixed points theorems in dislocated quasi b-metric spaces using various 
contraction conditions for single and two maps. 
 
In this paper, we prove two common fixed point theorems for four maps in dislocated quasi b-metric spaces and we 
also give examples to support our theorems. 
 
First we recall some known definitions and lemmas. 
 
Definition 1.1: Let X be a non-empty set, s ≥ 1(a fixed constant)  and d: X×X→[0,∞) be a function. consider the 
following condition on d. 
(1.1.1) d(x, x) = 0,∀x ∈ X, 
(1.1.2) d(x, y) = d(y, x) = 0 ⟹ x = y,∀x, y ∈ X, 
(1.1.3) d(x, y) = d(y, x),∀x, y ∈ X, 
(1.1.4) d(x, y) ≤ d(x, z) + d(z, y),∀x, y, z ∈ X, 
(1.1.5) d(x, y) ≤ s[d(x, z) + d(z, y)],∀x, y, z ∈ X. 

(i) If d satisfies (1.1.2),(1.1.3) and (1.1.4) then d is called a dislocated metric and (X, d) is called a dislocated 
metric space. 

(ii) If d satisfies (1.1.1),(1.1.2) and (1.1.4) then d is called a quasi metric and (X, d) is called a quasi metric space. 
(iii) If d satisfies (1.1.2) and (1.1.4) then d is called a dislocated quasi metric or dq-metric and (X, d) is called a 

dislocated quasi metric space. 
(iv) If d satisfies (1.1.1), (1.1.2), (1.1.3) and (1.1.4) then d is called a metric and (X, d) is called a metric space. 
(v) If d satisfies (1.1.1), (1.1.2), (1.1.3) and (1.1.5) then d is called a b-metric and (X, d) is called a b-metric space. 
(vi) if d satisfies (1.1.2) and (1.1.5) then d is called a dislocated quasi b-metric and (X, d) is called a dislocated 

quasi b-metric space or dq-metric space. 
 
Definition 1.2: Let (X, d) be a dq b- metric space. A sequence {xn} in (X, d) is said to be 
(i) dq  b − convergent if there exists some point x ∈ X such that lim

n→∞
d(xn, x) = 0 = lim

n→∞
d(x, xn). 

In this case x is called a dq b-limit of {xn} and we write xn→x as n→∞. 
(ii)Cauchy sequence if lim

n,m→∞
d(xn, xm) = 0 = lim

m,n→∞
d(xm, xn). 
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The space (X, d) is called complete if every Cauchy sequence in X is dq b-convergent. 
 
One can prove easily the following 
 
Lemma 1.3: Let (X, d) be a dq b-metric space and {xn} be dq b-convergent to x in X and y ∈ 𝑋 be arbitrary.Then 
1
s

d(x, y) ≤ lim
n→∞

inf d(xn, y) ≤ lim
n→∞

sup d(xn, y) ≤ sd(x, y)   and 
1
s

d(y, x) ≤ lim
n→∞

inf d(y, xn) ≤ lim
n→∞

sup d(y, xn) ≤ sd(y, x). 
 
Note: 1

2s
d(x, y) ≤ max{d(x, z), d(z, y)} ∀x, y, z ∈ X. 

 
Definition 1.4: [6] Let X be a non-empty set and S, T: X→X be given self maps on X. The pair (S, T) is said to be 
weakly compatible if STx=TSx whenever there exists x∈X such that Sx=Tx. 
 
Definition 1.5: [2] Let X be a non-empty set and f, g: X→X be mappings. If there exists x ∈ X such that fx = gx. Then 
x is called a Coincidence point of  f and g and fx is called a point of Coincidence of  f and g.  
 
Now we prove our main result. 
 
2. MAIN RESULT 
 
We need the following definition 
 
Definition 2.1: For the fixed constant 𝑠 ≥ 1 , let Φ𝑠denote the set of all functions ϕ:[0,∞)→[0,∞) satisfying the 
following 
(ϕ1) : ϕ is monotonically non-decreasing , 

(ϕ2):� snϕn(t) <  ∞ for all t > 0,
∞

n=1

 

 (ϕ3) : 𝜙(t) < t for t > 0. 
 
Clearly (𝜙1) and (𝜙3) implies ϕ(0) = 0. 
 
Theorem 2.2: Let (X, d) be a complete dislocated quasi b-metric space with fixed constant s ≥ 1 and f, g, S, T: X→X 
be continuous mappings satisfying 
(2.2.1) d(fx, gy) ≤ 𝜙 �max �d(Sx, Ty), 1

2s
d(Sx, fx), 1

2s
d(Ty, gy), 1

2s
d(Sx, gy), 1

2s
d(Ty, fx)��  

                                                                                              ∀ x, y ∈ X, where ϕ ∈ Φs, 
(2.2.2)  d(gx, fy) ≤ 𝜙 �max �d(Tx, Sy), 1

2s
d(Tx, gx), 1

2s
d(Sy, fy), 1

2s
d(Sy, gx), 1

2s
d(Tx, fy)��  

                                                                                             ∀ x, y ∈ X, where ϕ ∈ Φs, 
(2.2.3) f(X) ⊆ T(X) and  g(X) ⊆ S(X), 
(2.2.4) fS = Sf and gT = Tg. 
Then f, g, S and T have a unique common fixed point in X. 
 
Proof: Let x0 ∈  X . 
 
Define y2n = f x2n = Tx2n+1 ,y2n+1 = g x2n+1 = Sx2n+2,   n=0,1,2....... 
 
Case-(i): Suppose max{d(yn-1,yn),d(yn,yn-1)} = 0 for some n. 
Without loss of generality assume that  n=2m. 
 
Then y2m-1 = y2m. 
 
Using (2.2.1), (2.2.2) and  (ϕ1), we get 
d(y2m , y2m+1) = d(fx2m , gx2m+1) 
                     ≤ ϕ(max{d(y2m- 1, y2m),  1

2𝑠
d(y2m-1 , y2m),  1

2𝑠
d(y2m , y2m+1), 

1
2𝑠

d(y2m-1 , y2m+1), 
1
2𝑠

d(y2m , y2m)}) 

                     ≤ ϕ�max � d(y2m−1, y2m), d(y2m−1, y2m), d(y2m,     y2m+1),
max{d(y2m−1,  y2m), d(y2m,  y2m+1)} , max {d(y2m, y2m−1), d(y2m−1, y2m)}��, from Note 

                     = ϕ(max{d(y2m-1 , y2m), d(y2m  , y2m-1), d(y2m  , y2m+1)}) 
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and  
d(y2m+1, y2m) = d(gx2m+1, fx2m)  
                    ≤ ϕ(max{d(y2m , y2m-1),  

1
2𝑠

d(y2m , y2m+1),  
1
2𝑠

d(y2m-1 , y2m), 1
2𝑠

d(y2m- 1, y2m+1),  
1
2𝑠

d(y2m  , y2m)}) 

                    ≤ ϕ�max � d(y2m, y2m−1), d(y2m, y2m+1), d(y2m−1, y2m),
max{d(y2m−1,  y2m), d(y2m, y2m+1)} , max {d(y2m, y2m−1), d(y2m−1,  y2m)��  

                    = ϕ (max{d(y2m  , y2m-1) , d(y2m-1  , y2m) , d(y2m  , y2m+1)}). 
 
Thus 

max{d(y2m,  y2m+1), d(y2m+1, y2m)} ≤ ϕ�max �d(y2m−1, y2m), d(y2m, y2m−1),
d(y2m, y2m+1), d(y2m+1, y2m)��                                                     (1) 

                                                            = ϕ(max{d(y2m, y2m+1 ), d(y2m+1, y2m)}) 
 
From  (ϕ3) and (1.1.2), we have y2m = y2m+1 . Thus y2m−1 = y2m = y2m+1. 
 
Continuing in this way we have y2m−1 = y2m = y2m+1 = ⋯ 
 
Thus yn−1 = yn = yn+1 = ⋯ 
 
Hence  {yn}  is a constant Cauchy sequence. 
 
Case-(ii): suppose max{d(yn, yn+1 ) , d(yn+1, yn)} ≠ 0  for all n. 
As in (1), we have 

max{d(y2n, y2n+1), d(y2n+1, y2n)} ≤ ϕ�max �d
(y2n−1, y2n), d(y2n, y2n−1),

d(y2n, y2n+1), d(y2n+1,  y2n) ��                                                    (2) 

 
If  max{d(y2n-1 , y2n) , d(y2n , y2n-1)} ≤ max{d(y2n , y2n+1), d(y2n+1 , y2n)}, 
then from (2), using (ϕ3) , we get 
max{d(y2n, y2n+1), d(y2n+1, y2n)} = 0, which is a contradiction to Case (ii). 
 
Hence  max{d(y2n-1 , y2n), d(y2n , y2n-1)} > max{d(y2n , y2n+1), d(y2n+1 , y2n)}. 
 
Now from (2), max{d(y2n, y2n+1), d(y2n+1, y2n)} ≤ ϕ(max{d(y2n−1,  y2n), d(y2n, y2n−1)})                                     (3) 
 
This is true for n = 1, 2, 3 .... 
 
Hence max{d(yn, yn+1), d(yn+1, yn)} ≤ ϕ(max{d(yn−1, yn), d(yn, yn−1)}) 
                                                             … … … … 
                                                             ≤ ϕn(max{d(y0, y1), d(y1, y0)})                                                                         (4) 
 
Now for all positive integers n and p, consider, using (4),  
d(yn, yn+p) ≤ sd(yn, yn+1) + s2d(yn+1, yn+2) + .....+spd(yn+p-1, yn+p) 

  ≤ sϕn(t) + s2ϕn+1(t) + .....+spϕn+p-1(t), where t = max{d(y0, y1), d(y1, y0)} 
  ≤ snϕn(t) + sn+1ϕn+1(t) + ..... + sn+p-1ϕn+p-1(t), since s ≥ 1 

                  ≤ ∑ siϕi(t) ≤ ∑ siϕi(t) → 0 as n → ∞,∞
i=n

n+p−1
i=n   

 
since ∑ siϕi(t) converges for all t > 0.∞

i=n   
 
Thus we have lim

n→∞
d(yn, yn+p) = 0. 

 
Also using (4), we have 
d(yn+p, yn) ≤ sd(yn+p, yn+1) + sd(yn+1, yn) 

≤ s2d(yn+p, yn+2) + s2d(yn+2, yn+1) + sd(yn+1, yn) 
≤ s3d(yn+p, yn+3) +s3d(yn+3, yn+2) + s2d(yn+2, yn+1) + sd(yn+1, yn) 
… … … … 
≤ sp-1d(yn+p, yn+p-1) + sp-1d(yn+p-1, yn+p-2) + ......+ s2d(yn+2, yn+1) + sd(yn+1, yn) 
≤ sp-1ϕn+p-1(t) + sp-1ϕn+p-2(t) + .....+ s2ϕn+1(t) + sϕn(t) 
≤ sn+p-1ϕn+p-1(t) + sn+p-2ϕn+p-2(t) + .....+ sn+1ϕn+1(t) + snϕn(t)      since s ≥ 1.   
= ∑ siϕi(t) ≤ ∑ siϕi(t) → 0 as n → ∞.∞

i=n
n+p−1
i=n   

 
Hence  we have lim

n→∞
d(yn+p, yn) = 0. 
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Thus  {yn} is a Cauchy sequence in X. 
 
Since X is a complete dislocated quasi b – metric space, there exists z ∈ X such that {yn} converges to z. 
 
Since S and f are continuous and Sf = fS, we have 
Sz = lim

n→∞
Sy2n= lim

n→∞
Sfx2n = lim

n→∞
fSx2n = lim

n→∞
 fy2n-1 = fz. 

 
Similarly, since T and g are continuous and Tg = gT, we have Tz = gz. 
 
Using (2.2.1), (2.2.2), (ϕ1) and Note, we get 
d(Sz , Tz) = d(fz , gz) 
               ≤ ϕ�max �d(Sz, Tz), 1

2s
d(Sz, Sz), 1

2s
d(Tz, Tz) , 1

2s
d(Sz, Tz), 1

2s
d(Tz, Sz)�� 

               ≤ ϕ (max{d(Sz, Tz), d(Tz, Sz)}) 
and 
d(Tz, Sz) ≤ ϕ (max{d(Sz, Tz), d(Tz, Sz)}). 
 
Thus  max{d(Sz,Tz), d(Tz, Sz)} ≤ ϕ(max{d(Sz, Tz), d(Tz, Sz)}) 
 
which in turn yields from (ϕ3) and (1.1.2) that Sz = Tz. 
 
Let α = Sz = Tz. Then S𝛼 = S(Sz) = S(fz) = f(Sz) = fα and Tα = T(Tz) = T(gz) = g(Tz) = gα. 
 
Now using (2.2.1), (2.2.2), (ϕ1) and from Note, we have 
d(Sα , α) = d(f α , gz) 
               ≤ ϕ�max �d(Sα ,α), 1

2s
d(Sα , Sα), 1

2s
d(α ,α), 1

2s
d(Sα ,α), 1

2s
d(α , Sα)�� 

               ≤ ϕ(max{d(Sα, α), d(α, Sα)}) 
and 
d(α, Sα) ≤ ϕ(max{d(Sα, α), d(α, Sα)}). 
 
Thus we have max{d(Sα, α),d(α, Sα)} ≤ ϕ(max{d(Sα, α), d(α, Sα)}) 
 
which in turn yields from (ϕ3) and (1.1.2) that Sα = α. 
 
Similarly we can show that Tα = α. 
 
Thus fα = Sα = α = Tα = gα. 
 
Hence α is a common fixed point of f, g, S and T. 
 
One can prove the uniqueness of common fixed point of f, g, S and T using (2.2.1) and (2.2.2). 
 
Now we give an example to illustrate the Theorem 2.2. 
 
Example 2.3: Let X= [0, 1] and d(x, y) = (x+2y)2. 
 
Let f, g, S, T: X→X be defined by fx = x

8
 , gx = x

12
, Sx = x

2
 and Tx = x

3
. 

 
Let ϕ:[0,∞)→[0,∞) be defined by ϕ(t) = t

4
 , for t ∈ [0,∞). 

 
Then it is clear that d(x, y) = d(y, x) = 0 ⇒ x = y 
 
Also d(x, y) = (x+2y)2  ≤ [(x + 2z) + (z + 2y)]2 ≤ 2[(x + 2z)2 + (z + 2y)2] = s[d(x, z) + d(z, y)], where s = 2 
 
Thus d is a dislocated quasi b – metric with s = 2. 

Consider   d(fx, gy) = �x
8

+ 2y
12
�
2
 

= �
3x + 4y

24
�
2

 

= �
x
2+

2y
3

4
�
2
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= d(Sx,Ty)

16
 

≤  
1
4

d(Sx, Ty) 

≤  1
4

max �d(Sx, Ty), 1
2s

d(Sx, fx), 1
2s

d(Ty, gy), 1
2s

d(Sx, gy), 1
2s

d(Ty, fx)� 

= ϕ�max �d(Sx, Ty), 1
2s

d(Sx, fx), 1
2s

d(Ty, gy), 1
2s

d(Sx, gy), 1
2s

d(Ty, fx)��. 
 
Similarly we can show that  
d(gx, fy) ≤ ϕ�max �d(Tx, Sy), 1

2s
d(Tx, gx), 1

2s
d(Sy, fy), 1

2s
d(Sy, gx), 1

2s
d(Tx, fy)��.  

 
Clearly f(X) = [0, 1

8
] ⊆ [0, 1

3
] = T(X) and  g(X) = [0, 1

12
] ⊆ [0, 1

2
] = S(X). 

 
It is also clear that Sf = fS and Tg = gT. 
 
For t > 0, 
 

Consider ∑ snϕn(t) =∞
n=1 ∑ 2n t

4n
= ∑ 1

2n
∞
n=1

∞
n=1 t = t�

1
2

1−12
� = t < ∞.  

 
Thus all conditions of Theorem 2.2 are satisfied. Clearly 0 is the unique common fixed point of f, g, S and T. 
 
In the similar lines of proof of Theorem 2.2, we prove the following. 
 
Theorem 2.4: Let (X, d) be a complete dislocated quasi b-metric space with fixed constant s ≥ 1and f, g: X→X be  
continuous  mappings  satisfying 
(2.4.1) d(fx, gy) ≤ ϕ�max �d(x, y), d(x, fx), d(y, gy), 1

2s
d(x, gy), 1

2s
d(y, fx)��   ∀ x, y ∈ X, where ϕ ∈ Φs , 

(2.4.2) d(gx, fy) ≤ ϕ�max �d(x, y), d(x, gx), d(y, fy), 1
2s

d(y, gx), 1
2s

d(x, fy)��  ∀ x, y ∈ X, where ϕ ∈ Φs . 
Then f and g have a unique common fixed point . 
 
Proof: As  in Theorem 2.2, we can show that {xn} is convergent to z ∈  X, where x2n+1 = fx2n , x2n+2 = gx2n+1,                    
n = 0,1,2.....and x0 ∈ X is arbitrary. 
 
Since f is continuous and xn → z, we have  
z = lim

n→∞
x2n+1 = lim

n→∞
fx2n = f � lim

n→∞
xn� = fz. 

 
Similarly, since g is continuous we have z = gz. 
 
Thus  z is a common fixed point of  f and g. 
 
Consider d(z, z) = d(fz, gz) ≤ 𝜙 �max �d(z, z), d(z, z), d(z, z), 1

2s
d(z, z), 1

2s
d(z, z)�� = ϕ(d(z, z)) 

 
From (ϕ3) follows that d(z, z) = 0 
 
Thus  d(z, z) = 0 whenever  z is a common fixed point of  f and g. 
 
Now suppose that w is another common fixed point of f and g. 
 
Then d(w, w) = 0. 
 
Now consider d(z, w) = d(fz, gw)  
                                   ≤ ϕ�max �d(z, w), d(z, z), d(w, w), 1

2s
d(z, w), 1

2s
d(w, z)��  

                                   ≤ ϕ(max{d(z, w), d(w, z)}) 
and 
d(w, z) = d(gw, fz)  

≤ ϕ�max �d(w, z), d(w, w), d(z, z), 1
2s

d(z, w), 1
2s

d(w, z)�� 
≤  ϕ(max{d(z, w), d(w, z)}). 
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Hence  max{d(z, w),d(w, z)} ≤ ϕ(max{d(z, w), d(w, z)}) 
 
which in turn yields from (ϕ3) and (1.1.2) that  w = z. 
 
Hence  z  is the unique common fixed point of  f and g. 
 
Theorem 2.5: Let (X, d) be a complete dislocated quasi b-metric space with fixed constant 𝑠 ≥ 1and f, g : X→X be  
continuous  mappings  satisfying 
(2.5.1) d(fx, fy) ≤ ϕ�max �d(gx, gy), d(gx, fx), d(gy, fy), 1

2s
d(gx, fy), 1

2s
d(gy, fx)��  ∀ x, y ∈ X, where ϕ ∈ Φs, 

(2.5.2) f(X) ⊆ g(X) and fg = gf. 
Then f and g have a unique common fixed point. 
 
Proof: As in Theorem 2.2, we can show that {gxn} is convergent to z ∈ X, where fxn  = gxn+1, n = 0,1,2.....and x0 ∈ X is 
arbitrary. 
 
Since f and g are continuous and fg = gf, we have fz = lim

n→∞
fgxn = lim

n→∞
gfxn = gz. 

Thus fz is a point of coincidence of f and g. 
 
Consider d(fz, fz) ≤  𝜙 �max �d(fz, fz), d(fz, fz), d(fz, fz), 1

2s
d(fz, fz), 1

2s
d(fz, fz)�� = ϕ(d(fz, fz)) 

 
which in turn yields from (ϕ3) that d(fz, fz) = 0. 
 
Thus if fz is a point of coincidence of f and g then d(fz, fz) = 0. 
 
Suppose fw is another point of coincidence of f and g. Then  d(fw, fw) = 0. 
 
From (2.5.1) and (ϕ1), we have 
d(fz, fw) ≤  𝜙 �max �d(fz, fw), d(fz, fz), d(fw, fw), 1

2s
d(fz, fw), 1

2s
d(fw, fz)�� 

               ≤ ϕ(max{d(fz, fw),d(fw, fz)}) 
and 
d(fw, fz) ≤  𝜙 �max �d(fw, fz), d(fw, fw), d(fz , fz), 1

2s
d(fw, fz), 1

2s
d(fz, fw)�� 

               ≤ ϕ(max{d(fz, fw),d(fw, fz)}). 
Thus we obtain 
max{d(fz, fw),d(fw, fz)} ≤ ϕ(max{d(fz, fw),d(fw, fz)}) 
 
which in turn yields from (ϕ3) and (1.1.2) that  fz = fw. 
 
Thus fz is the unique point of coincidence of f and g. 
 
Let α = fz = gz. 
 
Since fg = gf we have fα = fgz = gfz = gα. 
 
Hence fα is a point of coincidence of  f and g. 
 
Thus fz = f𝛼 which implies that α = fα = gα. 
 
Hence α is a common fixed point of f and g. 
 
Suppose β is another common fixed point of f and g. 
 
That is β = fβ = gβ. 
 
Hence fβ is a point of coincidence of  f and g. 
 
But fz is the unique point of coincidence of f and g. 
 
Hence fβ = fz which implies that β = α. 
 
Thus α is the unique common fixed point of f and g. 
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Corollary 2.6: Let (X, d) be a complete dislocated quasi b-metric space with fixed constant s ≥ 1and f: X→X be  
continuous  mapping  satisfying 
(2.6.1) d(fx, fy) ≤ ϕ�max �d(x, y), d(x, fx), d(y, fy), 1

2s
d(x, fy), 1

2s
d(y, fx)��  ∀ x, y ∈ X, where ϕ ∈ Φs . 

Then f have a unique common fixed point in X . 
 
Proof: It follows from Theorem 2.5. 
 
Now by replacing the continuities of all mappings and completeness of space X by weakly compatibility pairs of 
mappings and completeness of one of subspace and using some other contractive conditions, we prove a common fixed 
point theorem for four maps in dislocated quasi b-metirc spaces. Actually we prove the following Theorem. 
 
Theorem 2.7: Let (X, d) be a dislocated quasi b-metric space with fixed constant 𝑠 ≥ 1and f, g, S, T: X→X be 
mappings satisfying 
(2.7.1) d(fx, gy) ≤ 𝜙 � 1

2s2
max{d(Sx, Ty), d(Sx, fx), d(Ty, gy), d(Sx, gy), d(Ty, fx)}�    

∀ x, y ∈ X, where ϕ ∈ Φs and ϕ is continuous, 
(2.7.2)  d(gx, fy) ≤ 𝜙 � 1

2s2
max{d(Tx, Sy), d(Tx, gx), d(Sy, fy), d(Sy, gx), d(Tx, fy)}�    

∀ x, y ∈ X, where ϕ ∈ Φs and ϕ is continuous, 
(2.7.3) f(X) ⊆ T(X) and  g(X) ⊆ S(X), 
(2.7.4) One of S(X) and T(X) is a complete subspace of X and 
(2.7.5) The pairs (f, S) and (g, T) are weakly compatible. 
Then f, g, S and T have a unique common fixed point in X. 
 
Proof: As in proof of Theorem 2.2 the sequence {yn} is Cauchy in X, where y2n = fx2n = Tx2n+1 and y2n+1 = gx2n+1 = 
Sx2n+2 , n = 0, 1, 2..... 
 
Suppose S(X) is complete subspace of X. 
 
Since y2n+1 = Sx2n+2 ⊆ SX, there exist z, u ∈ X such that y2n+1→z = Su. 
 
By Lemma 1.3, (2.7.1), (ϕ1) and continuity of ϕ, we get 
  1
s

d(fu, z) ≤ lim
n→∞

inf d(fu, gx2n+1)                  

                   ≤ lim
n→∞

infϕ� 1
2s2

 max{d(z,  y2n), d(z, fu), d(y2n,   y2n+1),   d(z,   y2n+1), d(y2n, fu)}�                   

                 ≤ lim
n→∞

infϕ� 1
2s2

 max{d(z,  y2n), d(z, fu), 2smax{d(y2n, z), d(z, y2n+1)}, d(z, y2n+1), d(y2n, fu)}� 

                 ≤ ϕ � 1
2s2

 max{0, d(z, fu), 0, 0, d(z, fu) }� 

                 ≤ ϕ �1
s

d(z, fu)� 

                 ≤ ϕ �1
s

max{d(z, fu), d(fu, z)}�                                                                                                                         (1) 
 
Also we can show that  1

s
d(z, fu)≤ ϕ �1

s
max{d(z, fu), d(fu, z)}�                                                                                     (2) 

 
From (1) and (2)   1

s
max{d(fu, z), d(z, fu)} ≤ ϕ�1

s
max{d(z, fu), d(fu, z)}� 

 
which in turn yields from (ϕ3) and (1.1.2) that  fu = z. Thus Su = z = fu. 
 
Since (f, S) is weakly compatible, we have Sz = S(Su) = S(fu) = f(Su) = fz. 
 
By Lemma 1.3, (2.7.1), (ϕ1) and continuity of ϕ, we obtain 
1
s
 d(Sz , z) = 1

s
 d(fz , z) 

                 ≤ lim
n→∞

inf d(fz, gx2n+1) 

                 ≤ lim
n→∞

infϕ� 1
2s2

 max{d(Sz,  y2n), d(Sz, Sz), d(y2n, y2n+1), d(Sz, y2n+1), d(y2n, Sz)}� 

                   ≤ lim
n→∞

infϕ�
1

2s2
 max �

d(Sz,   y2n), 2s max{d(Sz, z), d(z, Sz)},2s max{d(y2n, z), d(z, y2n+1)} ,
d(Sz, y2n+1), d(y2n, Sz) �� 

                 ≤ ϕ� 1
2s2

 max{sd(Sz, z), 2smax{d(Sz, z), d(z, Sz)}, 0,0, sd(Sz, z), sd(z, Sz)}� 

                 ≤ ϕ�1
s

max{d(Sz, z), d(z, Sz)}�                                                                                                                         (3) 
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Also we can show that   1

s
 d(z, Sz)≤ ϕ�1

s
max{d(Sz, z), d(z, Sz)}�                                                                                   (4) 

 
From (3) and (4),  1

s
max{d(Sz, z), d(z, Sz)} ≤ ϕ�1

s
max{d(Sz, z), d(z, Sz)}� 

 
which in turn yields from (ϕ3) and (1.1.2) that  Sz = z. 
 
Thus Sz = z = fz.                                                                                                                                                               (5) 
 
Since f(X) ⊆ T(X), there exists α ∈ X such that Tα = fz. 
 
From (2.7.1) and (ϕ1) we have  
d(Tα , gα) = d(fz , gα)  

≤ ϕ� 1
2s2

max{d(Tα, Tα), d(Tα, Tα), d(Tα, gα), d(Tα, gα), d(Tα, Tα)}� 

≤ ϕ� 1
2s2

max{d(Tα, Tα), d(Tα, gα)}� 

≤ ϕ� 1
2s2

max{2s max{d(Tα, gα), d(gα, Tα)} , d(Tα, gα)}� 

≤ ϕ�1
s

max{d(Tα, gα), d(gα, Tα)}� 
≤ ϕ(max{d(Tα, gα), d(gα, Tα)})                                                                                                                    (6) 

 
Similarly we have d(gα, Tα) ≤ ϕ(max{d(Tα, gα), d(gα, Tα)})                                                                                       (7) 
 
From (6) and (7),  max{d(Tα, gα), d(gα, Tα)} ≤ ϕ(max{d(Tα, gα), d(gα, Tα)}) 
 
which in turn yields from (ϕ3) and (1.1.2) that  Tα = gα. 
 
Thus gα = z = Tα. 
 
Since (g, T) is a weakly compatible pair, we have gz = Tz. 
 
From (2.7.1) and (ϕ1) we have 
d(z, gz) = d(fz, g𝑧)  

≤ ϕ� 1
2s2

max{d(z, gz), d(z, z), d(gz, gz), d(z, gz), d(gz, z)}� 

≤ ϕ� 1
2s2

max{d(z, gz), 2s max{d(z, gz), d(gz, z)} , 2s max{d(gz, z), d(z, gz)},   d(z, gz), d(gz, z)}� 

≤ ϕ�1
s

max{d(z, gz), d(gz, z)}� 
≤ ϕ(max{d(z, gz), d(gz, z)})                                                                                                                                (8) 

 
Similarly we have  d(gz, z) ≤ ϕ(max{d(gz, z), d(z, gz)})                                                                                                (9) 
 
From (8) and (9),  max{d(z, gz), d(gz, z)} ≤ ϕ(max{d(gz, z), d(z, gz)}) 
 
which in turn yields from (ϕ3) and (1.1.2) that  g𝑧 = z. 
 
Hence Tz = gz = z                                                                                                                                                           (10) 
 
From (5) and (10) we have fz = Sz = z = Tz = gz. 
 
Thus z is a common fixed point of f , g , S and T. 
 
The uniqueness of common fixed point follows easily from (2.7.1) and (2.7.2). 
 
Now we provide the following example to support our Theorem 2.7 
 
Example 2.8: Let X=[0,1] and d(x,y)=(x+2y)2. 
 
Let f, g, S,T:X→X be defined by fx = x2

16
 , gx = x2

24
 , Sx = x2

2
 and Tx = x2

3
 . 

 
Let ϕ:[0,∞)→[0,∞) be defined by ϕ(t) = t

8
 , for t ∈ [0,∞). 
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As in Example 2.3, d is a dislocated quasi b – metric with s = 2. 
 

Consider   d(fx, gy) = �x
2

16
+ 2y

2

24
�
2
 

= �
3x2 + 4y2

6 × 8
�
2

 

=  �
x2
2 +

2y2
3

8
�
2

 

=  d(Sx,Ty)
64

 

=  1
8

1
2s2

 d(Sx, Ty) 

≤  1
8

1
2s2

max{d(Sx, Ty), d(Sx, fx), d(Ty, gy), d(Sx, gy), d(Ty, fx)} 

=  ϕ� 1
2s2

max{d(Sx, Ty), d(Sx, fx), d(Ty, gy), d(Sx, gy), d(Ty, fx)}�. 
 
Thus (2.7.1) is satisfied. 
 
Clearly one can verify the remaining conditions (2.7.2), (2.7.3), (2.7.4) and (2.7.5). 
 
Clearly 0 is the unique common fixed point of f, g, S and T. 
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